
EasyChair Preprint
№ 3009

Practical UMAC Algorithm on Hybrid
Crypto-Code Constructions of McElise on
Shortened Mec

Alla Havrylova

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 22, 2020



4th INTERNATIONAL CONGRESS ON 3D PRINTING (ADDITIVE MANUFACTURING) TECHNOLOGIES AND DIGITAL INDUSTRY

 

 

PRACTICAL UMAC ALGORITHM ON HYBRID CRYPTO-CODE 

CONSTRUCTIONS OF McELISE ON SHORTENED MEC 

A. HAVRYLOVAa* 

a*Simon Kuznets Kharkiv National University of Economics, Department of Cyber Security and Information 

Technology, UKRAINE 

 
*Corresponding Author: alla.gavrylova@hneu.net 

 

ABSTRACT 
A study was carried out on the use of an improved UMAC algorithm in post-quantum cryptography 

based on the formation of a substrate on the third layer of the hash code generation by the McElise 

crypto-code system on elliptic codes. The paper considers a practical algorithm for generating a hash 

code based on an example implementation of a cascading UMAC hash algorithm with the McElise 

crypto-code construction on elliptic codes. Using a hybrid crypto-code design allows you to save the 

universality of the hash code at the output of the algorithm, which allows its use in large databases as 

an identifier. In addition, in the context of the implementation of a full-scale quantum computer, US 

NIST experts consider crypto-code systems as one of the effective post-quantum cryptography 

algorithms. This approach allows you to implement the UMAC modification on various modifications 

of hybrid crypto-code structures and to ensure the formation of authentication profiles of different 

strength and length. 

 

Keywords: UMAC hashing algorithm, McElice hybrid crypto code constructions, elliptic codes. 

 

1. INTRODUCTION 

An important direction in the development of post-quantum cryptography today is crypto-code 

systems (constructions) (CCC). Their formation is based on the use of algebraic codes disguised 

as the so-called random code [1], [2]. CCC allow integrated to implement fast cryptographic 

data conversion and ensure the reliability of the transmitted data based on noise-resistant coding 

[3], [4]. Despite the advantages, their use in modern software and hardware is hampered by 

their practical implementation with the required level of cryptographic stability, and 

withstanding the attack of V.M. Sidelnikov on the basis of linear-fractional transformations, 

allowing to open a private key (generating and / or verification matrix, depending on the crypto-

code system of McElice or Niederreiter) [5]. At the same time, according to experts of NIST 

USA, these crypto-code designs can provide the required level of protection and are able to 

withstand modern threats. This is confirmed by the participation of the McElice crypto code 

construction in the NIST contest for post-quantum cryptography algorithms. It seems 

interesting to explore the possibilities of sharing the already known cryptographic coding 

systems for transmitting information. 
2. LITERATURE REVIEW 
The development of computing capabilities in recent years, and in the first place, the creation of full-

scale quantum computers, has jeopardized the use of classical mechanisms of not only symmetric 

cryptography, public key cryptography (including algorithms using the theory of elliptic curves), but 

also algorithms for providing authenticity services based on MDC and MAC codes, specialized hash 

functions [1], [3], [6], [7]. In the face of modern threats and the use of cryptanalysis algorithms using 

full-scale quantum computers, the use of the SHA-3 algorithm and the winning algorithms of the 

NESSIE European cryptographic contest in authentication and digital signature algorithms is questioned 

because of the possibility of hacking. Under such conditions, an increase in the level of cryptographic 

stability can lead to an increase in the length of key sequences and a decrease in the speed of 
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cryptographic transformations. The use of the UMAC algorithm with the formation of the substrate of 

the third layer based on MASH-2 leads to an increase in the level of stability, collisions, but also to a 

decrease in the conversion speed [8], which is an indirect confirmation of the possibility of reducing the 

speed of cryptographic transformations in the conditions of post-quantum cryptography. An urgent task 

is to increase the speed of cryptocurrencies while ensuring the required level of cryptographic stability 

of this algorithm. In [3], [4], practical algorithms for crypto-code constructions are considered that 

provide their practical implementation by reducing the power of the alphabet. Their application in the 

UMAC algorithm will not only provide the required level of cryptographic stability of the generated 

hash code, but also preserve its versatility. 

Research problem – investigation of the possibility of using hybrid McElice crypto-code constructions 

with shortened flawed elliptic codes based on a practical example in the UMAC algorithm. 

 

3. CONSTRUCTION OF A MODIFIED UMAC ALGORITHM USING HCCC ON THE BASIS 

OF MKKS McELICE FOR A SHORTED MEC 

In works [9], [10], a mathematical model and a structural diagram of the hash code generation in the 

UMAC algorithm were considered using, as an algorithm, a substrate (pseudo-random sequence that 

ensures the hash code cryptographic stability) of the McElise crypto code design using elliptic codes 

(EC) (modified elliptical codes (MEC), flawed codes). 

The use of various algebraic and multi-channel cryptography codes will allow the formation of various 

hash code lengths and provide the required level of its cryptographic strength. The basic steps of creating 

a hash code are considered in the work [10]. 

Consider the practical implementation of the modified UMAC algorithm using the McElice HCCC in 

the EC using an example. The input to the calculations is: 

1L IY  universal hash value (UHASH-hash) of the first level of 

hashing 

3L IY  hash value (Carter-Wegman-hash) of the third level of hashing 

T data block 

Blocklen data block length (bytes) 

K secret key 

Keylen secret key length (32 bytes) 

Tag integrity and authenticity control code 

1L IK  secret key of the first level of hashing, consisting of subkeys 

K1, K2, …, Kn 

3L IK  second-level hash secret key consisting of keys KL31 (subkeys 

K1, K2, …, Kn) and KL32 (subkeys K1, K2, …, Kn) 

M  length of the transmitted plaintext array І 

'K  pseudo random key sequence 

Numbyte  pseudo-random key sequence length (number of subkeys) 

Index subkey number 

І=11  transmitted plaintext (k-bit information vector over GF (q)) 

Xor ( ) bitwise summation 

x3+y2z+yz2=0 algebraic curve over the field GF (22) 

e=00000200 
secret weight error vector 

1
(e) t

2

 
   

 
h

d
w  

1 2

3 0

 
  
 

X  
nondegenerate k × k matrix 
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0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

 
 
 
 
 
 
 
 
 
 
 
  

P  

permutation matrix of size n×n 

1 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0

0 0 3 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 2 0 0 0

0 0 0 0 0 3 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

 
 
 
 
 
 
 
 
 
 
 
  

D  

diagonal matrix equal 1 

2 2 3 0 1 3 0 1

3 3 2 1 0 2 1 0

 
  
 

G  
generating matrix 

Taglen the length of the integrity control code (authenticity) PadCx (4 

bytes) 

Nonce unique number for input message I (8 bytes) 

Numbyte subkey length (equal to Keylen) 

Index subkey number (0) 

Сx=23023322 cryptogram 

1

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0



 
 
 
 
 
 
 
 
 
 
 
  

P  

matrix inverse to the permutation matrix (since its determinant 

is  1, then 
1P = TP ) 

1

1 0 0 0 0 0 0 0

0 3 0 0 0 0 0 0

0 0 2 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 3 0 0 0

0 0 0 0 0 2 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



 
 
 
 
 
 
 
 
 
 
 
  

D  

the inverse of the diagonal matrix D – is a unipotent matrix (a 

square matrix, all eigenvalues are 1), which preserves the 

Hamming weight of the vector e 

1 0 2

3 1

  
  
 

X  
matrix inverse of a non-degenerate matrix X  
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Algebraic curve points: 

 Р1 Р2 Р3 Р4 Р5 Р6 Р7 Р8 Р9 

X 0 0 0 1 2 3 1 2 3 

Y 1 0 1 2 2 2 3 3 3 

Z 0 1 1 1 1 1 1 1 1 

 

3.1. Hash code generation in the algorithm UMAC 

The creation of a hash for an open message is carried out in parallel with the formation of the codogram, 

but we will describe the computational transformations according to these actions in sequence. 

According to the block diagram of the iterative formation of Y, Pad, and Tag for an open message from 

the sender using the UMAC algorithm [9], [10], we distinguish the following calculation steps. 

 

3.1.1. 1st layer formation 

The value of the first level hash function UHASH-hash 1L IY  we will calculate by the formula: 
 

   1 1 1 ,L I L L IY Hash K I     

 

To form 1L IK  imagine it as a key sequence of four-byte subunits: 
 

1 1 2|| || ... ||L I I I nIK K K K ,    

 

where || – is the concatenation (joining) of the strings corresponding to the subkeys. 
 

The amount of subkey data depends on the values Numbyte  and Blocklen: 
 

1024 16 3 1072
33,5 33

32 32

  
     
 

Numbyte
n

Blocklen
1,2,...,33 i . 

 

Because the iT Index i , then for the first layer Index =1, => iT : 
 

T1 = 1 || 1 = 00000001 

000000001=>K1I 

T2 = 1 || 2 = 00000001 

000000010=> K2I 

T3 = 1 || 3 = 00000001 

000000011=> K3I 

T4 = 1 || 4 = 00000001 

000000100=> K4I 

T5 = 1 || 5 = 00000001 

000000101=> K5I 

T6 = 1 || 6 = 00000001 

000000110=> K6I 

T7 = 1 || 7 = 00000001 

000000111=> K7I 

T8 = 1 || 8 = 00000001 

000001000=> K8I 

T9 = 1 || 9 = 00000001 

000001001=> K9I 

T10 = 1 || 10 = 00000001 

00001010=> K10I 

T11 = 1 || 11 = 00000001 

00001011=> K11I 

T12 = 1 || 12 = 00000001 

00001100=> K12I 

T17 = 1 || 17 = 00000001 

00010001=>K17I 

T18 = 1 || 18 = 00000001 

00010010=> K18I 

T19 = 1 || 19 = 00000001 

00010011=> K19I 

T20 = 1 || 20 = 00000001 

00010100=> K20I 

T21 = 1 || 21 = 00000001 

00010101=> K21I 

T22 = 1 || 22 = 00000001 00010110 

=> K22I 

T23 = 1 || 23 = 00000001 00010111 

=> K23I 

T24 = 1 || 24 = 00000001 00011000 

=> K24I 

T25 = 1 || 25 = 00000001 

00011001=> K25I 

T26 = 1 || 26 = 00000001 00011010 

=> K26I 

T27 = 1 || 27 = 00000001 

00011011=> K27I 

T28 = 1 || 28 = 00000001 00011100 

=> K28I 
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T13 = 1 || 13 = 00000001 

00001101=> K13I 

T14 = 1 || 14 = 00000001 

00001110=> K14I 

T15 = 1 || 15 = 00000001 

00001111=> K15I 

T16 = 1 || 16 = 00000001 

00010000=> K16I 

 

T29 = 1 || 29 = 00000001 

00011101=> K29I 

T30 = 1 || 30 = 00000001 

00011110=> K30I 

T31 = 1 || 31 = 00000001 00011111 

=> K31I 

T32 = 1 || 32 = 00000001 

00100000=> K32I 

T33 = 1 || 33 = 00000001 

00100001=> K33I 

 

Based on the length M of the input message (M = 3 bytes), the number of blocks is T = 1, therefore, the 

number of subkeys on this layer is the same. Wherein 1 1 0000000100000001 L IK T . 

The hash values of this layer are calculated using the following formula: 

 

1 1( )mod32 L I L IY I K  

1L IY
= (0100110+10000001)mod32 = 111 

 

3.1.2. 2nd layer formation.  

Since the length of M is less than 1024 bytes, this level of hashing will not be performed, and we will 

perform calculations using the hash code of the third level. 

 

3.1.3. 3rd layer formation. 

Number of subkeys for 31LK  and 32LK  also depends on the values Numbyte  and Blocklen. 

Number of subkeys for 31L IK : 

 

64 4
8

32

 
   
 

Numbyte
n

Blocklen
 1,2,3,4,5,6,7,8 i  

Therefore, to form 31L IK  imagine it as a key sequence of eight four-byte subunits: 

 

31 1 2 3 4 5 6 7 8|| || || || || || ||L I I I I I I I I IK K K K K K K K K   

 

For the third layer at Index =3, => iT : 

 

T1 = 3 || 1 = 00000011 00000001 => K1I 

T2 = 3 || 2 = 00000011 00000010 => K2I 

T3 = 3 || 3 = 00000011 00000011 => K3I 

T4 = 3 || 4 = 00000011 00000100 => K4I 

T5 = 3 || 5 = 00000011 00000101 => K5I 

T6 = 3 || 6 = 00000011 00000110 => K6I 

T7 = 3 || 7 = 00000011 00000111 => K7I 

T8 = 3 || 8 = 00000011 00001000 => K8I 

 

Number of subkeys for 32L IK : 

 

4 4
0,5 1

32

 
    
 

Numbyte
n

Blocklen
1 i  

 

To form 32L IK  imagine it as a key sequence of 1 four-byte sub-block: 

 

32 1L I IK K  

 

For the third layer at Index=4, => iT : 
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iT  = 4 || 1 = 00000100 00000001 => 1IK  

 

The hash value of the third layer is calculated using the following formula: 

 
36 32

3 1 32

36 32
1 32

(( mod(2 5)) mod 2 )

(( ) mod32) mod(2 5)) mod 2 )

  

 

L I L I L I

I L I

Y Y xorY

I K xorY
   

36 32
3 ((11mod(2 5))mod 2 ) 00000100 00000001 10000000010  L IY xor   

 

3.2.1. Pad Shaping 

1) The recipient generates a public key, which in the McElice cryptosystem is the matrix [3]: 

 

       MEC EC
XG X G P D     

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

1 2 2 2 3 0 1 3 0 1 1 0 0 0 0 0 0 0

3 0 3 3 2 1 0 2 1 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0

0 0 3 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 2 0 0 0

0 0 0 0 0 3 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

 
 
 
 
 

                
 
 
 
 
  









MEC
XG

2 1 3 0 1 1 1 0

0 2 2 2 2 0 3 2





 
 

        
 
 
 
 
   

2) The cryptogram (codogram) formed from the information message I is a vector of length n, which is 

calculated by the following formula: 

 
*   MEC
X XC I G e ,   

 

where is the vector  MEC
XI G  is the codeword of the masked code, i.e. belongs to the (n, k, d) -code with 

the generating matrix MEC
XG ; the vector е is a one-time session secret key. 
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*

1 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0

0 0 3 0 0 0 0 0

0 0 0 1 0 0 0 0
11

0 0 0 0 2 0 0 0

0 0 0 0 0 3 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0

00000200 2302332

1

2

 
 
 
 
 
   
 
 
 
 





  

XC  

 

3) We form the initialization vector IV = 00100000 for the recipient and sender. This vector shows the 

location of the code sequence reduction.: 

 
*
XC  = 2323322 

 

4) Damage to the initial text based on the conversion Table 1. 
 

                    Table 1. Damage 

Word (shuffled) Residue length С(х) F(x) 

000 2 00 1 

001 2 01 1 

010 2 10 1 

011 2 11 1 

100 2 00 0 

101 2 01 0 

110 2 10 0 

111 2 11 0 

 

Initial text (word): 
*
хC = 232332210 = 010 011 000 010 011 011 010 0102. 

5) Sending damage (flag) by the first channel to the recipient, sending the flawed code (balance) by the 

second channel to the recipient. 

We get 
*
хC = 10110010111110102  

Convert to decimal notation: 54575010 – enters the first channel. 

Flags received F(x)=1111111112. 

When converted to decimal, we get: 77710 – enters the second channel. 

 

3.2.2. The formation of a pseudo-random lining (substrate) using the function PDF 

To ensure the cryptographic stability of the UMAC algorithm at the level of stability of the used 

cryptographic algorithm, we form a PadCx pseudo-random pad for I using the function PDF: 

 

( , , )Pad PDF K Nonce Taglen
 

 

According to the pseudo-random lining formation procedure Pad  for I, it is necessary to form the 

following subkey, presented as a function KDF [8–10]: 

 

( , , ) K KDF K Index Numbyte  
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(0106,0,4) K KDF  

 

Pseudo-random lining Pad  will have the form: 

 

(0106,8,4) 1101010 Pad PDF  

 

As a result of the formation of the substrate, various parts of it can be used as an additional initialization 

vector. 
 

4. HASH CODE VERIFICATION AT THE RECEPTION SIDE USING AN ALGORITHM 

UMAC  
 

4.1. Generating a validity code for a received message 

Generation of authentication codes of the received message is possible according to the formula [9, 10]: 

 

 

3

, , , ( , , )

( , , )

  

  L M

UMAC K I Nonce Taglen Hash K I Taglen

PDF K Nonce Tagl

Tag

en Y Pad
 

10000000010 1101010 10001101100  Tag  

 

To generate a summary code of the reliability of the transmitted text, we will use the found value of the 

hash code 3L MY  and code authentication code Tag  plaintext sender:  

3 L MY Y Tag  

1010000000010 10001101100 1101110 110   Y  

 

4.2. Decoding a received message 
1) Recover received text 

The resulting values from two channels are translated into a binary number system: 

 
*
хC = 54575010 = 10110010111110102 

F(x) = 77710 = 1111111112 

 

2) Loss recovery 

Using Table 1 we get the code word: 

 
*
хC  = 010 011 000 010 011 011 010 0102= 232332210 

 

3) To restore closed text, the recipient adds null information characters to the location indicated by the 

initialization vector IV: 

 
*
хC   = 2323322 → 23023322 

 

4) With recovered closed text Сх remove the action of secret permutation and diagonal matrices: 

 
* 1 1   х хC С D P  
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*
хC  = 23123322

































10000000

01000000

00200000

00030000

00001000

00000200

00000030

00000001



































00100000

10000000

01000000

00000010

00000100

00010000

00000001

00001000

=  

= 22102221 
*
хC  = 22102221 

 

5) We find the syndrome and polynomial of error locators: 

 

* 
TEC

хS C H , 

S =22102221

























22233310

21313200

23123100

33322210

32132100

11111111

 

We find a syndrome: 

S00= 1 

S10= 2+1+2+3+3=1 

S01= 2+3+3+1+1+3=1 

S20= 2+3+2+1+2=0 

S11= 3+2+1+2+2=0 

S02= 2+1+1+3+3+2=0 

S = (1,1,1,0,0,0); 

 

Find the polynomial of error locators  (х) = а00+а10х+у = 0 

00 10

10 20

 
 
  

S S
S S

×
00

01

 
 
  

a
a

=
01

11

 
 
  

S
S

 = 
1 1 1

1 0 0

 
 
 

          а00=0;    а10=1; 

 (ху) = х+у= 0 – error locator polynomial 

6) We find error locators according to Chen's procedure: 

 

Р1 (0,0,1)  (х,у) =0+0=0 – error 

Р2 (0,1,1)  (х,у) =0+1=1 

Р3 (1,2,1)  (х,у) =1+2=3 

Р4 (2,2,1)  (х,у) =2+2=0 – error 

Р5 (3,2,1)  (х,у) =3+2=1 

Р6 (1,3,1)  (х,у) =1+3=2 

Р7 (2,3,1)  (х,у) =2+3=1 

Р8 (3,3,1)  (х,у) =3+3=0 – error 

е*= е100е4000е8 
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We find: е*
TECH = S, solving the system of equations, we obtain: е1 =0, е4 = 2, е8 =3 

 

е*=00020003 

 

We find i* = e*+
*

хC   

i* = 00020003 22102221 = 22; 

 

7) Find plain text: 

 

i = i* X-1, i = 22 








13

20
 = 11. 

 

4.3. Hash verification 

The authorized user (recipient) generates in accordance with paragraph. 3.1 - 4.1 hash code. Verification 

is carried out by comparison, received from the sender and generated by the recipient of the hash codes. 

If they coincide, a decision is made that the plaintext received through the open channel is not modified. 

 

5. CONCLUSION 
As a result of the research, practical algorithms for generating a hash code and its verification based on 

the UMAC algorithm using the McElice hybrid crypto-code constructions on the MEC were developed. 

This mechanism of message authenticity can be used not only on defective shortened codes, but also on 

elongated ones. This approach can significantly increase the relative data transfer rate, which will 

positively affect the practical implementation of a fast hashing algorithm with a given level of strength 

in post-quantum cryptography. 
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