
EasyChair Preprint
№ 3009

Practical UMAC Algorithm on Hybrid
Crypto-Code Constructions of McElise on
Shortened Mec

Alla Havrylova

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 22, 2020

4th INTERNATIONAL CONGRESS ON 3D PRINTING (ADDITIVE MANUFACTURING) TECHNOLOGIES AND DIGITAL INDUSTRY

PRACTICAL UMAC ALGORITHM ON HYBRID CRYPTO-CODE

CONSTRUCTIONS OF McELISE ON SHORTENED MEC

A. HAVRYLOVAa*

a*Simon Kuznets Kharkiv National University of Economics, Department of Cyber Security and Information

Technology, UKRAINE

*Corresponding Author: alla.gavrylova@hneu.net

ABSTRACT
A study was carried out on the use of an improved UMAC algorithm in post-quantum cryptography

based on the formation of a substrate on the third layer of the hash code generation by the McElise

crypto-code system on elliptic codes. The paper considers a practical algorithm for generating a hash

code based on an example implementation of a cascading UMAC hash algorithm with the McElise

crypto-code construction on elliptic codes. Using a hybrid crypto-code design allows you to save the

universality of the hash code at the output of the algorithm, which allows its use in large databases as

an identifier. In addition, in the context of the implementation of a full-scale quantum computer, US

NIST experts consider crypto-code systems as one of the effective post-quantum cryptography

algorithms. This approach allows you to implement the UMAC modification on various modifications

of hybrid crypto-code structures and to ensure the formation of authentication profiles of different

strength and length.

Keywords: UMAC hashing algorithm, McElice hybrid crypto code constructions, elliptic codes.

1. INTRODUCTION

An important direction in the development of post-quantum cryptography today is crypto-code

systems (constructions) (CCC). Their formation is based on the use of algebraic codes disguised

as the so-called random code [1], [2]. CCC allow integrated to implement fast cryptographic

data conversion and ensure the reliability of the transmitted data based on noise-resistant coding

[3], [4]. Despite the advantages, their use in modern software and hardware is hampered by

their practical implementation with the required level of cryptographic stability, and

withstanding the attack of V.M. Sidelnikov on the basis of linear-fractional transformations,

allowing to open a private key (generating and / or verification matrix, depending on the crypto-

code system of McElice or Niederreiter) [5]. At the same time, according to experts of NIST

USA, these crypto-code designs can provide the required level of protection and are able to

withstand modern threats. This is confirmed by the participation of the McElice crypto code

construction in the NIST contest for post-quantum cryptography algorithms. It seems

interesting to explore the possibilities of sharing the already known cryptographic coding

systems for transmitting information.
2. LITERATURE REVIEW
The development of computing capabilities in recent years, and in the first place, the creation of full-

scale quantum computers, has jeopardized the use of classical mechanisms of not only symmetric

cryptography, public key cryptography (including algorithms using the theory of elliptic curves), but

also algorithms for providing authenticity services based on MDC and MAC codes, specialized hash

functions [1], [3], [6], [7]. In the face of modern threats and the use of cryptanalysis algorithms using

full-scale quantum computers, the use of the SHA-3 algorithm and the winning algorithms of the

NESSIE European cryptographic contest in authentication and digital signature algorithms is questioned

because of the possibility of hacking. Under such conditions, an increase in the level of cryptographic

stability can lead to an increase in the length of key sequences and a decrease in the speed of

mailto:alla.gavrylova@hneu.net

ilk yazar soyadı /NTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY …:…. (2018) …..

cryptographic transformations. The use of the UMAC algorithm with the formation of the substrate of

the third layer based on MASH-2 leads to an increase in the level of stability, collisions, but also to a

decrease in the conversion speed [8], which is an indirect confirmation of the possibility of reducing the

speed of cryptographic transformations in the conditions of post-quantum cryptography. An urgent task

is to increase the speed of cryptocurrencies while ensuring the required level of cryptographic stability

of this algorithm. In [3], [4], practical algorithms for crypto-code constructions are considered that

provide their practical implementation by reducing the power of the alphabet. Their application in the

UMAC algorithm will not only provide the required level of cryptographic stability of the generated

hash code, but also preserve its versatility.

Research problem – investigation of the possibility of using hybrid McElice crypto-code constructions

with shortened flawed elliptic codes based on a practical example in the UMAC algorithm.

3. CONSTRUCTION OF A MODIFIED UMAC ALGORITHM USING HCCC ON THE BASIS

OF MKKS McELICE FOR A SHORTED MEC

In works [9], [10], a mathematical model and a structural diagram of the hash code generation in the

UMAC algorithm were considered using, as an algorithm, a substrate (pseudo-random sequence that

ensures the hash code cryptographic stability) of the McElise crypto code design using elliptic codes

(EC) (modified elliptical codes (MEC), flawed codes).

The use of various algebraic and multi-channel cryptography codes will allow the formation of various

hash code lengths and provide the required level of its cryptographic strength. The basic steps of creating

a hash code are considered in the work [10].

Consider the practical implementation of the modified UMAC algorithm using the McElice HCCC in

the EC using an example. The input to the calculations is:

1L IY universal hash value (UHASH-hash) of the first level of

hashing

3L IY hash value (Carter-Wegman-hash) of the third level of hashing

T data block

Blocklen data block length (bytes)

K secret key

Keylen secret key length (32 bytes)

Tag integrity and authenticity control code

1L IK secret key of the first level of hashing, consisting of subkeys

K1, K2, …, Kn

3L IK second-level hash secret key consisting of keys KL31 (subkeys

K1, K2, …, Kn) and KL32 (subkeys K1, K2, …, Kn)

M length of the transmitted plaintext array І

'K pseudo random key sequence

Numbyte pseudo-random key sequence length (number of subkeys)

Index subkey number

І=11 transmitted plaintext (k-bit information vector over GF (q))

Xor () bitwise summation

x3+y2z+yz2=0 algebraic curve over the field GF (22)

e=00000200
secret weight error vector

1
(e) t

2

 
   

 
h

d
w

1 2

3 0

 
  
 

X
nondegenerate k × k matrix

ilk yazar soyadı /NTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY …:…. (2018) …..

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

 
 
 
 
 
 
 
 
 
 
 
  

P

permutation matrix of size n×n

1 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0

0 0 3 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 2 0 0 0

0 0 0 0 0 3 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

 
 
 
 
 
 
 
 
 
 
 
  

D

diagonal matrix equal 1

2 2 3 0 1 3 0 1

3 3 2 1 0 2 1 0

 
  
 

G
generating matrix

Taglen the length of the integrity control code (authenticity) PadCx (4

bytes)

Nonce unique number for input message I (8 bytes)

Numbyte subkey length (equal to Keylen)

Index subkey number (0)

Сx=23023322 cryptogram

1

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0



 
 
 
 
 
 
 
 
 
 
 
  

P

matrix inverse to the permutation matrix (since its determinant

is 1, then
1P = TP)

1

1 0 0 0 0 0 0 0

0 3 0 0 0 0 0 0

0 0 2 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 3 0 0 0

0 0 0 0 0 2 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



 
 
 
 
 
 
 
 
 
 
 
  

D

the inverse of the diagonal matrix D – is a unipotent matrix (a

square matrix, all eigenvalues are 1), which preserves the

Hamming weight of the vector e

1 0 2

3 1

  
  
 

X
matrix inverse of a non-degenerate matrix X

ilk yazar soyadı /NTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY …:…. (2018) …..

Algebraic curve points:

 Р1 Р2 Р3 Р4 Р5 Р6 Р7 Р8 Р9

X 0 0 0 1 2 3 1 2 3

Y 1 0 1 2 2 2 3 3 3

Z 0 1 1 1 1 1 1 1 1

3.1. Hash code generation in the algorithm UMAC

The creation of a hash for an open message is carried out in parallel with the formation of the codogram,

but we will describe the computational transformations according to these actions in sequence.

According to the block diagram of the iterative formation of Y, Pad, and Tag for an open message from

the sender using the UMAC algorithm [9], [10], we distinguish the following calculation steps.

3.1.1. 1st layer formation

The value of the first level hash function UHASH-hash 1L IY we will calculate by the formula:

  1 1 1 ,L I L L IY Hash K I

To form 1L IK imagine it as a key sequence of four-byte subunits:

1 1 2|| || ... ||L I I I nIK K K K ,

where || – is the concatenation (joining) of the strings corresponding to the subkeys.

The amount of subkey data depends on the values Numbyte and Blocklen:

1024 16 3 1072
33,5 33

32 32

  
     
 

Numbyte
n

Blocklen
1,2,...,33 i .

Because the iT Index i , then for the first layer Index =1, => iT :

T1 = 1 || 1 = 00000001

000000001=>K1I

T2 = 1 || 2 = 00000001

000000010=> K2I

T3 = 1 || 3 = 00000001

000000011=> K3I

T4 = 1 || 4 = 00000001

000000100=> K4I

T5 = 1 || 5 = 00000001

000000101=> K5I

T6 = 1 || 6 = 00000001

000000110=> K6I

T7 = 1 || 7 = 00000001

000000111=> K7I

T8 = 1 || 8 = 00000001

000001000=> K8I

T9 = 1 || 9 = 00000001

000001001=> K9I

T10 = 1 || 10 = 00000001

00001010=> K10I

T11 = 1 || 11 = 00000001

00001011=> K11I

T12 = 1 || 12 = 00000001

00001100=> K12I

T17 = 1 || 17 = 00000001

00010001=>K17I

T18 = 1 || 18 = 00000001

00010010=> K18I

T19 = 1 || 19 = 00000001

00010011=> K19I

T20 = 1 || 20 = 00000001

00010100=> K20I

T21 = 1 || 21 = 00000001

00010101=> K21I

T22 = 1 || 22 = 00000001 00010110

=> K22I

T23 = 1 || 23 = 00000001 00010111

=> K23I

T24 = 1 || 24 = 00000001 00011000

=> K24I

T25 = 1 || 25 = 00000001

00011001=> K25I

T26 = 1 || 26 = 00000001 00011010

=> K26I

T27 = 1 || 27 = 00000001

00011011=> K27I

T28 = 1 || 28 = 00000001 00011100

=> K28I

ilk yazar soyadı /NTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY …:…. (2018) …..

T13 = 1 || 13 = 00000001

00001101=> K13I

T14 = 1 || 14 = 00000001

00001110=> K14I

T15 = 1 || 15 = 00000001

00001111=> K15I

T16 = 1 || 16 = 00000001

00010000=> K16I

T29 = 1 || 29 = 00000001

00011101=> K29I

T30 = 1 || 30 = 00000001

00011110=> K30I

T31 = 1 || 31 = 00000001 00011111

=> K31I

T32 = 1 || 32 = 00000001

00100000=> K32I

T33 = 1 || 33 = 00000001

00100001=> K33I

Based on the length M of the input message (M = 3 bytes), the number of blocks is T = 1, therefore, the

number of subkeys on this layer is the same. Wherein 1 1 0000000100000001 L IK T .

The hash values of this layer are calculated using the following formula:

1 1()mod32 L I L IY I K

1L IY
= (0100110+10000001)mod32 = 111

3.1.2. 2nd layer formation.

Since the length of M is less than 1024 bytes, this level of hashing will not be performed, and we will

perform calculations using the hash code of the third level.

3.1.3. 3rd layer formation.

Number of subkeys for 31LK and 32LK also depends on the values Numbyte and Blocklen.

Number of subkeys for 31L IK :

64 4
8

32

 
   
 

Numbyte
n

Blocklen
 1,2,3,4,5,6,7,8 i

Therefore, to form 31L IK imagine it as a key sequence of eight four-byte subunits:

31 1 2 3 4 5 6 7 8|| || || || || || ||L I I I I I I I I IK K K K K K K K K

For the third layer at Index =3, => iT :

T1 = 3 || 1 = 00000011 00000001 => K1I

T2 = 3 || 2 = 00000011 00000010 => K2I

T3 = 3 || 3 = 00000011 00000011 => K3I

T4 = 3 || 4 = 00000011 00000100 => K4I

T5 = 3 || 5 = 00000011 00000101 => K5I

T6 = 3 || 6 = 00000011 00000110 => K6I

T7 = 3 || 7 = 00000011 00000111 => K7I

T8 = 3 || 8 = 00000011 00001000 => K8I

Number of subkeys for 32L IK :

4 4
0,5 1

32

 
    
 

Numbyte
n

Blocklen
1 i

To form 32L IK imagine it as a key sequence of 1 four-byte sub-block:

32 1L I IK K

For the third layer at Index=4, => iT :

ilk yazar soyadı /NTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY …:…. (2018) …..

iT = 4 || 1 = 00000100 00000001 => 1IK

The hash value of the third layer is calculated using the following formula:

36 32

3 1 32

36 32
1 32

((mod(2 5)) mod 2)

(() mod32) mod(2 5)) mod 2)

  

 

L I L I L I

I L I

Y Y xorY

I K xorY

36 32
3 ((11mod(2 5))mod 2) 00000100 00000001 10000000010  L IY xor

3.2.1. Pad Shaping

1) The recipient generates a public key, which in the McElice cryptosystem is the matrix [3]:

    MEC EC
XG X G P D

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

1 2 2 2 3 0 1 3 0 1 1 0 0 0 0 0 0 0

3 0 3 3 2 1 0 2 1 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0

0 0 3 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 2 0 0 0

0 0 0 0 0 3 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

 
 
 
 
 

                
 
 
 
 
  









MEC
XG

2 1 3 0 1 1 1 0

0 2 2 2 2 0 3 2





 
 

        
 
 
 
 
 

2) The cryptogram (codogram) formed from the information message I is a vector of length n, which is

calculated by the following formula:

*   MEC
X XC I G e ,

where is the vector  MEC
XI G is the codeword of the masked code, i.e. belongs to the (n, k, d) -code with

the generating matrix MEC
XG ; the vector е is a one-time session secret key.

ilk yazar soyadı /NTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY …:…. (2018) …..

*

1 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0

0 0 3 0 0 0 0 0

0 0 0 1 0 0 0 0
11

0 0 0 0 2 0 0 0

0 0 0 0 0 3 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0

00000200 2302332

1

2

 
 
 
 
 
   
 
 
 
 





  

XC

3) We form the initialization vector IV = 00100000 for the recipient and sender. This vector shows the

location of the code sequence reduction.:

*
XC = 2323322

4) Damage to the initial text based on the conversion Table 1.

 Table 1. Damage

Word (shuffled) Residue length С(х) F(x)

000 2 00 1

001 2 01 1

010 2 10 1

011 2 11 1

100 2 00 0

101 2 01 0

110 2 10 0

111 2 11 0

Initial text (word):
*
хC = 232332210 = 010 011 000 010 011 011 010 0102.

5) Sending damage (flag) by the first channel to the recipient, sending the flawed code (balance) by the

second channel to the recipient.

We get
*
хC = 10110010111110102

Convert to decimal notation: 54575010 – enters the first channel.

Flags received F(x)=1111111112.

When converted to decimal, we get: 77710 – enters the second channel.

3.2.2. The formation of a pseudo-random lining (substrate) using the function PDF

To ensure the cryptographic stability of the UMAC algorithm at the level of stability of the used

cryptographic algorithm, we form a PadCx pseudo-random pad for I using the function PDF:

(, ,)Pad PDF K Nonce Taglen

According to the pseudo-random lining formation procedure Pad for I, it is necessary to form the

following subkey, presented as a function KDF [8–10]:

(, ,) K KDF K Index Numbyte

ilk yazar soyadı /NTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY …:…. (2018) …..

(0106,0,4) K KDF

Pseudo-random lining Pad will have the form:

(0106,8,4) 1101010 Pad PDF

As a result of the formation of the substrate, various parts of it can be used as an additional initialization

vector.

4. HASH CODE VERIFICATION AT THE RECEPTION SIDE USING AN ALGORITHM

UMAC

4.1. Generating a validity code for a received message

Generation of authentication codes of the received message is possible according to the formula [9, 10]:

 

3

, , , (, ,)

(, ,)

  

  L M

UMAC K I Nonce Taglen Hash K I Taglen

PDF K Nonce Tagl

Tag

en Y Pad

10000000010 1101010 10001101100  Tag

To generate a summary code of the reliability of the transmitted text, we will use the found value of the

hash code 3L MY and code authentication code Tag plaintext sender:

3 L MY Y Tag

1010000000010 10001101100 1101110 110   Y

4.2. Decoding a received message
1) Recover received text

The resulting values from two channels are translated into a binary number system:

*
хC = 54575010 = 10110010111110102

F(x) = 77710 = 1111111112

2) Loss recovery

Using Table 1 we get the code word:

*
хC = 010 011 000 010 011 011 010 0102= 232332210

3) To restore closed text, the recipient adds null information characters to the location indicated by the

initialization vector IV:

*
хC = 2323322 → 23023322

4) With recovered closed text Сх remove the action of secret permutation and diagonal matrices:

* 1 1   х хC С D P

ilk yazar soyadı /NTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY …:…. (2018) …..

*
хC = 23123322

































10000000

01000000

00200000

00030000

00001000

00000200

00000030

00000001



































00100000

10000000

01000000

00000010

00000100

00010000

00000001

00001000

=

= 22102221
*
хC = 22102221

5) We find the syndrome and polynomial of error locators:

* 
TEC

хS C H ,

S =22102221

























22233310

21313200

23123100

33322210

32132100

11111111

We find a syndrome:

S00= 1

S10= 2+1+2+3+3=1

S01= 2+3+3+1+1+3=1

S20= 2+3+2+1+2=0

S11= 3+2+1+2+2=0

S02= 2+1+1+3+3+2=0

S = (1,1,1,0,0,0);

Find the polynomial of error locators  (х) = а00+а10х+у = 0

00 10

10 20

 
 
  

S S
S S

×
00

01

 
 
  

a
a

=
01

11

 
 
  

S
S

 =
1 1 1

1 0 0

 
 
 

 а00=0; а10=1;

 (ху) = х+у= 0 – error locator polynomial

6) We find error locators according to Chen's procedure:

Р1 (0,0,1)  (х,у) =0+0=0 – error

Р2 (0,1,1)  (х,у) =0+1=1

Р3 (1,2,1)  (х,у) =1+2=3

Р4 (2,2,1)  (х,у) =2+2=0 – error

Р5 (3,2,1)  (х,у) =3+2=1

Р6 (1,3,1)  (х,у) =1+3=2

Р7 (2,3,1)  (х,у) =2+3=1

Р8 (3,3,1)  (х,у) =3+3=0 – error

е*= е100е4000е8

ilk yazar soyadı /NTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY …:…. (2018) …..

We find: е*
TECH = S, solving the system of equations, we obtain: е1 =0, е4 = 2, е8 =3

е*=00020003

We find i* = e*+
*

хC

i* = 00020003 22102221 = 22;

7) Find plain text:

i = i* X-1, i = 22 








13

20
 = 11.

4.3. Hash verification

The authorized user (recipient) generates in accordance with paragraph. 3.1 - 4.1 hash code. Verification

is carried out by comparison, received from the sender and generated by the recipient of the hash codes.

If they coincide, a decision is made that the plaintext received through the open channel is not modified.

5. CONCLUSION
As a result of the research, practical algorithms for generating a hash code and its verification based on

the UMAC algorithm using the McElice hybrid crypto-code constructions on the MEC were developed.

This mechanism of message authenticity can be used not only on defective shortened codes, but also on

elongated ones. This approach can significantly increase the relative data transfer rate, which will

positively affect the practical implementation of a fast hashing algorithm with a given level of strength

in post-quantum cryptography.

REFERENCES

1. Black, J., Halevi, S., Krawczyk, H., Krovetz, T. and P. Rogaway, “UMAC: Fast and provably secure message

authenticationˮ, Advances in Cryptology, CRYPTO '99, LNCS, Vol. 1666, Pages 216-233, 1999.

2. Krovetz, T. and Rogaway, P., “Fast universal hashing with small keys and no preprocessing, work in

progressˮ, http://www.cs.ucdavis.edu/~rogaway/umac, October 12, 2000.

3. Krovetz, T., Black, J., Halevi, S., Hevia, A., Krawczyk, H. and Rogaway, P., “UMAC -Message

authentication code using universal hashing. IETF Internet Draft, draft-krovetz-umac-01.txt.ˮ,

http://www.cs.ucdavis.edu/~rogaway/umac, November 15, 2000.

4. Krovetz T., “UMAC-Message authentication code using universal hashing. IETF Internet Draft, draft-

krovetz-umac-02.txt.ˮ, http://www.cs.ucdavis.edu/~rogaway/umac, February 2, 2004.

5. “Final report of European project number IST-1999-12324, named New European Schemes for Signatures,

Integrity and Encryptionˮ, Version 0.15 (beta), Springer-Verlag, April 19, 2004.

6. Krovetz T., “UMAC-Message authentication code using universal hashingˮ,

http://www.cs.ucdavis.edu/~rogaway/umac, June 23, 2006.

7. Krovetz T., “Software-Optimized Universal Hashing and Message Authentication. Dissertation submitted in

partial satisfaction of the requirements for the degree of doctor of philosophyˮ, University Of California

Davis, California, September 2000.

8. Carter, J. L. and Wegman, M. N., “Universal classes of hash functionsˮ, Computer and System Scince,

No. 18, Pages 143–154, 1979.

9. Wegman, M. N. and Carter, J. L., “New hash functions and their use in authentication and set equalityˮ,

Computer and System Scince, No. 22, Pages 265–279, 1981.

http://www.cs.ucdavis.edu/~rogaway/umac
http://www.cs.ucdavis.edu/~rogaway/umac
http://www.cs.ucdavis.edu/~rogaway/umac

ilk yazar soyadı /NTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY …:…. (2018) …..

10. Koro, Olha, Havrylova, Alla and Yevseiev Serhii “Practical UMAC algorithms based on crypto code

designsˮ, Przetwarzanie, transmisja I bezpieczenstwo informacji. Bielsko-Biala: Wydawnictwo naukowe

Akademii Techniczno-Humanistycznej w Bielsku-Bialej, Tom 2, Pages 221-232, 2019.

11. Korol, O. G. and Yevseiev, S. P., “The method of universal hashing on the basis of modular transformations,

Information processing systemsˮ, Information Technology and Computer Engineering, No. 7(97), Pages

131–132, 2011.

12. Korol, O. G., Yevseiev, S. P. and Dorokhov, A. V., “Mechanisms and protocols for protecting information

in computer networks and systemsˮ, Scientific Journal of the Ministry of Defense of Republic of Serbia.

Military Technical Gazette, Belgrade, No. 4, Pages 15–30, 2011.

13. Korol, O.G. and Yevseiev, S. P., “Results of the statistical test security hash algorithms-candidates tender to

select standard hash algorithm SHA-3ˮ, News of higher technical educational institutions of Azerbaijan, No.

2, Pages 73–78, 2012.

14. Regenscheid, Andrew, Perlner, Ray, Chang, Shu-jen, Kelsey, John, Nandi, Mridul and Paul, Souradyuti,

“Status Report on the First Round of the SHA-3 Cryptographic Hash Algorithm Competitionˮ,

http://www.nist.gov/index.html, March 3, 2005.

15. Chung-Wei Phan Raphael, “Mini Advanced Encryption Standard (Mini-AES): A testbed for Cryptanalysis

Studentsˮ, Cryptologia, XXVI (4), Pages 283–306, 2002.

16. A Description of Baby Rijndael, ISU CprE/Math 533; NTU ST765-U, 2003.

17. Lisitskaya, I. V., Grinenko, T. A. and Bessonov, S. Yu., “Analysis of the differential and linear properties of

ciphers rijndael, serpent, threefish with 16-bit inputs and outputs”, East European Journal of Advanced

Technologies, Pages 50-54, 2015.

18. Yevseiev, S. P., Ostapov, S. E. and Korolev, R. V., “Use of mini-versions for evaluation of the stability of

block-symmetric ciphersˮ, Scientific and Technical Journal “Information Securityˮ, Vol.23, No. 2, Pages

100–108, 2017.

19. Yevseiev, S. P., Yokhov, O. Y. and Korol, O. G., “Data Gaining in Information Systems: monographˮ. pub.

KhNUE, Kharkiv, 2013.

20. Yevseiev, S., Rzayev, H. and Tsyganenko, A., “Analysis of the software implementation of direct and inverse

transformations using the non-binary balanced coding method”, Science and Technology Journal “Security

Without Information”, Vol. 22, No. 2, Pages 196–203, 2016.

21. Yeseiev, S., “The use of flawed codes in crypto-code systems”, Information processing systems, No. 5 (151),

Pages 109–121, 2017.

22. Yevseiev, S. and Bilodid, I., “The use of unprofitable codes in hybrid crypto-code designsˮ, Fifth

International Scientific and Technical Conference “Problems of Informatizationˮ, Cherkasy – Baku –

Bielsko-Biala – Poltava, Page 11, 2017.

23. Hryshchuk, R., Yevseiev, S. and Shmatko, A., “Construction methodology of information security system of

banking information in automated banking systems: monographˮ, Pages 134–156, Premier Publishing s. r.

o., Vienna, 2018.

http://www.nist.gov/index.html

