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Abstract. Nowadays, specialized hardware is often found in clusters to
improve compute performance and energy efficiency. The porting and
tuning of scientific codes to these heterogeneous clusters requires sig-
nificant development efforts. To mitigate these efforts while maintaining
high performance, modern parallel programming models introduce a sec-
ond layer of abstraction, where an architecture-agnostic source code can
be maintained and automatically optimized for the target architecture.
However, with increasing heterogeneity, the mapping of an application
to a specific architecture itself becomes a complex decision requiring a
differentiated consideration of processor features and algorithmic proper-
ties. Furthermore, architecture-agnostic global transformations are nec-
essary to maximize the simultaneous utilization of different processors.
Therefore, we introduce a combinatorial optimization approach to glob-
ally transform and automatically map parallel algorithms to heteroge-
neous architectures. We derive a global transformation and mapping
algorithm which bases on a static performance model. Moreover, we
demonstrate the approach on five typical algorithmic kernels showing
automatic and global transformations such as loop fusion, re-ordering,
pipelining, NUMA awareness, and optimal mapping strategies to an ex-
emplary CPU-GPU compute node. Our algorithm achieves performance
on par with hand-tuned implementations of all five kernels.

Keywords: mapping · heterogeneous architectures · global transforma-
tions · parallel patterns · performance portability

1 Introduction

Advances in science and engineering are intrinsically linked to computing power.
This demand is met with large-scale clusters with many compute nodes. How-
ever, these nodes are limited by their power draw, memory performance, and
Instruction Level Parallelism (ILP) (cf. three walls [2]). Hence, current advances
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in hardware are driven by specialization, which leads to clusters comprising het-
erogeneous architectures. To effectively utilize this quickly evolving landscape of
architectures, domain scientists need to continuously adapt their software, which
requires a significant development effort and experience.

To reduce these efforts, current parallel programming models introduce a sec-
ond layer of abstraction to decouple the expression of parallelism from the hard-
ware architectures. Thus, an architecture-agnostic source code can be maintained
and the optimization for a specific architecture is delegated to the transforma-
tions supported by the programming model. E.g., Kokkos [13] and RAJA [7]
utilize data layout rules and Stateful Dataflow Multigraphs (SDFG) [8] allows
to interactively transform the dataflow of a parallel algorithm for the target
architecture.

With increasing heterogeneity, effective utilization of the available proces-
sors however requires fine-grained mapping decisions. This mapping needs to
match algorithmic properties with processor features, e.g., assigning a compute-
intensive part of the algorithm to an appropriate accelerator. Furthermore,
architecture-agnostic transformations are necessary to expose global parallelism
and execute large parts of the algorithm on different accelerators simultaneously.

To automatize such mappings, this work provides a combinatorial optimiza-
tion approach to globally transform and automatically map parallel algorithms
to heterogeneous architectures. The approach leverages a hierarchical represen-
tation of parallel algorithms [22,21] based on parallel patterns [19]. This repre-
sentation allows for the analysis of global properties like synchronization and
dataflow through algorithmic efficiencies [22,21]. Based on these efficiencies and
the roofline model [25], structural transformations and a cost-based optimization
is derived. Thereby, this paper focuses on the re-ordering and delinearization of
routines, the separation and fusion of large subflows within the dataflow as well
as data affinity on a global level. Our key contributions are as follows:

– We introduce a static performance model based on algorithmic efficiencies
that allows for global transformations of parallel algorithms and their map-
ping to heterogeneous architectures.

– We derive a transformation and mapping algorithm based on fine-grained
splits of the algorithmic structure.

– We demonstrate the approach on five typical algorithms on a modern CPU-
GPU architecture. The experiments show the mapping to target architec-
tures with respect to algorithmic properties as well as the application of
several global transformations such as loop fusion, re-ordering, pipelining,
NUMA awareness, and target offloading.

The remainder of this paper is structured as follows: Chapter 2 briefly sum-
marizes related work. Chapter 3 introduces the used model of algorithms and
architectures and Chapter 4 proposes the static performance model. Chapter 5
derives the mapping algorithm and Chapter 6 evaluates the approach for typi-
cal data-parallel algorithms. The results of the evaluation and extensions of the
approach are discussed in Chapter 7. At last, Chapter 8 provides a conclusion
of the paper and summarizes future work.
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2 Related Work

This paper focuses on the automatic transformation and mapping of parallel al-
gorithms to heterogeneous architectures. The following sections briefly delineate
this paper from related work.

Parallel Programming Models. Recent parallel programming models are designed
on top of architecture-specific programming models like OpenMP [12], MPI [20],
and CUDA [23]. The architecture-agnostic layer is typically represented by paral-
lel patterns [19]. Kokkos [13] uses C++ software abstractions, where the mapping
is specified by compile-time parameters. RAJA [7] follows a similar approach
by expressing parallelism through loops. The SDFG framework [8] focuses on
data parallelism and represents the patterns of a python program with graphs.
Furthermore, there exists multiple skeleton-based models and interfaces [14].
These models minimize the necessary code changes for porting an application
by automatically transforming the code. This paper extends these approaches by
exposing additional parallelism, complex global transformations, and automatic
mapping to a heterogeneous architecture. This work re-uses the pattern-based
representation of algorithms found in the models above.

Transformations. Low-level transformations are applied to improve low-level and
code-local performance properties for a specific architecture. Bacon et al. [3]
provide an overview of loop transformations to improve the ILP. Many of these
transformations are supported by the programming models discussed above and
modern production compilers. Structural transformations are high-level manip-
ulations of the structure of an algorithm. For instance, throughput-oriented pro-
cessors typically require flat parallelism, which can be achieved by resolving
nested parallelism [9] and nested loops [10]. Furthermore, skeleton-based libraries
typically implement different transformation rules [17] like the fusion of skele-
tons. In contrast to such rule-based approaches, this work transforms and maps
an algorithm based on a static performance model. This allows for structural
transformations on the highest level of a parallel algorithm. By identifying sub-
structures in the algorithm, fine-granular transformations such as the separation
of a sparse dataflow and cache blocking on a routine-level are enabled.

Mapping. Various approaches for mapping a parallel algorithm on heterogeneous
architectures exist. A theoretical foundation of the problem is the MAKESPAN
SCHEDULING on unrelated machines for which different approximation algo-
rithms were proposed [18]. Beaumont et al. [6] investigate the particular problem
of matrix-partitioning on heterogeneous architectures and provide several ap-
proximation algorithms. The approaches above investigate the mapping within
an isolated context, i.e., without a temporal dimension defined by subsequent
routines and data dependencies. In this work, however, the mapping is part of
an optimization problem over the global structure of an algorithm.
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3 Parallel Algorithms

The approach proposes automatic transformations and mappings to heteroge-
neous architectures at compile time. The mapping algorithm thereby founds on a
model of parallel algorithms consisting of a hierarchical decomposition of paral-
lel patterns, which is introduced in [22,21]. This model is particularly applicable
to the global analysis of algorithms as it combines two basic ideas making this
combinatorially complex analysis feasible. First, it follows the idea of separating
the structure of an algorithm from its executed function. This is mainly imple-
mented by abstracting local routines like loops to respective parallel patterns.
Second, the model introduces a two-level representation of the algorithmic struc-
ture, called the abstract pattern tree (APT). This representation contains local
parallel patterns in their global context.

3.1 Parallel Patterns

A parallel pattern is an abstraction of local parallelism as often found in loops
and other recurring structures. For this work, they are defined as a directed graph
of operations and their data dependencies. An operation consumes and produces
data and two operations o1, o2 are connected by a direct edge (o1, o2) iff o2
consumes data produced by o1. Data is thereby interpreted by its instant value,
i.e., it does not refer to a memory location and is immutable. The only relevant
data dependencies are therefore true data dependencies and the investigated
graphs are acyclic. Local parallelism is then defined as follows:

– Earliest-execution-time: Let s, o1, . . . , on−1, o be the longest directed path
from some source of data s to operation o, then o is said to have earliest-
execution-time n.

– Parallel: Two operations o, o′ are parallel, iff there is no directed path con-
necting them and they have the same earliest-execution-time.

A parallel pattern comprises at least two parallel operations; the serial pattern is
defined analogously. Figure 1 illustrates the concept with the example of a map
pattern where f1, . . . , f4 are parallel operations. In the following, local paral-
lelism is assumed to be optimal, i.e., all true data dependencies are well-defined.
For the scope of this paper, the three common parallel patterns map, stencil,
and reduction as defined by McCool et al. [19] are considered. These patterns
are data-parallel and are found in popular Berkeley dwarfs [2] like dense linear
algebra, spectral methods, and MapReduce.

3.2 Abstract Pattern Tree

The abstract pattern tree (APT) is an internal representation of the structure of
an algorithm over the execution order of parallel and serial patterns. Formally,
an APT is an undirected graph of pattern nodes (parallel and serial patterns)
and two types of meta nodes: The children of a serial meta node must be exe-
cuted from left to right. The children of a parallel meta node can be executed
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o1 o2 o3 o4

Fig. 1. The map pattern with o1, . . . , o4 parallel operations.

in parallel. Furthermore, serial and parallel patterns may themselves be meta
nodes to account for the concepts of sub-routines and nested parallelism. The
term execution order corresponds to the order defined by the developer and is
intentionally different from the data dependencies. As such, the developer may
miss concurrency as shown by the linearization of nodes in the APT. However,
it is assumed that the developer-provided code is correct, i.e., all true data de-
pendencies are well-defined. An exemplary APT is illustrated in Figure 2.

serial

sten parallel

map red

Fig. 2. An exemplary APT of a stencil (sten) and a subsequent parallel map and
reduction (red).

The partitioning of operations into sets of parallel operations defines local al-
gorithmic steps. Globally, algorithmic steps STEP1, . . . , STEPT combine the
local steps according to their relation in the APT. In the following, the set of all
operations is denoted O with STEP1

.
∪ . . .

.
∪ STEPT = O.

4 Performance Modeling

The following section introduces the performance model, which guides the global
transformations and mapping of parallel algorithms. This is based on algorithmic
efficiencies introduced in [22,21], which are briefly summarized in the following.
Algorithmic efficiencies are necessary conditions of performance defined over
specific global properties of algorithms. The mapping of operations to processors
must therefore be assessed within its global context defined through previous and
subsequent data dependencies.

Synchronization. The synchronization efficiency’s purpose is to maximize the
potential parallelism before mapping the operations to the processors. On the
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global algorithmic level, this potential is mainly limited by unidentified concur-
rency, e.g., due to the linearization of independent parallel patterns.

Inter-Processor Dataflow. Formally, a mapping is defined as a function M :
O → P from operations to processors, where each operation must be executed
by exactly one processor. A processor thereby describes a homogeneous set of
cores sharing the same processor-level cache. This corresponds to a socket of a
CPU or the streaming processor of a GPU in practice. The set of processors
of a cluster may be heterogeneous and can comprise different processors on the
same device, node and within the same network on different nodes. Without
loss of generality, the mapping can be decomposed into a sequence of step-
wise mappings M → MT

1 , where Mt : STEPt → P is the mapping of step t.
The inter-processor dataflow efficiency defines the costs of a mapping through
execution costs Et : P × 2STEPt → R and network costs Nt : P × 2STEPt → R.
The criterion to be minimized by the mapping is defined as follows:∑

t

max
P

{
Et(P,M−1

t (P )) +Nt(P,M−1
t (P );M t−1

1 )
}
→ min

MT
1

!,

where the network costs at step tmay depend on previous steps and the execution
costs only depend on the current step. The costs can thereby be modeled based
on assumptions of existing performance models. In the following, the costs are
adopted from the roofline model [25], where the assumption of the overlap of
execution is relaxed:
– Execution costs: The execution of operations is captured by the number of

floating point operations (Flops) divided by the peak performance πP (clock
frequency times Flops per cycle):

Et(P,M−1
t (P )) :=

∑
o Flops(o)
πP

, o ∈M−1
t (P ).

– Network costs: The network costs are defined as the slowest data transfer
between two processors. A data transfer thereby bundles all bytes to be
transferred from one processor to another to satisfy the data dependencies.
The bandwidth βs(P ′, P ) is determined by the slowest interconnect between
these two processors and a latency penalty Γs(P ′, P ) is added:

Nt(P,M−1
t (P )) := max

P ′

{∑
(o′,o) BY TES((o′, o))

βs(P ′, P ) + Γs(P ′, P )
}
,

o ∈M−1
t (P ), o′ ∈M−1

1...t−1(P ′).

Intra-Processor Dataflow. Given a mapping MT
1 , the intra-processor dataflow

efficiency seeks to optimize the execution of parallel operations assigned to the
same processor. This includes the scheduling on its cores, the utilization of core-
local caches, and transformations on the instruction-level to allow overlapping
execution of operations of different steps via asynchronous techniques. It is a
subsequent optimization after the mapping to the processors, and it is assumed
to be optimized by downward compilers (cf. Chapter 2).
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5 Mapping Algorithm

The mapping and transformation algorithm consists of two steps: First, the syn-
chronization efficiency is optimized by re-ordering the APT’s nodes to resolve
false linearization. Second, the actual mapping is derived by sequential opti-
mization over the algorithmic steps with respect to the inter-processor dataflow
efficiency. An implementation of the presented algorithm is included in the sup-
plemental material.

5.1 Step 1: FlatAPT

The serial meta nodes of the APT encode the algorithmic steps defined by the
developer. To resolve false linearization, the children of a serial meta node need
to be re-ordered according to their actual data dependencies. If two such children
are parallel, the parallelism is encoded by re-inserting them as the children of a
new parallel meta node into the respective sub-tree.

Due to potential parallelism across nested serial meta nodes, local optimality
does not directly lead to global optimality. Instead, the APT is traversed in-order
and every node is added to a new FlatAPT. This FlatAPT consists of only a
single serial meta node, the main node, and parallel meta nodes at the second
level, the algorithmic steps. A new pattern node is added as the child of a new
parallel meta node to the end of the FlatAPT, which introduces a new (last)
step. The node then bubbles up the algorithmic steps as long as there are no
true data dependencies and becomes the child of an earlier parallel meta node.
Since the FlatAPT consists of only a single serial meta node, the FlatAPT is
constructed globally optimal. Note that the nested parallelism is not leveraged
at this stage and, thus, the algorithm omits the traversal of sub-trees defined by
a parallel pattern or parallel meta node.

serial

parallel parallel

map

Fig. 3. Exemplary structure of a FlatAPT with a map inserted and an empty second
step already created.

The worst-case computational complexity occurs if every node of the APT
needs to be traversed and compared to every preceding node in the FlatAPT at
insertion, i.e., every node bubbles up into the first step. Hence, the algorithm
holds a quadratic worst-case complexity to the number of nodes. The feasibility
and complexity of the actual data dependence analysis for each pair of nodes
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depend on the static information provided by the programming language as
described by Hennessy et al. [15] and Banerjee et al. [5].

5.2 Step 2: Step Mappings

The inter-processor dataflow efficiency is modeled as a sequential optimization
problem over the sequence of step mappings MT

1 . The optimization is thereby
restricted to the following mapping space:
– Team: A team reserves a number of cores on a processor. The set of all

possible teams is denoted T .
– Pattern split: A pattern split is a subset of the parallel operations of a parallel

pattern, e.g., an interval of independent iterations of the same loop.
– Step mapping: A step mapping is refined as a function Mt : SPLITSt → T

from pattern splits to teams. There is at most one active team per processor
and step.

Accordingly, the recursive formulation of the efficiency is considered instead:

Q(M t
1) = min

Mt−1
1

{
d(Mt;M t−1

1 ) +Q(M t−1
1 )

}
,

d(Mt;M t−1
1 ) = max

P
Et(P,M−1

t (P )) +Nt(P,M−1
t (P );M t−1

1 ),

where d(Mt;M t−1
1 ) is the inter-processor dataflow efficiency of only the step

mapping Mt given the history M t−1
1 . The optimization problem associates three

decision dimensions yielding the general structure of the optimization algorithm:
– Teams: At each step t, select k out of K teams.
– Assignment: Partition the N pattern splits into k sets.
– Time: Assess the step mapping within the temporal context and extend the

current hypotheses of partial mappings.

However, this optimization problem does not admit optimal substructure to the
end that a globally optimal mapping can be constructed from locally optimal
step mappings. Because of arbitrary temporal dependencies in the network costs,
series of suboptimal step mappings might enable particularly efficient step map-
pings in the last algorithmic steps. By considering the full search space, the global
optimum can be obtained. However, the combinatorial complexity then grows
exponentially in all three dimensions K,N, T . In the following, approximation
techniques are proposed to reduce this complexity.

Time. Data dependencies are assumed to be limited to a maximum length of m
steps. The mapping is therefore constructed greedily over time with a lookahead
of m steps:

Q(t) = min
Mt,Mt+1,...,Mt+m

{d(Mt;B(t− 1)) +Q(t− 1;B(t− 2))

+
m∑
τ=1

d(Mt+τ ;B(t− 1 + τ))},
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where B(t) is a traceback array storing the actual step mappings of previous
steps. The approximating assumption leverages the principle of locality. Fur-
thermore, data dependencies refer back to the operation that initially created
the data. In practice, the data may also be read by another team in the meantime
and it is then transferred from this team. This effectively shortens the temporal
length of dependencies.

Assignment. For a given set of teams, only the locally optimal assignments of
pattern splits concerning the current step are considered. This transforms the
optimization over step mappings MT

1 to one over teams UT1 . The estimation of
the locally optimal assignment is approached by the modeling as an instance of
the NP-hard MAKESPAN SCHEDULING on unrelated machines [18]; teams
are distinguishable in execution costs by hardware characteristics and network
costs for accessing remote memory locations. The main difference to the original
problem is that pattern splits may share data, i.e., data only needs to be loaded
once from memory for two different splits. This invalidates the assumption of
independent costs for the splits and the optimality bounds of existing heuristics
for the original problem. The assignment is therefore based on a generic branch-
and-cut algorithm as shown in the prototype implementation in the supplemental
material.

Teams. At each step, the set of teams is determined by a variant of local search.
The basic idea is to gradually extend an initial set of teams consisting of a single
CPU team. The search compares different strategies for an extension, called
moves, and follows the direction of the best move similar to hill climbing. Two
phases of this search are distinguished that differ by the type of moves to be
compared: At first, the search progresses by local moves. Such moves may only
add new teams located on devices used by the current teams, e.g., another socket
of a CPU. When a local optimum is reached, the set of teams is extended with
new devices and nodes called jump. These two types of moves are necessary in
order to avoid a collapse of hypotheses. The assignment may lead to a subset
selection of teams by not assigning splits to some teams. This frequently occurs
when extending to a new node and too few teams are added to compensate
for the additional network costs. Thus, local optima of this search are always
plateaus and the optimization space consists of different levels of plateaus. This
variant of a local search is therefore denoted stair climbing.

Analysis. While the mapping based on the inter-processor dataflow efficiency
is a general scheduling problem, the proposed algorithm cuts it into many lo-
cal assignment problems by explicitly exposing the optimization over time and
teams. Assuming the stair climbing algorithm needs to search the whole cluster,
but each move doubles the number of teams on average and only two moves are
compared at a time, the computational complexity of this outer optimization
regarding the assignment is T · (K · a(N))1+m, where a(N) is the complexity of
each assignment. Assuming m = 1, K to be constant and T to be linear in N ,
the complexity is O(a(N)3).
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6 Evaluation

In the following, the proposed optimization framework for global transforma-
tions and automatic mappings is evaluated regarding its approximation quality
and achieved local optima. Since the approximation quality cannot be derived
analytically for practical problems, an empirical analysis of typical data-centric
algorithms such as linear equations, classifications, and neural networks is used.
Each algorithm is implemented in a baseline version closely following its numer-
ical definition. Furthermore, a hand-tuned version is derived by applying crucial
transformations and mapping decisions as found in the literature and library
implementations. The proposed framework transforms and maps the baseline
versions, which is denoted auto version. The resulting optimizations are then
compared to the hand-tuned version including a qualitative analysis of the opti-
mization as well as a quantitative analysis of the estimated and actual runtimes.
Once the implementation of the approach as a fully integrated tool is finished,
a comparison with related approaches will be carried out.

Experimental Setup The experiments were executed on two typical CPU-GPU
nodes connected via Intel R© Omni-Path with 100Gb/s. Each node features two
Intel R© Skylake R© Platinum 8160 processors with 24 cores each, a base frequency
of 2.1GHz, disabled HyperThreading, and 192GB of DDR4 RAM. Two NVIDIA R©

Tesla R© V100 GPUs with 16GB of HBM2 memory are connected via PCI-
express. The experiments were repeated 30 times and median measurements
are reported.

We implement the algorithms in a Parallel Pattern Language (PPL), from
which the APT can be parsed directly. After optimization of the APT, the result-
ing mapping is manually translated into C code using the parallel programming
models OpenMP 4.5, OpenMPI 3.1.3, and CUDA 10.2; the baseline versions are
directly implemented in C. The OpenMP versions were compiled with gcc 9.3.0
and compiler flags -fopenmp -std=c99 -O2, the MPI versions with gcc 9.3.0,
OpenMPI 3.1.3, and compiler flags -fopenmp -std=c99 -O2, and the CUDA ver-
sions with the NVIDIA compiler 10.2, gcc 8.2.0 and compiler flags -Xcompiler
-fopenmp. If the generated pattern and data splits are large on the GPU, the
block size is reduced to 512 due to the limits of the CUDA framework. The
work assigned to a specific processor is statically scheduled to its cores. The
implementations of the parallel algorithms, as well as the mapping reports of
the optimization framework, can be found in the supplemental material.

Parallel Algorithms. The following parallel algorithms are investigated. Depend-
ing on the problem size of the evaluated parallel algorithms, different hyperpa-
rameters for the optimization algorithm are chosen. They steer the granularity
of the pattern and data splits and were derived experimentally.

The Multi Filter algorithm represents a typical image processing task, where
different filters are applied to the same image independently. In detail, the task
is to compute different image derivatives: A Sobel filter estimates horizontal
derivatives on the upper half of the image and a Prewitt filter on the lower half.
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Furthermore, a discrete Laplacian is applied to the whole image. The size of the
image is 8194×8194. The baseline version processes the three filters sequentially.
The used pattern and data split sizes are 4096 and 128 respectively.

The Batch Classification represents a typical classification task, where the
elements of a batch are processed in multiple stages separately. The first two
stages extract the features by first standardizing and then integrating over the
absolute inputs. The third stage classifies based on the majority vote of 4096
thresholding classifiers. To highlight potential pipelining and fusion transforma-
tions, the baseline version processes the batch in reverse during the second stage.
The size of the batch is 219 and each input element is a vector of size 4096. The
used pattern and data split sizes are 262144.

Three linear equation systems are solved with the Jacobi method sharing the
same coefficient matrix A. The number of unknowns is 8192 in each linear system
and the number of Jacobi iterations is fixed to 50. The baseline version solves
the linear systems sequentially. The used pattern and data split sizes are 4096.

The Neural Network algorithm defines the forward pass of an eight-layer
neural network for a batch of size 218. Each layer consists of 64 neurons. The
respective matrix-matrix computations admit massive data parallelism and ac-
celeration potential. The used pattern and data split sizes are 8192.

TheMonte Carlo Pi algorithm defines a Monte Carlo method for approximat-
ing π by accumulating the area of a unit circle. The approximation is obtained
by averaging over 96 independent estimations with 109 random draws each. The
used pattern and data split sizes are 24 and 1 respectively.

6.1 Results

The cost estimations and runtimes are reported in Table 1 for the unoptimized
baseline version and the automatically transformed and mapped version.

Cost [s] Runtime [s]

Algorithm Base Auto Base Auto Transformations

Multi Filter 0.013 0.010 0.038 0.030 Fusion, re-ordering, pipelining,
NUMA awareness

Batch Classification 0.475 0.396 1.157 0.898 Fusion, pipelining
Jacobi 0.913 0.637 1.320 0.561 Fusion, re-ordering, pipelining
Neural Network 0.167 0.009 0.329 0.175 GPU offloading
Monte Carlo Pi 13.611 6.944 43.449 22.238 distributed computing

Table 1. The estimated runtime in seconds and the measured runtime in seconds for
the baseline version (base) and the automatically transformed and mapped version
(auto). Moreover, the applied transformations by the proposed framework are listed.

Multi Filter: The optimization identifies the independence of the filters and
the shared input data. It fuses the Sobel operator and the Laplacian splits iter-



12 L. Trümper et al.

ating over the upper half of the image; the Prewitt and the remaining Laplacian
are fused analogously. Hence, the halves of the images are pipelined and kept
in the local caches across the different filters. The baseline version is estimated
at 0.013 s and measured at 0.038 s. The estimated runtime costs of this auto-
matic mapping are 0.010 s and measured 0.030 s. Due to the short runtime of
the algorithm, the average of 10 repetitions with random input is used.

Batch Classification: Due to the integration over absolute values and the
thresholding classifiers, the computation is dominated by branching. The frame-
work accounts for this property by mapping to the two CPU teams of a single
node with 24 cores each. Furthermore, the mapping identifies the pipelines for
each input and fuses the extraction and classification stages. The estimated run-
time costs for the baseline are 0.475 s while the measured runtime is 1.157 s. The
estimated runtime of the automatic mapping is 0.396 s and the actual runtime
is 0.898 s.

Jacobi: The framework maps the algorithm to the two CPU teams of a single
node. It thereby integrates the three linear systems in a single Jacobi pass.
Furthermore, the splits across the different linear systems comprising the same
rows of A are assigned to the same teams. Accordingly, the same teams are used
for corresponding splits over different Jacobi iterations. Hence, the respective
rows of A are pipelined across the different linear systems and iterations. The
baseline version is estimated at 0.913 s and measured at 1.320 s while the cost of
the automatic mapping is 0.637 s and the runtime is 0.561 s.

Neural Network: The proposed framework offloads the massive data paral-
lelism of the algorithm to a GPU. Due to the induced data transfers for a multi-
GPU implementation, a single GPU is preferred by the performance model. The
costs for the CPU baseline version is 0.167 s and its runtime is 0.329 s. The
automatically mapped version is estimated at 0.009 s and measured at 0.175 s.

Monte Carlo Pi: The automatic mapping distributes the splits of the 96 pi
estimations across four CPU teams located on two different nodes. The mapping
thereby leverages the low communication costs for separating the sparse dataflow
initially. The cost of the baseline version that only utilizes a single node is 13.611 s
and the measured runtime is 43.449 s. The automatic version is estimated at
6.944 s and measured at 22.238 s.

7 Discussion

The paper introduces an automatic mapping algorithm utilizing a model of al-
gorithmic efficiencies and cost-based combinatorial optimization. The evaluation
investigates its approximation quality empirically on a representative set of par-
allel algorithms. The obtained optima consistently improve the runtime and their
qualitative analysis shows that these optima comprise a rich set of global trans-
formations as applied by an HPC expert. In the following, the results and next
steps are discussed in detail.

Static Analysis. While the static analysis requires complete information about
local parallelism, real-world problems often contain dynamic characteristics. To
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overcome this challenge, the information about the exact sizes of data structures
may be relaxed to approximative estimates. Furthermore, the definition of local
parallelism via a parallel pattern is general enough to be defined over concrete
structures of existing programming models like directives or C++ templates,
from which the APT can be parsed. This information is available for a wide set
of scientific algorithms implemented in modern parallel programming models.

Evaluation. The integration of the algorithm into a parallel programming model
is the next step towards a thorough evaluation of the approach. This imple-
mentation enables a performance comparison on typical benchmarks such as
NAS Parallel Benchmarks [4] with existing approaches and an evaluation on
proxy and real-world applications regarding the approach’s practicability. The
critical part of the integration is thereby the optimal use of further architecture-
specific transformations as applied by Kokkos, Raja, and modern compilers. For
instance, current data representations and team definitions may be refined for
compatibility with other models and devices, e.g., CUDA thread blocks.

Performance Modeling. The comparison of the estimated costs for the baseline
and the automatic mapping shows that the mapping decisions are well-guided
by the high-level performance model. The difference between measured and esti-
mated runtime varies by a factor of 0.9−3.2 except for the neural network, where
the GPU mapping is underestimated by a factor of 19. While the model provides
rich efficiency information, the implementation currently renounces architecture-
specific features required for higher estimation accuracy. For instance, describing
the peak performance solely via the number of cores oversimplifies the SIMT ex-
ecution model of modern GPUs since it implies independent execution of threads
on cores. The model also excludes architecture-specific acceleration features like
vector registers, which could be included with the LogCA model [1]. Moreover,
the overlap between execution and network costs is not investigated in detail
and the modelled network costs assume that the communication of a single step
occurs simultaneously in a single transfer. This latter assumption overestimates
the bandwidth if many teams use the same interconnect simultaneously. This
could be improved by utilizing the LogP model [11].

Computational Complexity. The computational complexity of the mapping al-
gorithm is cubic with respect to the complexity of the assignment algorithm.
Approaches for the assignment based on LP-relaxations and the simplex algo-
rithm are themselves at least cubic on average [16]. Hence, efficient heuristics
must be derived, which for instance group similar patterns and leverage the sym-
metry of modern architectures. Furthermore, the pattern and data split sizes
allow to control the feasibility in practice. However, large split sizes may result
in a coarse granularity of the analysis, where the degree of parallelism is reduced
significantly and artificial data dependencies are introduced. To balance this,
a pattern-specific split size could be applied instead of the global parameter.
As this increases the number of hyperparameters, an algorithmic strategy for
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determining these hyperparameters is an important extension. Evolutionary al-
gorithms based on a parallel model like the island model [24] may be considered.

8 Conclusion

In this paper, we investigate the problem of mapping parallel algorithms to het-
erogeneous architectures. To this end, we introduce a static performance model
that minimizes the global execution costs. This includes global transformations
to improve the dataflow and expose parallelism as well as utilizing large clusters
efficiently while minimizing the required data transfers. We show that the pro-
posed algorithm delivers complex optimizations as carried out by HPC experts
and execution performance similar to such hand-tuned versions for five typical
parallel algorithms. Our proposed approach is extensible in several directions:
The performance model could be extended with architecture-specific features to
increase its accuracy on a wide set of applications and hardware platforms. Fur-
thermore, the computational complexity of the optimization algorithm may be
lowered by heuristics and auto-tuning methods. We will integrate the approach
into existing parallel programming models to conduct a larger performance eval-
uation on a wide set of benchmarks.
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