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6 Conclusion

In this work, we examined a novel type of generative model, specifically the
denoising di[udion probabilistic model, for the EEG signal synthesis task. A
DDPM is based on a Markov chain that makes it possible to generate syn-
thetic EEG signals from latent noise variables. We have shown that the P300
component containing EEG signals can be generated with DDPMs not only on
single-channel but also on multi-channel. Furthermore, the quality of the gen-
erated signals proved to be better in our framework and setup than that of a
GAN at the cost of inference time.

In future work, other architectural design options should be explored to
achieve better amplitude magnitudes in the time domain. Attention modules are
commonly used in other generative models, therefore these can be the starting
points in addition to spatial convolutions. The optimization of the noise schedule
can also result in EEG epochs of better quality. The inference speed is much
slower compared to WGAN. DDIMs [24] and knowledge distillation are possible
solutions for achieving better inference speeds. The application of these methods
is left to our future work.
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