
EasyChair Preprint

№ 641

Opcode and Gray Scale Techniques for

Classification of Malware Binaries

Rajesh Kumar and Riaz Ullah Khan

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 19, 2018

1

Opcode and Gray Scale Techniques for
Classification of Malware Binaries

Rajesh Kumar, Riaz Ullah Khan

Center of Cyber Security,
School of Computer Science & Engineering,
University of Electronic Science and Technology of China.
e-mail: rajakumarlohano@gmail.com, riazkhan@ieee,org

Abstract—In this study, we have used the image similarity
technique to detect the unknown or new type of malware using
CNN approach. CNN was investigated and tested with three types
of datasets i.e. one from Vision Research Lab, which contains
9458 gray-scale images that have been extracted from the same
number of malware samples that come from 25 different malware
families, second was from Microsoft Malware Classification Chal-
lenge which contains 10868 Binary files that contains 9 different
malware families and third was benign dataset which contained
3000 different kinds of benign software. Benign dataset and
dataset from Microsoft Malware Classification Challenge were
initially .EXE files which were converted into binary code and
then converted into image files. We obtained a testing accuracy
of 98% on Vision Research lab dataset and 97.6 accuracy on
Microsoft Malware Classification Challenge dataset.

Index Terms—Malware Detection, Convolutional Neural Net-
work, Malware Classification, Deep Learning

I. INTRODUCTION

A. Background

One of the major challenges in the realm of security threats
is malicious software which is also referred as malware.
The main focus of malware is, to gather the personal in-
formation without the attention of users and to disturb the
computer operations which makes problems for users. There
are many kinds of malware i.e. Virus, Worm, Trojan-horse,
Rootkit, Backdoor, Spyware, Adware etc. Annual reports from
antivirus companies show that thousands of new malware
are created every single day. These new malware become
more sophisticated that they could no longer be detected by
the traditional detection techniques such as signature-based
detection, heuristic detection or behavior-based detection.

Signature-based detection searches for specified bytes se-
quences into an object so that it can identify exceptionally a
particular type of a malware. Its drawback is that it cannot
detect zero-day or new malware since these malware signa-
tures are not supposed to be listed into the signature database.
Heuristic-based detection was developed to basically overcome
the limitation of the signature detection technique, in the way
that it scans the system’s behavior in order to identify the
activities which seems to be not normal, instead of searching
for the malware signature. Heuristic-based detection method
can be applied to newly created malware whose signature has
not yet been known. The limitation of this technique is that

it affects the system’s performance and requires more space.
Behavior-based detection technique is more about the behavior
of the program when it is executing. If a program executes
normally, then it is marked as benign, otherwise it is marked
as a malware. By analyzing this definition of the behavior-
based detection, we can directly conclude that the drawback
of this technique is the production of many false positives and
false negatives, considering the fact that a benign program can
crashed and be marked as a virus or virus can execute as if it
was a normal program and simply be marked as benign.

B. Motivations

Malware is growing in the huge volume every day, we used
image processing technique in order to improve accuracy and
performance. Image processing technique analyzes malware
binaries as gray-scale images. The previous research [29]
proposed a new method for visualization to classify malware
using image processing technique. Some of mature image
processing techniques are widely used for object recognition
e.g. taobao is popular shopping website in china which find’s
the product using image recognition technique. This method
performs high accuracy in practice. In this study, we converted
binary code to images for recognizing malware which preserve
the similarities variant images. We observed that the image
recognition method is helpful to achieve better performance
and accuracy.

C. Our approach

Malware classified in different families has multiple charac-
teristics or features. Many authors used machine learning mod-
els such as Regression, K-nearest-neighbor, Random Forest
etc. Main disadvantage of using machine learning is, features
extraction is manual. Gavrilut et al. [15] gave an overview
of different machine learning techniques that were previously
proposed for malware detection. Unlike Machine Learning,
Deep learning skips the manual steps of extracting features.
For instance, we can feed directly images and videos to the
deep learning algorithm, which can predict the object. In this
way deep learning model is more intelligent rather than ma-
chine learning model. We used convolutional neural networks
because it is reliable and it can be applied to the entire image at
a time and then we can assume they are best to use for feature
extraction. Recently Constitutional Neural Networks [8] is
the new approach to detect malware by using image based
similarity technique. Its automated image comparison helps
analysts to visually identify common code portions or specific
instruction blocks within a sample. In this work we used three

2

different datasets and compared the accuracy. Secondly we
used different techniques to prepare datasets for training and
testing purposes. we trained and tested the CNN model for
better understanding of the malware behavior. Overall, we
show that our proposed approach constitutes a valuable asset
in the fight against malware.

D. Contributions

The main contributions of the paper are summarized as
follows;

• We used the Constitutional Neural Networks for detection
of malware, based on image similarity which is further
described in Section V

• We compared gray scale image and opcode sequence
accuracy.

• We successfully analyzed and detected unknown or new
type of malware

• We build opcode sequence algorithm which takes less
time to train the classifier.

• We achieved better results in terms of training / testing ac-
curacy and speed of detection which is further described
in section V

• We collect different malware datasets from different
sources in section IV and compare the accuracy.

• We achieved 98% of accuracy on Vision Research Lab’s
Dataset and 97.6% accuracy on Microsoft Malware Clas-
sification Challenge dataset on gray scale image construc-
tion.

• We achieved 87.98% accuracy on Microsoft Malware
Classification Challenge dataset on opcode image con-
struction.

E. Structure of paper

The Section I discusses the background, motivation, ap-
proach used in this study and main contributions of this work.
Section II discusses problem description. Section III briefly
discusses the three detection techniques (Signature, Heuris-
tic, Cloud) and four analysis techniques (Static, Dynamic,
Statistical and Content Analysis, Hybrid Analysis). Section
IV gives a brief overview to the methodology that how to
convert executable files in to images and also setup the python
libraries. Section V proposes a malware detection technique,
discusses optimized CNN model, describes the implementation
and experiment results in terms of accuracy. Section VI gives a
brief discussion on previous work done in similar field. Finally,
Section VII concludes the paper.

II. PROBLEM DESCRIPTION

In this study, we tried to solve the problem of malware
detection by using deep learning algorithm which provide
more accuracy and speed. In table I, researchers used malware
detection techniques using machine learning algorithms. In our
work, we tried to achieve more accuracy for the same deep
learning model with different datasets.

Table I
DIFFERENT MACHINE LEARNING TECHNIQUES USED FOR MALWARE

DETECTION

Author Goal System
components

ML
Techinques

Ahmed[3] Detect malware
by Windows API
call traces

Kernel mode
hook, knowledge
base, API call
trace, feature
extractor,
training,
classifier

C4.5 decision
tree,
instance-based
KNN, NB,
inductive rule
learner,
SVM-SMO

Kolbitsch [23] Detect malware
at end hosts

Knowledge base,
program slicing,
behavioral profile
generation,
matching

Directed acyclic
graph(DAG)
matching
algorithms

Lanzi [17] Diversity of
system calls
study
(System-centric
malware
analysis)

Training dataset,
system call
sequence miner

N-gram models

Ye[33] Detect malware
by file relations

File relation and
content collector,
feature extractor,
classifier

Customized
parametric model
on content and
non-parametric
one on relations

Antonakakis
Sec’12[114]

Detect domain
generation
algorithm
(DGA)-based
malware

Knowledge base,
discovery engine,
trainer, classifier
within networks

X-means
clustering,
spectral
clustering,
decision tree,
hidden Markov
model(HMM)

Rahman [30] Detect malware
propagated by
social network

User
authorization,
post crawler,
feature extractor,
WL, BL,
train(manually
labeled data)
classifier, user
feedback

SVM (kernel
unspecified)

Tamersoy [31] Detect malware
by file relation
graphs

File collector,
LSH, graph
builder, belief
propagator

MinHash, LSH,
pairwise Markov
random field,
unweighted
bipartite graph

Invernizzi [18] Detect malware
downloads in
networks

Network traffic
collector, feature
extractor,
distributed
classifier

Decision
tree(ground truth)

Arp [6] Explainable
Android malware
detection

Broad static
analysis, feature
embedder,
detector,
explanation

Linear SVM

Graziano [17] Detect and
forecast malware
samples and
trends from
public dynamic
analysis sandbox

Dynamic
analysis, binary
similarity,
fine-grained
static analysis,
classifier

Logistic model
tree

Kinder [22] Proactive
detection of
computer
worms using
model
checking

control flow
graph from the
binary and
automatically
verifies it
against a
formal
malware
specification

language
CTPL

Alazab[4], [5] Detect
Malware using
opcode
frequency and
classification
of malwares

Analysis
Malwre uisng
opcode
frequency

3

III. MALWARE DETECTION AND ANALYSIS TECHNIQUES

A. Malware Detection Techniques

1) Signature Based Malware Detection: A Signature is a
short sequence of unique bytes, also it identified the unique
string from the binary code [28]. The process of the traditional
detection method shown in figure 1.

Figure 1. Signature Based Malware Detection

2) Heuristic Based Malware Detection: It is based on
rules/ patterns and these rules based on generic enough to be
consistent with alternatives of the same malware threat. But
these rules are not useful for benign files [33].

3) Cloud Based Malware Detection: Now a days many
anti malware vendors used the cloud based detection, because
antivirus software unable to detect many modern malware
threats. Advantage of cloud based detection is, it is more
secure because it detects malicious code by using multiple
detection engines.

B. Malware Analysis

1) Static Analysis: Analysis of the bad code segment or
malicious characteristics when code is not executing is called
static analysis [7], [11], [12]. There are many patterns to detect
the static malwares e.g. n-grams, string signature, control flow
graph, bytes-sequence etc.

2) Dynamic Analysis: Analysis of the bad code or mali-
cious characters when software is running environment i.e.
emulator,Virtual Machine, simulator etc. is called dynamic
analysis. Dynamic analysis approach applied for monitoring
and tracing system. Dynamic analysis is better approach rather
than static analysis but it consumes more resources i.e. time
and memory and it is also scalability issue.

3) Statistical and Content Analysis: This technique is based
on verity of techniques e.g. n-gram, n-perms, hash based, file
structure.

4) Hybrid Analysis: Analysis of the bad code or malicious
characters while performing static and dynamic analysis in an
offline mode [32], [2]. It is also useful for android application.
In the first step of this method, the static analysis take the
image of the applications into small pieces which is also
known as binary code and search suspicious patterns among
the binary codes. In the second step, the dynamic analysis
executes the code in an Android emulator and logs its system
calls.

IV. DATA PREPARATION AND ENVIRONMENT SETUP

This section is divided into two parts. The first part is, to
collect malware and benign datasets from different sources
and second part describes the techniques of preparation of the
dataset. In second part we used a technique to prepare dataset
which is described in Section IV-B.

A. Collection of Dataset

We have collected three datasets from different sources.
Two of them are malicious datasets from two different sources
i.e. from Vision Research Lab and from Microsoft Malware
Classification Challenge. We also collected 3000 benign file
from different sources. All three datasets are discussed briefly
in the following discussions.

1) Vision Research Lab Dataset: First dataset is collected
from Vision Research Lab and this dataset is called Malimg
Dataset [29]. The dataset comprises 25 malware families while
the number of variants is different in each family. Dataset is
shown in Table II along with class name, family name and
number of samples.

Table II
MALIMG DATASET FROM VISION RESEARCH LAB DATASET

No Class Family Name No of Samples
1 Worm Allaple.L 1591
2 Worm Allaple.A 2949
3 Worm Yuner.A 800
4 PWS Lolyda.AA 1 231
5 PWS Lolyda.AA 2 184
6 PWS Lolyda.AA 3 123
7 Trojan C2Lop.P 146
8 Trojan C2Lop.gen!G 200
9 Dialer Instantaccess 431
10 Trojan Downloader Swizzor.gen!l 132
11 Trojan Downloader Swizzor.gen!E 128
12 Worm VB.AT 408
13 Rogue Fakerean 381
14 Trojan Aluron.gen!J 198
15 Trojan Malex.gen!J 136
16 PWS Lolyda.AT 159
17 Dialer Adialer.C 125
18 Trojan Downloader Wintrim.BX 97
19 Dialer Dialplatform.B 177
20 Trojan Downloader Dontovo.A 162
21 Trojan Downloader Obfuscator.AD 142
22 Backdoor Agent.FYI 116
23 Worm:AutoIT Autorun.K 106
24 Backdoor Rbot!gen 158
25 Trojan Skintrim.N 80

Malimg Dataset consists 9,458 gray-scale images of 25 mal-
ware families. Ratio of 90-10 was used for model performance
evaluation. 90% of the total data was used for training and 10%

4

was used for testing. The real malware binaries of this dataset
was available in [1],

As Gavrilut et al. [16] explained that a binary code of a
given malware can be read as a vector of 8 bits un-signed
integers and organized into 2-dimensional array which can be
visualized as a gray-scale image in the range of [0,255], where
0 represent black and 255 for white. The size of the image is
different depending on their families. We observed in Figures
2, that images which belong to the same family are looking
very similar to one another.

Figure 2. Images extracted from malware binaries

2) Microsoft Malware Classification Challenge Dataset:
The Microsoft dataset contains 9 classes for training and
testing purposes. Microsoft provided 500GB of data which
includes 21741 malware samples. 10868 of samples are used
for training, and the remaining samples are used for testing.

1) Bytes Files: Byte files in Microsoft dataset include
10,868 training data and 10873 testing data. Each byte
file contain hexadecimal representation of binary con-
tent.

2) Asm Files: Asm files in Microsoft dataset include
10,868 training data and 10873 tasting data. Each asm
file extracted by the IDA dis-assembler tool and it
contains metadata manifest. This information includes
assembly command sequences, strings, function calls
and so on.

3) Training Labels: MD5 Hash is the file name in actual
program and this name is used as a training label. The
file of training label contains each MD5 hash and class
of malware which it maps to. No training labels were
provided for the test data input files.

4) Sample Submission: The sample submission file illus-
trates the valid submission format for 10,873 sample
records.

5) Data Sample: The data sample file includes a preview
of the test and training data.

Table III
MICROSOFT MALWARE CLASSIFICATION CHALLENGE DATASET

No Family Name No of Samples
1 Ramnit 1541
2 Lollipop 2478
3 Kelihos_ver3 2942
4 Vundo 475
5 Simda 42
6 Tracur 751
7 Kelihos_ver1 398
8 Obfuscator.ACY 1128
9 Gatak 1013

Figure 3. Images extracted from malware Microsoft dataset

3) Benign files : We collect 3000 benign files from different
sources.

B. Data Preparation Techniques

This paper propose the following two technique to process
the data.

1) Direct Convert Assembly To Image:
1) Decompiling: we used the following algorithm to de-

compile the exe file to binary and assembly.
2) Convert Assembly Code to Image: We converted the

assembly code to image. The process of converting
assembly to images.

2) Opcode To Image:
1) Unpacking: In this method we use two tools for extract-

ing hidden code from binary files
a) Themida and vmprotect
b) UPX

2) Decompiling: In this phase we decompile opcode se-
quence from assembly code and then convert 2-tuple
opcode sequence rather than larger length of opcode
sequence.

3) Opcode Sequence: The binary image matrices are re-
constructed by these opcode sequences with \their prob-
abilities and information gains.The matrix is shown in
Figure 2, each opcodes sequences of length 2 can be
matched to one of the elements in the matrix according
to osi =< opj,opk >,as shown in def 3 , def.. The
element value val(osi | xj) of the image matrix im(xj)
is calculated by the probabilities p(osi | xj) and the
information gains w(osj) of osiin binary x

val(osi|xj) = p(osi|xj)w(osj) (1)

The probabilities p(osi | xj) and information gains w(osi)
are calculated by the frequencies freq(osi | xj) of the opcodes
sequences of length 2 , as shown in Eq 2 and 3, where p(osi |
y1) be the probability of osiin the training malware binaries,
p(osi) be the probability of osi in the whole training binaries,
and p(y1) be the probability of training malware binaries.

p(osi|xj) =
freq(osi|xj)∑

ostExj
freq(osi|xj)

(2)

5

w(osi) = p(osi|xj) log
(
p(osi|xj)
p(osi)p(yi)

)
(3)

1) Binary Image Re-construction and Enhancement: Im-
ages are constructed by binary opcode frequency. Op-
code sequences will be enhanced by using histogram
normalization, dilation, and erosion techniques

To enhance the contrast between malware variant images and
benign images, we use histogram normalization. dilation and
erosion methods to enhance the binary images. Through image
enhancement, the contrast of these special opcode images
would be enhanced,

Let valenhance(osi | xj) be the pixel-value of the enhanced
image, the histogram normalization method is according to the
eq 4

valenhance(osi|xj) = α
val(osi|xj)

max(val(osi|xj))
255 (4)

C. Environment Setup

CentOS system with 64bit with 64 GB RAM environment is
used to perform tests. We used Python programming language
to perform the experiments. Python packages and libraries
such as Tensor Flow, Docker Server, Anaconda are used which
helped to detect the malware. The Tensor Flow Library is used
for training the model which uses the convolutional natural
network (CNN).

V. IMPLEMENTATION AND PERFORMANCE EVALUATION
OF THE PROPOSED MODEL

A. Proposed Model

In this design we divided model in two phases i) Train-
ing phase and ii) Detection phase. For the training and the
detection of malware we used CNN model. We prepare the
dataset using different techniques shown in data preparation
section. The output of the data preparation section is “image
files”. Images have binary labels i.e. either benign or malware.
we used supervised learning model in which the features are
extracted automatically. The same exe file convert in image
and trained classifier detect the malicious code.

B. Training Convolutional Neural Networks Structure

We have used convolutional neural networks because it is
reliable and it can be applied to the entire image at a time and
then we can assume they are best to use for feature extraction.
convolutional neural network is a feed-forward neural network
where the connectivity pattern between neurons is inspired by
the structure of an animal visual cortex and that has proven
great value in the analysis of visual imagery.

Firstly we used auto-encoders scheme , auto-encoders is
widely used for dimensionality reduction and data de-nosing.

f(x) = g(
∑

aixi + c) (5)

Where g
⊗

defines a linear function as an independent
variable function.

h(i) = g⊗(w(i)T x+ b(i)) (6)

Usually we want function g to be a non-linear function, and
we also need it to be easily derived. Therefore, we generally
use ReLU (Linear Rectifier) function g (z) = max (0, z). Other
types of activation functions g also include logistic functions:

g(z) =
1

1 + e−2βz
(7)

For example, the hypeFor example, the hyperbolic tangent
function:bolic tangent function:

g(z) = tanh(z)
ez − e−z

ez + e−z
(8)

Some inhibitory functions are also used in the competitive
neural network, such as:

mapj(xi) = pool(g(
∑

conv(w(1)mapj
(1)(xi))) (9)

Convolution neural networks have a wide range of applica-
tions in image processing. In the convolution neural network,
in order to simplify the number of parameters of the neural
network, the convolution neural network uses the weight
sharing and the convolution kernel mechanism. For example,
for a three layer convolution neural network:

y =
e−u∑
e−u

(10)

w(3) = w(3) + c.doutput.mapj
(2)(xi) (11)

doutput = (y − y(3)).y(3) (12)

d(3) = y(3)(1− y(3)).
∑

doutput.w
(3) (13)

w(2) = w(3) + c.d(2).conv(mapj
(1)(xi)) (14)

w(1) = w(1) + c.d(1).conv(img(xi)) (15)

The advantage of eq (7) and (8) these two activation
functions relative to ReLU are that they are both bounded
functions.

In this method of data preparation, we can easily identify
malware and benign files by visual analysis as shown in Figure
??.

All the images are reshaped into a size of 128 X 128 pixels.
Since all the models of deep learning accept data in form of
numbers, we have used image library from PIL package of
Python to generate vectors of images and further processing
are done on these vectors.

We have then designed a three layers deep Convolutional
Neural Network for the detection task, which has the following
properties: On the Rectified Linear Units (ReLU) layers,
we first apply a two dimensional convolutional layer and
after each layer, we applied a nonlinear later also known as
activation layer. In convolutional layer, we have operations like

6

element-wise multiplication and summations. The ReLU adds
non-linearity to the system. We have used the ReLU instead of
non-linearity function because it is faster than tanh or sigmoid
and help in vanishing gradient problem which arises in lower
layers of the network.

We have also used max pooling layer instead of other layers.
It takes a filter and a stride of the same length then applies it
to the input volume and outputs the maximum number in sub
region that the filter involves around. The intuition behind this
was the fact that our malware image is a gray scale and the
layers like average max pooling may not help much because
there are a lot of dark space in the image and they don’t
contribute much in the model.

The output that we want is a single class in which the given
malware belongs to. After applying all the layers, we have a
three-dimensional vector of arrays. To convert this vector into
a class probability, we convert these vectors into a single layer
of one dimension, known as fully connected layer. Down-
sampling all the vectors to a one-dimensional vector may
lead to loss of data. For that reason, we have used two fully
connected layers.

Cross entropy loss function that is commonly used for multi
class classification was used for this work as well as Adam
optimizer for optimization task. The overall architecture of the
model is show in Figure 4.

Figure 4. Overview architecture of CNN proposed Method

Initially, all the images were of different sizes and had to
be converted into 128 X 128 pixels before they are used as
input to the model.

C. Implementation

The following tools and techniques are required for ex-
perimental setup. For preparation of dataset we used method
shown in section IV, tools and algorithm which were used to
arrange the dataset for achieving better results is also written
in data preparation section. For detecting malware we use su-
pervised learning to train the model. CNN algorithm was used
to train and test the model.We used 3 hidden layers, each layer
has own parameters (e.g., filter− size1 = 3, numf ilters =
32, etc), In this algorithm we used AdamOptimizer and
the learning rate of the optimizer is le-4. The size of for all
hidden layers for the convolutional neural network are 3*3*32,
3*3*32, 3*3*64, respectively. For the validation, system was
trained with 20 epochs.

D. Experiment Results

We took three datasets in considerations which are discussed
in Section IV. Two of the three datasets consist of malicious
code and one dataset is a benign file. For the first test, we
combined the benign dataset with Malimg dataset and used
the combined dataset to obtain the accuracy in terms of
malware code detection. For the second test, we combined
the same benign dataset with Microsoft dataset and obtained
the accuracy in terms of malware code detection.

In this Experiment we obtain accuracy from different meth-
ods and compare both methods one opcode sequence and other
gray-scale image

• The result obtained from gray scale image shows an
accuracy of 98% for the Dataset of Vision Research Lab
shown in Figure 6.

• The result obtained form gray scale image achieved
97.6 % accuracy on Microsoft Malware Classification
Challenge Dataset.

• The result obtained form opcode image achieved 87.98%
accuracy on training dataset and 88.36 on validation
dataset on Microsoft Malware Classification Challenge
Dataset shown in Figure 5.

• The training time of opcode and gray scale is 5580 and
62238 seconds.

Figure 5. Model accuracy and model loss of the Microsoft Malware
Classification Challenge Dataset

Figure 6. Model accuracy and model loss of the Vision Research Lab Dataset

VI. RELATED WORK

Various machine learning algorithms are proposed for clas-
sification and detecting unknown codes in to either their
unknown families for instance Naive Bayes, Support Vector
Machine, Clustering, and Association Rule. In this section,
we will discuss few of the good researchers who have worked
in the field of malware detection and classification. Khan et.
al. [20], [21] analysed ResNet and GoogleNet models for
malware detection which are based on CNN. Kumar et. al.
[25] used CNN model for malicious code detection based on

7

pattern recognition. Egele et al. [10] analyses the behavior of
malware. They have designed the binary obfuscation methods,
which transform the malware binaries in to self-compressed.
They have also designed a technique that is uniquely identify
binary files which restricted the reverse engineering.

Nataraj et al. [29] used image processing technique to clas-
sify the malware. They converted binary malware to gray-scale
images. The proposed method of Nataraj et al. [29] represents
executable binary files into gray-scale bitmap images. Kong
et. al. [24] built a model to classify the malware, based on
structural information. For the structural information, they use
the function call graph, this function extracts the features of
each malware sample. they used the discriminate distance
metric learning method which cluster the malware samples
belongs to same family and also used assemble of classifier
that classify malware into their respective families.

Firdausi et al.[13] Used the machine learning algorithms
i.e., K-Nearest Neighbors, SVM, Naive Bayes, J48 Decision
Tree and Multi-layer Perceptron Neural Network for malware
detection. The performance compares by 5 different algorithms
and the obtained best performance achieved by j48 decision
tree. They take small amount of sample 220 malicious and
250 benign, the obtained results achieved 96.8 % accuracy.
Gandotra et al. [14] publish a survey paper for the mal-
ware classification and detection, they describe many machine
learning algorithm technique for the detection of malware but
in this contribution nobody use deep learning models(e.g.,
Convolutional Neural Network (CNN) to detect the malware.
Damshenas et. al. [9] proposed a technique for detecting
malware in mobile devices. This technique is comprising a
server analyzer and a lightweight client agent. The server
analyzer generates a signature for every application. The pro-
posed technique is capable of generating standardized mobile
malware signatures based on their behavior and this is the
main contribution of their research. It compare the generated
signature and previously blacklist of malware signature.

N. Milosevic et al.[27] proposed the static analysis approach
to detect and analyse malicious behavior within the code in
android apps. They use the machine learning approach to
detect the malware families, this it is also signature based
anti-malware solution. They used Service Vector Machine
(SVM) for finding the accuracy, the results were 95.6 percent.
Lee et. al. [26] also used machine learning to solve the
problem of signature generating for worm. They use the
nearest neighbor technique for cluster of malicious programs.
Tain at al. [19] focused in classify Trojans. They use function
length frequency, the amount of bytes that determine function
length in the cipher text. Their model’s performance show that
the range of function along with its frequency are meaningful
to identify the malware families.

VII. CONCLUSION

Being able to visualize the malicious code as an image
has been a great achievement. Many researchers have been
using this technique for the task of malware classification
and detection. However, other works have shown that this
technique can be easily vulnerable to adversarial attacks and

produce erroneous results. This was observed that how a
small change in the image could lead to miss-classification
of images. The biggest challenge is to find an efficient way
to overcome the vulnerability of Neural Networks. This could
be achieved by carefully analyzing malware binaries.

REFERENCES

[1] Vision Reseach Lab Malimg Dataset
http://old.vision.ece.ucsb.edu/spam/malimg.shtml.

[2] F Afifi, N B Anuar, S Shamshirband, and K K R Choo. DyHAP:
Dynamic Hybrid ANFIS-PSO Approach for Predicting Mobile Malware.
PloS one, 2016.

[3] F Ahmed, H Hameed, and M Z Shafiq. Using spatio-temporal in-
formation in API calls with machine learning algorithms for malware
detection. Proceedings of the 2nd, 2009.

[4] Mamoun Alazab. Profiling and classifying the behavior of malicious
codes. Journal of Systems and Software, 100:91–102, 2015.

[5] Mamoun Alazab, Mohammad Al Kadiri, Sitalakshmi Venkatraman, and
Ameer Al-Nemrat. Malicious code detection using penalized splines on
opcode frequency. In Cybercrime and Trustworthy Computing Workshop
(CTC), 2012 Third, pages 38–47. IEEE, 2012.

[6] Daniel Arp, Michael Spreitzenbarth, Malte Hübner, Hugo Gascon, and
Konrad Rieck. Drebin: Effective and Explainable Detection of Android
Malware in Your Pocket. In Proceedings 2014 Network and Distributed
System Security Symposium, 2014.

[7] D Barrera, H G Kayacik, and P C van Oorschot. A methodology
for empirical analysis of permission-based security models and its
application to android. Proceedings of the 17th, 2010.

[8] Chunshui Cao, Xianming Liu, Yi Yang, Yinan Yu, Jiang Wang, Zilei
Wang, Yongzhen Huang, Liang Wang, Chang Huang, Wei Xu, et al.
Look and think twice: Capturing top-down visual attention with feedback
convolutional neural networks. pages 2956–2964, 2015.

[9] Mohsen Damshenas, Ali Dehghantanha, Kim-Kwang Raymond Choo,
and Ramlan Mahmud. M0Droid: An Android Behavioral-Based Mal-
ware Detection Model. Journal of Information Privacy and Security,
11(3):141–157, 2015.

[10] Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher Kruegel.
A survey on automated dynamic malware-analysis techniques and tools.
ACM computing surveys (CSUR), 44(2):6, 2012.

[11] William Enck, Machigar Ongtang, and Patrick McDaniel. On
lightweight mobile phone application certification. In Proceedings of
the 16th ACM conference on Computer and communications security -
CCS ’09, page 235, 2009.

[12] AP Felt, Erika Chin, and Steve Hanna. Android permissions demys-
tified. In Proceedings of the 18th ACM conference on Computer and
communications security - CCS ’11 (2011), pages 627 – 636, 2011.

[13] I Firdausi, A Erwin, and A S Nugroho. Analysis of machine learning
techniques used in behavior-based malware detection. Advances in
Computing,, 2010.

[14] Ekta Gandotra, Divya Bansal, and Sanjeev Sofat. Malware Analysis and
Classification: A Survey. Journal of Information Security, 05(02):56–64,
2014.

[15] Dragos Gavrilut, Mihai Cimpoesu, Dan Anton, and Liviu Ciortuz.
Malware detection using machine learning. In 2009 International
Multiconference on Computer Science and Information Technology,
pages 735–741. IEEE, oct 2009.

[16] Dragoş Gavriluţ, Mihai Cimpoeşu, Dan Anton, and Liviu Ciortuz.
Malware detection using machine learning. In Computer Science and In-
formation Technology, 2009. IMCSIT’09. International Multiconference
on, pages 735–741. IEEE, 2009.

[17] M Graziano, D Canali, L Bilge, and A Lanzi. Needles in a haystack:
Mining information from public dynamic analysis sandboxes for mal-
ware intelligence. USENIX Security, 2015.

[18] L Invernizzi, S Miskovic, R Torres, C Kruegel, and S Saha. Nazca:
Detecting Malware Distribution in Large-Scale Networks. NDSS, 2014.

[19] R Islam, R Tian, L M Batten, and S Versteeg. Classification of malware
based on integrated static and dynamic features. Journal of Network
and Computer, 2013.

[20] Riaz Ullah Khan, Xiaosong Zhang, and Rajesh Kumar. Analysis of
resnet and googlenet models for malware detection. Journal of Computer
Virology and Hacking Techniques, Aug 2018.

8

[21] Riaz Ullah Khan, Xiaosong Zhang, Rajesh Kumar, and Emelia Opoku
Aboagye. Evaluating the performance of resnet model based on image
recognition. In Proceedings of the 2018 International Conference on
Computing and Artificial Intelligence, ICCAI 2018, pages 86–90, New
York, NY, USA, 2018. ACM.

[22] Johannes Kinder, Stefan Katzenbeisser, Christian Schallhart, and Helmut
Veith. Proactive detection of computer worms using model checking.
IEEE transactions on dependable and secure computing, 7(4):424–438,
2010.

[23] C Kolbitsch, P M Comparetti, and C Kruegel. Effective and Efficient
Malware Detection at the End Host. USENIX security, 2009.

[24] Deguang Kong and Guanhua Yan. Discriminant malware distance
learning on structural information for automated malware classification.
pages 1357–1365, 2013.

[25] Rajesh Kumar, Zhang Xiaosong, Riaz Ullah Khan, Ijaz Ahad, and Jay
Kumar. Malicious code detection based on image processing using
deep learning. In Proceedings of the 2018 International Conference
on Computing and Artificial Intelligence, ICCAI 2018, pages 81–85,
New York, NY, USA, 2018. ACM.

[26] Hwan-Taek Lee, Dongjin Kim, Minkyu Park, and Seong-je Cho. Pro-
tecting data on android platform against privilege escalation attack.
International Journal of Computer Mathematics, 93(2):401–414, feb
2016.

[27] N Milosevic, A Dehghantanha, and K K R Choo. Machine learning
aided Android malware classification. Computers {&} Electrical, 2017.

[28] Robert Moskovitch, Dima Stopel, Clint Feher, Nir Nissim, Nathalie
Japkowicz, and Yuval Elovici. Unknown malcode detection and the
imbalance problem. Journal in Computer Virology, 5(4):295–308, 2009.

[29] Lakshmanan Nataraj, Vinod Yegneswaran, Phillip Porras, and Jian
Zhang. A Comparative Assessment of Malware Classification Using
Binary Texture Analysis and Dynamic Analysis. Proceedings of the 4th
ACM Workshop on Security and Artificial Intelligence, pages 21–30,
2011.

[30] M S Rahman, T K Huang, and H V Madhyastha. Efficient and Scalable
Socware Detection in Online Social Networks. USENIX security, 2012.

[31] A Tamersoy, K Roundy, and D H Chau. Guilt by association: large
scale malware detection by mining file-relation graphs. Proceedings of
the 20th ACM, 2014.

[32] F Tong and Z Yan. A hybrid approach of mobile malware detection in
Android. Journal of Parallel and Distributed Computing, 2017.

[33] Y Ye, T Li, S Zhu, W Zhuang, E Tas, and U Gupta. Combining file
content and file relations for cloud based malware detection. Proceedings
of the 17th, 2011.

