
EasyChair Preprint
№ 5939

Hash-based preprocessing and inprocessing
techniques in SAT solvers

Henrik Cao

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

June 27, 2021

Hash-based Preprocessing and Inprocessing
Techniques in SAT Solvers

Henrik Cao[0000−0003−0525−4344]

Computer Science Department, Aalto University, Espoo, Finland
henrik.cao@aalto.fi

Abstract. Modern satisfiability solvers are interwoven with important
simplification techniques as preprocessors and inprocessors. Implemen-
tations of these techniques are hampered by expensive memory accesses
which result in a large number of cache misses. This paper explores the
application of hash functions in encoding clause structures and bitwise
operations for detecting relations between clauses. The evaluation showed
a significant increase in performance for subsumption and Blocked Clause
Elimination on the Main track benchmark of the 2020 SAT competition.

Keywords: SAT · CDCL · preprocessing · inprocessing · hash

1 Introduction

Modern satisfiability (SAT) solvers are complemented with various simplification
techniques before and during solving [4–7, 18, 19]. These techniques test impor-
tant relational properties between clauses, the implementation of which requires
expensive memory accesses. For example, in order to check whether C ⊆ D for
two clauses (i.e., C subsumes D), we typically have to access both the literals
and their signatures (i.e., literal marks).

The use of hash functions in the context of simplification techniques was first
documented in [19] and [4]. The authors proposed novel subsumption algorithms
incorporating signature-based pre-checks for testing whether C * D. A similar
pre-check is used in the MaxSAT preprocessor MaxPre to detect non-tautological
clauses during variable elimination [9].

Signature-based approaches persist in some solvers and preprocessors today
[2], but no formal analysis of these methods has been given. Also, as of this
writing, I am unaware of literature documenting the use of similar methods in
other simplification techniques. This is in spite of the extensive research on hash
functions and their myriad applications in computer science [1, 14, 15]. Ironically,
the use of SAT technology in encoding, testing and optimizing hash functions
has become a hot topic of its own [8, 10–13, 16, 17].

In this paper, I discuss the application of clause signatures in testing rela-
tional properties between clauses, especially those arising in simplification tech-
niques on formulae in conjunctive normal form (CNF). In particular, I translate
the contrary of four clause relations (subsumption, disjointness, membership and

2 Henrik Cao

tautological resolvency) into their signature-based relations, which can then be
tested using bitwise logical operators. The signature-based tests are constant-
time and do not rely on accessing the underlying clause structure, thus intro-
ducing minimal computational overhead. Furthermore, the methods developed
herein are auxiliary in nature and can be integrated into existing implemen-
tations. As a direct application, I demonstrate their use in three popular sim-
plification techniques: Subsumption [3], Blocked Clause Elimination (BCE) [6]
and Bounded Variable Elimination (BVE) [4]. I further provide a probabilis-
tic analysis of signature-based methods, shedding light on their strengths and
limitations.

Lastly, I offer full (C++) implementations of subsumption, BCE and BVE
using signature-based techniques and a complete evaluation on the Main track
benchmark dataset of the 2020 SAT competition [2].

2 Preliminaries

Let V = {1, . . . , N} denote a set of propositional variables1. A literal l can be a
variable v or its negation v and I will denote by L the set of literals on V. A clause
C ⊆ L will be any literal subset with its logical interpretation C = l1 ∨ · · · ∨ ln.
However, I have shunned references to the logical properties of clauses and you
may think of C simply as a set of integers. Furthermore, to simplify notation, I
have made C assume the dual role of C and |C| (the number of literals in C).

Here are the main set-theoretic properties that I will consider.

Definition 1. A clause C is tautological if both l ∈ C and l ∈ C.

Definition 2. A subset C ⊆ D is said to subsume D.

Definition 3. Let l ∈ C and l ∈ D. The resolvent C ⊗l D on l is the set
C \ {l} ∪D \ {l}.

Definition 4. Let l ∈ C and l ∈ D. C strengthens D if C ⊗l D ⊆ D.

When querying properties in Definitions 1-4 over a set of clauses C, simplifi-
cation techniques rely on efficient data structures with constant-time access to
certain subsets of clauses. The most common data structure is the occurrence
list, O, which is a list of sets O(l) = {C ∈ C | l ∈ C} of all clauses with an
occurrence of the literal l.

The methods I will discuss operate on signatures (or words), which are fixed-
length natural numbers of m bits. A signature, then, is a number2 in the range
[0, 2m), but I encourage you to think of signatures as strings or vectors of m bits.
The signature of zeroes, 0 . . . 0, like all zeros, is an abounding quantity and I will
substitute it with the innocuous abbreviation 0. Analogous to the usual Boolean

1 When there is a need to distinguish between a variable name and the numeral, e.g.,
the variable ‘17’ and the number 17, we will explicitly write (17)int for the latter.

2 The binary representation of an integer is indexed right to left, i.e., 01011 = 11.

Hash-based Preprocessing and Inprocessing Techniques in SAT Solvers 3

operators ¬,∧,∨,⊕ (negation, conjunction, disjunction, exclusive disjunction)
on the Boolean values 0 and 1, signatures are subject to the bit-wise operators3

∼,&, |, ⊕. For example, 01011 & 11101 = 01001 and 01011 ⊕ 11101 = 10110.
Signatures are partially ordered by the relation ≤, where a ≤ b =⇒ a&b = a,
and so 01100 ≤ 01110 but 01100 6≤ 11001.

A hash function is a mapping h : U 7→ M from some universe, U , to the
set of signatures or hash values, M. I will consider hash functions exclusively on
the subsets C ⊆ L and onto the domain [0, 2m). Unless explicitly mentioned,
you may assume signatures to be 64-bit natural numbers (i.e., m = 64). When
C = {l}, I like to write h(l) instead of h({l}).

A hash function that often occurs in practice is defined by element-wise
division (modulo m):

ha(C) =
∑
v∈C

2 |v| mod m (1)

where |v| is the absolute value of the variable, e.g., |17| = |17| = (17)int. The
mapping ha for C1 = {7, 10, 13, 2, 8} and m = 8 is illustrated in Figure 1. Notice
in particular the collision of indices corresponding to the literals 10 and 2. In
general, ha is not injective (ha(v) = ha(u) 6=⇒ v = u) and collisions will occur
even for prodigious values of m.

1 0 1 0 0 1 1 0

{7, 10, 13, 2, 8}

Fig. 1. A mapping of the hash function ha.

Proofs in this paper involve the combinatorial quantities:{
n

k

}
=

1

k!

k∑
j=0

(−1)j
(
k

j

)
(k − j)n (2)

and {
n

k

}
≥2

=

k∑
i=0

(−1)i
(
n

i

) k−i∑
j=0

(−1)j(k − i− j)n−i

j!(k − i− j)!
, (3)

which are the stirling number of the second kind and the 2-associated stirling
number of the second kind respectively.

{
n
k

}
counts the number of unique sur-

jective functions that map n elements into k bins, whereas
{
n
k

}
≥2 counts the

3 In mixed symbol expressions, bit-wise operators take precedence, i.e., p& q = 0 ∨
r ⊕ s 6= 0 evaluates as ((p& q) = 0) ∨ ((r ⊕ s) 6= 0).

4 Henrik Cao

number of unique surjective functions that map n elements into k bins such that
at least two elements are mapped into each bin. In order to simplify formulas
arising in proofs, I adopt the convention

{
n
0

}
≥2 = 1.

3 Hash-based Methods

Simplification techniques rely on fast access to relevant data structures, es-
pecially clauses, literals and their respective properties. To expedite search,
good implementations utilize efficient data structures (e.g., occurrence lists) and
lookup tables (such as vector-based literal markers). Unfortunately the underly-
ing data structures remain relatively expensive to access and tend to be scattered
in memory, causing a large number of cache misses in practice.

For moderately sized clauses (|C| < 103), hash functions such as (1) provide
a means to encode an abstraction of a clause C as an m-bit signature h(C).
This clause signature is a space-efficient abstraction of a set of literals and can
be stored independently of the clause container, providing a compact means of
querying properties of C in relation to other clauses. In particular, for a suitable
family of hash functions H, the signatures of two clauses can be used to assess
(the contrary of) a number of important set relations.

Some common properties tested by simplification techniques are:

Definition 5. Subsumption, C ⊆ D, for clauses C,D.

Definition 6. Disjointness, C ∩D = ∅, for clauses C,D.

Definition 7. Tautological resolvency, C⊗lD = >, for clauses C,D with l ∈ C
and l ∈ D.

Definition 8. Membership, l ∈ C, for a clause C and literal l.

Due to collisions, the properties of Definitions 5-8 cannot be answered re-
liably; in other words, false positives may occur. However, failed queries are
admissible (and tend to be more common anyhow). To show this, I will presume
a family of hash functions, H, with the following properties:

• h ∈ H maps variables independently and uniformly at random and

• h(l) = h(l), i.e., l and l map to the same index.

Definition 9. Let h(C) be the m-bit hash value of a clause C. The collision
signature u(C) of h(C) is the m-bit signature with the ith bit marked if there is
a collision in the ith bit of h(C).

For example, the clause C2 = {2, 3, 5, 8} (with m = 5) hashes to ha(C2) =
01101 and has the collision signature u(C2) = 01000 with a collision on the
literals 3 and 8.

Hash-based Preprocessing and Inprocessing Techniques in SAT Solvers 5

Proposition 1. Let h ∈ H. If h(C) &∼h(D) 6= 0 or u(C) &∼u(D) 6= 0, then
C 6⊆ D.

Proof. For suppose h(C) &∼h(D) 6= 0. Then h(l) &∼h(D) 6= 0 for some literal
l ∈ C, which implies l /∈ D and therefore C 6⊆ D. Now let u(C) &∼u(D) 6= 0. We
must have h(l) &∼u(D) 6= 0 and h(l) = h(o) for distinct literals l, o ∈ C. This
implies that there is at most one literal r ∈ D colliding with l, o ∈ C. Therefore
either l /∈ D or o /∈ D and again C 6⊆ D.

Proposition 2. Let h ∈ H. h(C) &h(D) = 0 =⇒ C ∩D = ∅ for all h ∈ H.

Proof. If h(C) &h(D) = 0, then h(l) &h(o) = 0 for all literal pairs (l, o) with
l ∈ C and o ∈ D. We conclude that C ∩D = ∅.

Proposition 3. Let h ∈ H, l ∈ C and l ∈ D. If u(C) &u(D) &h(l) = 0 and
h(C) &h(D) = h(l), then C ⊗l D is non-tautological.

Proof. h(C) & h(D) = h(l) says that h(l) is the only overlapping index (i.e.,
o ∈ C ∩ D =⇒ h(o) = h(l)). If, in addition, u(C) &u(D) &h(l) = 0, then
either l is the unique literal in C with h(l) = h(l) or l is the unique literal in
D with h(l) = h(l). Either way, the intersection C ∩ D = ∅ and the resolvent
C ⊗l D = (C ∪D) \ {l, l} is non-tautological.

Proposition 4. Let h ∈ H. h(C) &h(l) = 0 =⇒ l /∈ C.

Proof. Clearly, if l ∈ C then h(C) &h(l) 6= 0.

Through Propositions 1-4 we may now utilize the signature representation
(h(C), u(C)) of a clause to test for the contrary of Definitions 5-8 respectively.
As our first application, consider a typical subsumption routine (Algorithm 1)
designed to remove all clauses D ∈ F (a set of clauses) for which there exists
a subsuming clause C ⊆ D. Line 5 in Algorithm 1 applies Proposition 1 just
before an explicit subsumption test on line 7. Importantly, Proposition 1 can
be tested without accessing the clause structures of C or D; we only need their
signatures and collision signatures.

As a second application, let us consider Proposition 3 for non-tautological
resolvents. One of my favourite applications of tautological resolvent querying is
in the detection of blocked clauses [6]. To this end, let C⊗lO(l) = {C⊗lD | D ∈
O(l} and O(l)⊗lO(l) = {C ⊗l D | C ∈ O(l), D ∈ O(l)} be the extensions of the
resolvent operator to sets of clauses. A blocked clause is a clause C with some
literal l ∈ C whose resolvents C ⊗l D with all clauses D ∈ O(l) are tautological
(and thus C is, in a sense, redundant). Indeed, to test whether C is blocked by a
literal l ∈ C, we must check its resolvents C ⊗lO(l), which is almost always too
costly to verify for all clauses in a formula. What makes this routine so appealing
to signature-based methods is that it suffices to provide just one clause D ∈ O(l)
with a non-tautological resolvent C ⊗l D to show that C is not blocked by l.

I have sketched a typical BCE routine in Algorithm 2, where you will find
Proposition 3 on line 6. Notice, again, how accessing the clause containers of C
and D is deferred until an explicit check on line 11.

6 Henrik Cao

Algorithm 1 Subsumption

1: Input : F // set of clauses
2: K = ∅ // checked clauses
3: for C ∈ sorted (F , <) do // increasing size
4: for D ∈ K do // ensures |D| ≤ |C|
5: if h(D) & ∼h(C) 6= 0 or u(D) & ∼u(C) 6= 0 then // Proposition 1
6: continue
7: else if D ⊆ C then // explicit check
8: F = F \ {C} // remove clause
9: break

10: if C ∈ F then
11: K = K ∪ {C} // keep clause

12: return F

Algorithm 2 Blocked clause elimination

1: Input : F // set of clauses
2: for l ∈ L do
3: for C ∈ O(l) do
4: tautology = True
5: for D ∈ O(l) do
6: if h(C) &h(D) = h(l) and u(C) &u(D) &h(l) = 0 then // Prop. 3
7: tautology = False
8: break
9: if tautology = True then

10: for D ∈ O(l) do
11: if C ⊗v D 6= > then // explicit check
12: tautology = False
13: break
14: if tautology = True then
15: F = F \ {C} // remove clause

16: return F

Algorithm 3 Bounded variable elimination

1: Input : F , bound // set of clauses
2: for v ∈ V do
3: count = 0
4: for (C,D) ∈ O(v)×O(v) do
5: if h(C) &h(D) = h(v) ∧ u(C) &u(D) &h(v) = 0 then // Proposition 3
6: count = count + 1

7: if count > |O(v) ∪ O(v)|+ bound then // bound exceeded
8: continue
9: for (C,D) ∈ O(v)×O(v) do

10: if h(C) &h(D) 6= h(v) ∨ u(C) &u(D) &h(v) 6= 0 then // Proposition 3
11: if C ⊗v D 6= > then // explicit check
12: count = count + 1

13: if count ≤ |O(v) ∪ O(v)|+ bound then
14: F = (F \ (O(v) ∪ O(v))) ∪ (O(v)⊗v O(v)) // eliminate v

15: return F

Hash-based Preprocessing and Inprocessing Techniques in SAT Solvers 7

Tautological resolvent querying also emerges in BVE [4], which eliminates
variables v ∈ V by substituting the (satisfiability-equivalent) resolvents O(l)⊗l

O(l) for the clauses O(l)∪O(l). In particular, only variables with |O(l)⊗lO(l)| ≤
|O(l) ∪ O(l)| + bound are eliminated, which amounts to counting the number
of non-tautological resolvents (since tautological resolvents may be discarded
after the substitution). Algorithm 3 sketches the routine with the application of
Proposition 3 on line 5 and on line 10.

4 Probabilistic Analysis

On account of Propositions 1-4 derived in the previous section, we can test the
complementary properties of Definitions 5-8 from the clause signatures h(C) and
u(C). But how useful are these signatures in practice? From a practical point
of view, we are interested in the probability that an arbitrary pair of clauses
satisfies the premises corresponding to Propositions 1-4.

Clearly, if m � |C|, the signatures h(C) and u(C) tend to 1 . . . 1, and the
comparisons h(C) &h(D) = 0 and u(C) &u(D) = 0 become vacuous. Therefore,
the effectiveness of h(C) and u(C) is largely dependent on the number of col-
lisions (overlaps) of literals in C under h. This relates to the size of C (fewer
literals incur less collision) and how well h distributes C over m bits.

Notice that for a clause C whose literals are selected uniformly at random
from L (and our assumption that h ∈ H distributes uniformly at random), we
can model the mapping h(C) as if C were drawn from the range [0,m) instead.
Let ‖w‖ denote the bit sum of w (e.g., ‖01101‖ = 3).

Proposition 5. Let h ∈ H. E [‖h(C)‖] = m(1− (m−1
m)C).

Proof. We model the mapping h(C) as C random and independent draws from
[0,m). Let h(C)i denote the ith index in h(C). Pr[h(C)i = 1] = 1− (m−1

m)C . By

linearity of expectation, E [‖h(C)‖] =
∑m−1

i=0 Pr[h(C)i = 1] = m(1− (m−1
m)C).

Proposition 6. Let h ∈ H. E [‖u(C)‖] = m(1− (1− C
m−1)(m−1

m)C).

Proof. We model the mapping h(C) as C random and independent draws from
[0,m). Let u(C)i denote the ith index in u(C). If u(C)i = 0, then either one
or zero literals in C are mapped to h(C)i. The probability that h(C)i is zero is
p = (m−1

m)C . The probability that exactly one literal is mapped to index i is q =
C
m (m−1

m)C−1. Thus, Pr[u(C)i = 1] = 1−p−q = 1−(1− C
m−1)(m−1

m)C . By linearity

of expectation, E [‖u(C)‖] =
∑m−1

i=0 Pr[u(C)i = 1] = m(1− (1− C
m−1)(m−1

m)C).

Using Proposition 5, the expected number of collisions is E [|collisions|] =
C−E [‖h(C)‖]. I have plotted this together with the results of Proposition 5 and
Proposition 6 in Figure 2 (left) for m = 64. You can see how the signature h(C)
is quickly populated after some 250 literals, beyond which all new literals collide
with some previously populated index. The collision signature, u(C), fills up
more slowly and is expected to hit its capacity after ≈ 400 literals (which makes

8 Henrik Cao

0 100 200 300 400
C

0

50

100

150

200

250

300

350

Si
ze

[||h(C)||]
[||u(C)||]
[|collisions|]
m=64

0 10 20 30 40 50 60
k

0.0

0.005

0.010

0.015

0.020

Pr
ob

ab
ilit

y

Pr[||h(C)|| = k]
Pr[||u(C)|| = k]

Fig. 2. (left) The expected size of h(C) (blue), the expected size of u(C) (orange)
and the expected number of collisions (green) for m = 64 and clauses 2 ≤ C ≤ 400.
(right) The distributions of ‖h(C)‖ (blue) and the distribution of ‖u(C)‖ for |C| = 150
(orange).

sense, as two literals corresponding to h(l)i are required to tick u(l)i). Moreover,
from a SAT point of view, it is comforting to know that literal collisions are
independent of the number of overall literals |L| in a formula.

We can also find expressions for the distributions of Pr [‖h(C)‖ = k] and
Pr [‖u(C)‖ = k], which I have plotted in Figure 2 for C = 150.

Lemma 1. Let h ∈ H. For k ≤ |C|,

Pr [‖h(C)‖ = k] =
1

mC

{
C

k

}(
m

k

)
k!

Proof. By counting the number of clauses C with ‖h(C)‖ = k. We model the
mapping h(C) as C random and independent draws from the range [0,m). For
h ∈ H there are mC ways to sample C elements from [0,m). There are

(
m
k

)
k-element subsets in m bit indices, each having k! permutations, and

{
C
k

}
ways

to partition C into k disjoint subsets. Multiplying through and dividing by mC

gives the desired distribution.

Proposition 7. Let h ∈ H. For 2k ≤ |C|,

Pr [‖u(C)‖ = k] =
1

mC

min{m−k,C−2k}∑
j=0

{
C − j

k

}
≥2

(
C

C − j

)(
m

k + j

)
(k + j)!

Proof. By counting the number of clauses C with ‖u(C)‖ = k. We model the
mappings h(C) and u(C) as C random and independent draws from [0,m). Let
‖h(C)‖ = k+ j, so that exactly k+ j of the m bit indices are set by literals in C.
If ‖u(C)‖ = k, then j bit positions have exactly one literal mapped to them. The
remaining C − j literals are mapped to k bits, which can be done in

{
C−j
k

}
≥2

Hash-based Preprocessing and Inprocessing Techniques in SAT Solvers 9

ways. The partition corresponding to ‖h(C)‖ = k + j can be chosen in
(

m
k+j

)
ways and from (k+ j)! permutations. Lastly, there are

(
C

C−j
)

ways to choose the

subset of C − j elements from C. In total, there are
{
C−j
k

}
≥2

(
C

C−j
)(

m
k+j

)
(k + j)!

clauses with ‖h(C)‖ = k+ j and ‖u(C)‖ = k. It remains to sum over all possible
sizes k + j. Clearly, we must have k ≤ k + j ≤ m. If C − 2k ≤ m − k, then we
require k + j ≤ C − k. Combining these two inequalities we have k ≤ k + j ≤
min{m,C − k} or 0 ≤ j ≤ min{m− k,C − 2k}. Summing over these limits and
dividing by the total number of mappings mC yields the desired distribution.

Let us now return to the premise of Proposition 2 and provide a probabilistic
analysis; namely the probability that the clause signatures of two clauses are
disjoint.

Proposition 8. Let h ∈ H. Then

Pr [h(C) &h(D) = 0] =
1

mC+D

min{C,m}∑
k=1

(
C

k

){
C

k

}
k!(m− k)D.

Proof. We model the mapping h(C) as C random and independent draws from
[0,m). Let ED

C = (h(C) &h(D) = 0) and consider the conditional formulation

Pr
[
ED

C

]
=

min{C,m}∑
k=1

Pr
[
ED

C | ‖h(C)‖ = k] Pr[‖h(C)‖ = k
]

(4)

summed over all sizes of ‖h(C)‖, i.e., the range 1 ≤ k ≤ min(C,m). Notice that
this defines a partition of the set of possible values for h(C). For any particular
‖h(C)‖ = k, there are m − k bits that can be mapped to by h(D) without
violating ED

C and mD choices in total, so that Pr[ED
C | ‖h(C)‖ = k] = (m −

k)D/mD. Plugging this and the result of Lemma 1 into (4) yields the desired
equation.

The probability distribution of Proposition 8 is depicted in Figure 3 (left)
for m = 64 and clauses of size 2 ≤ C,D ≤ 52. It visualizes nicely how the
disjointness of large clauses (|C| > 10 and |D| > 10) is difficult to certify from
their signatures alone, which is to be expected unless m� C +D. On the other
hand, if h(C) 6= 1 . . . 1 (respectively h(D) 6= 1 . . . 1) and |D| < 10 (respectively
|C| < 10) then Proposition 8 still predicts a reasonable probability of success for
signature-based disjointness querying.

Next, consider the signature-based subset relation from Proposition 1. The
probability that the clause signatures of C and D detect the property C * D is
given as the following Proposition.

Proposition 9. Let h ∈ H. Pr[h(C) &∼h(D) 6= 0 or u(C) &∼u(D) 6= 0] =

1− 1

mC+D

min{m,C}
min{k1,C−k1}∑

k1=0
r1=I[C≤m]

min{m,D}
min{k2,D−k2}∑

k2=k1

r2=max{r1,I[D>m]}

SC
k1,r1S

D
k2,r2

(
m

k2

)(
k2
k1

)(
k1
r1

)(
k2 − r1
r2 − r1

)
,

10 Henrik Cao

SC
k,r = r!(k − r)!

(
C

k − r

){
C − (k − r)

r

}
≥2

.

Proof. Let HD
C and UD

C be the events h(C) &∼h(D) 6= 0 and u(C) &∼u(D) 6= 0

respectively and denote their complements by HD
C and UD

C (i.e., HD
C is the

event h(C) &∼h(D) = 0). The union probability Pr[HD
C ∪ UD

C] is equivalent

to the complementary probability 1 − Pr[HD
C ∩ UD

C] and as there are mC+D

clause pairs in total, it remains to count the pairs satisfying HD
C ∩UD

C . Now, two

clauses C,D satisfy HD
C if h(C) ≤ h(D). Similarly, two clauses C,D satisfy UD

C if
u(C) ≤ u(D). Notice that u(·) ≤ h(·) holds in general. We can count the number
of clauses C with ‖h(C)‖ = k and ‖u(C)‖ = r by distributing k− r literals into
h(C) and distributing the remaining C−(k−r) literals into r unset bits in h(C).

This can be done in SC
k,r = r!(k−r)!

(
C

C−(k−r)
){

C−(k−r)
r

}
≥2 ways. If r = 0, we let{

p
r

}
≥2 = 1. Let ‖h(C)‖ = k1, ‖h(D)‖ = k2, ‖u(C)‖ = r1 and ‖u(D)‖ = r2. There

are
(
m
k2

)
choices for the subset h(D) in an m-bit signature. For each choice,

we can distribute the k1 bits of h(C) in
(
k2

k1

)
ways such that h(C) ≤ h(D).

There are then
(
k1

r1

)
choices for u(C) ≤ h(C) and

(
k2−r1
r2−r1

)
choices for distributing

the remaining r2 − r1 bits of u(D) to lie outside of u(C). In summary, there
are SC

k1,r1
SD
k2,r2

(
m
k2

)(
k2

k1

)(
k1

r1

)(
k2−r1
r2−r1

)
pairs (C,D) with ‖h(C)‖ = k1, ‖h(D)‖ =

k2, ‖u(C)‖ = r1 and ‖u(D)‖ = r2 satisfying HD
C ∩ UD

C . It remains to establish
the limits of the summation. Clearly, k1 ∈ [0,min{m,C}] and 0 ≤ r1 ≤ k1. When
r1 = 0, however, C must distribute into k1 distinct bits, which can only happen
if C ≤ m. Furthermore, for ‖u(C)‖ = r1 there must be at least (k1 − r1) +
2r1 = k1 + r1 literals to distribute, and so I[C ≤ m] ≤ r1 ≤ min{k1, C − k1}.
The limits for k2 and r2 are similar, except that k2 ≥ k1 and r2 ≥ r1. We
have k1 ≤ k2 ≤ min{m,D} and max{r1, I[D > m]} ≤ r2 ≤ min{k2, D − k2}.
Summation over k1, k2, r1 and r2 yields the desired probability.

I plot the probability of Proposition 9 in Figure 3 (right) for m = 64 and
clauses in the range 2 ≤ C,D ≤ 800. The diagonal line (white) shows the
boundary where |C| = |D| and in particular C * D in the upper triangle,
because |C| > |D|.

We see immediately that a signature-based test will most certainly fail if
|D| > 500. As we discussed above, this is due to the clause signatures filling up
for large clauses, i.e., ‖h(C)‖ → m and ‖u(C)‖ → m as |C| → 400. This effect
persists into the upper triangle, because although Pr[C * D] = 1 if |C| > |D|,
the signature-based test fails for |D| > 500 (see the white area in the upper
triangle of Figure 3 (right)).

For clauses in the range 100 ≤ |D| ≤ 500, Proposition 9 predicts that a
signature-based test is indeed effective, unless |C| � |D|. This is within expec-
tation, since the region |C| � |D| houses most clauses with C ⊂ D.

For clauses in the range |C| ≤ 20 and |D| ≤ 200 (bottom left corner of Figure
3 (right)), Proposition 9 predicts that most clauses with C * D are detectable
from their signatures.

Hash-based Preprocessing and Inprocessing Techniques in SAT Solvers 11

2 10 20 30 40 50
D

2

10

20

30

40

50

C

Pr[|h(C) & h(D)| = 0]

2 200 400 600 800
D

2

200

400

600

800

C

Pr[|h(C) & ∼ h(D)| ≠ 0∨ |u(C) & ∼ u(D)| ≠ 0]

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3. The probabilities of Proposition 8 (left) and Proposition 9 (right).

Lastly, let us analyse the corresponding probability for non-tautological re-
solvent detection from Proposition 3.

Proposition 10. Let h ∈ H, l ∈ C and l ∈ D. Then

Pr[u(C) &u(D) &h(l) = 0 and h(C) &h(D) = h(l)]

=
1

mC+D−2

min{C−1,m}∑
k=1

(
C − 1

k

){
C − 1

k

}
k!(m− k)D−1.

Proof. Let UD
C and HD

C be the events u(C) &u(D) &h(l) = 0 and h(C) &h(D) =
h(l) respectively. Since l ∈ C and l ∈ D we have that UD

C ⇐⇒ h(C\{l}) &h(D\
{l}) &h(l) = 0. We also have HD

C ⇐⇒ h(C) &h(D) &∼h(l) = 0 ⇐⇒ h(C \
{l}) &h(D \ {l}) &∼h(l) = 0. Combining these, we find that UD

C ∧ HD
C ⇐⇒

h(C \ {l}) &h(D \ {l}) = 0. Applying the results of Proposition 8 on the sets
C \ {l} and D \ {l} yields the desired probability.

The probability of Proposition 10 is two literals more forgiving than Propo-
sition 8. Unfortunately, it still confirms that testing non-tautological resolvency
from clause signatures is ineffective if |C| > 10 and |D| > 10 (see Figure 4
(top-left)).

Verifying that C is not a blocked clause from the signatures h(C), u(C) (lines
5-8 of Algorithm 2) amounts to finding a clause D ∈ O(l) satisfying Proposition
3. The probability that at least one non-tautological resolvent in the set O(l) is
found can be computed as follows.

Proposition 11. Let h ∈ H and l ∈ C. Then

Pr[(u(C) &u(D) &h(l) = 0 and h(C) &h(D) = h(l)) for some D ∈ O(l)]

= 1−
∏

D∈O(l)

1− 1

mC+D−2

min{C−1,m}∑
k=1

(
C − 1

k

){
C − 1

k

}
k!(m− k)D−1

 .

12 Henrik Cao

Proof. Let ED
C be the event u(C) &u(D) &h(l) = 0 and h(C) &h(D) = h(l).

Pr
[
∃DED

C

]
= 1− Pr

[
∀DED

C

]
= 1−

∏
D∈O(l)

Pr
[
ED

C

]
= 1−

∏
D∈O(l)

(1− Pr[ED
C]),

where ∃ and ∀ are the existential and universal quantifiers over the set O(l).
Plugging in the probability from Proposition 10 gives the result.

2 25 50 75 100
D

2

25

50

75

100

C

Pr[ED
C]

2 25 50 75 100
D

2

25

50

75

100

C

1− (1− Pr[ED
C])3

2 25 50 75 100
D

2

25

50

75

100

C

1− (1− Pr[ED
C])10

2 25 50 75 100
D

2

25

50

75

100

C

1− (1− Pr[ED
C])25

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 4. Proposition 10 (top-left). Proposition 11 for |O(l)| = 3 (top-right). Proposi-
tion 11 for |O(l)| = 10 (bottom-left). Proposition 11 for |O(l)| = 25 (bottom-right).

Figures 4 (top-right), (bottom-left) and (bottom-right), plot the probability
of Proposition 11 for occurrence lists of size |O(l)| = 3, 10, 25 respectively. This
example is somewhat artificial, since every clause C ∈ O(l) is forced to be equal
in size. The benefits of Proposition 11 compared to Proposition 10, however,
should be apparent: Finding a counterexample in a larger list is more likely
than finding one from a smaller one. In practice, the probability of certifying
non-blockedness using clause signatures is greatly enhanced if at least one of the
clauses in C ∪ O(l) is small.

Hash-based Preprocessing and Inprocessing Techniques in SAT Solvers 13

5 Evaluation

By way of demonstrating the effectiveness of the signature-based methods de-
veloped in Section 3, I implemented Algorithms 1-3 in the popular C++ pro-
gramming language4 and ha as the underlying hash function. My subsumption
algorithm (Algorithm 1) is based on a literal marking scheme and discussions
in [3]. It seemed natural to test strengthening candidates in conjunction with
subsumption, so I modified my implementation to test for both properties. My
implementations of the BCE (Algorithm 2) and BVE procedures (Algorithm 3
with bound = 16) utilize the same literal marking scheme to test for tautological
resolvents. To maintain the efficiency of these simplification techniques on large
formulae, it was necessary to eliminate tests on gargantuan clauses and occur-
rence lists, so as to limit both memory and computational resources. I therefore
chose to skip checks on clauses |C| > 104 and occurrence lists |O(l)| > 104.

The benchmark I used comprises the full Main track dataset of the 2020 SAT
competition [2], which includes a variety of formulae with 102−108 clauses. Each
method was run independently as a preprocessing technique, with and without
a signature-based check, on all 400 formulae. No timeout or randomness was
involved, so as to force the runs to be as identical as possible. Furthermore,
no actual simplification was performed; only the number of simplifications was
counted. The times measured are the total run-time (including construction of
relevant data structures, e.g., occurrence lists), but excluding time spent on
reading input formulae. Computation was done on an AMD Ryzen

TM
9 3900X

and 32GB of RAM.
Figure 5 plots the resulting execution time gain 100(tbase − thash)/tbase for

Algorithms 1-3, where thash and tbase measure the total time spent by the algo-
rithm with signature-based checks enabled and disabled respectively. I ordered
the execution times in Figure 5 in ascending order for better visualization, there-
fore the dataset indices between subplots (top),(middle) and (bottom) do not
necessarily coincide.

Figure 5 (top) shows a promising gain in execution time for the Subsumption
procedure (Algorithm 1) when signature-based checks were enabled. Especially
for large formulae, the signature-based checks were able to avoid a large por-
tion of clause accesses. The accumulative time spent on the benchmark was 601
seconds with signature-based tests enabled and 2451 seconds without.

Figure 5 (middle) shows that BCE (Algorithm 2) maintains an almost 20%
gain in efficiency on the benchmark when signature-based methods were enabled.
The difference in execution time was especially large for formulae with larger
clause-to-variable ratios, which aligns with our analysis in Section 4 that clause-
blockedness is easier to refute for large occurrence lists. The accumulative time
spent on the benchmark was 154 seconds with signature-based tests enabled and
232 seconds without.

Figure 5 (bottom) verifies that BVE (Algorithm 3) does not consistently
benefit from the signature-based approach. Upon closer analysis, this was in part

4 Code available at www.github.com/incudine/sat2021

14 Henrik Cao

50 100 150 200 250 300 350 400
Index

−50
−25

0
25
50
75

100

G
ai
n
(%

)

Subsumption
100tbase− thash

tbase

50 100 150 200 250 300 350 400
Inde

−50

0

50

100

G
ai
n
(%

)

Blocked clause elimination
100tbase− thash

tbase

50 100 150 200 250 300 350 400
Inde

−150

−100

−50

0

50

100

G
ai
n
(%

)

Bounded variable elimination
100tbase− thash

tbase

Fig. 5. The gain in execution time 100(tbase − thash)/tbase for Algorithm 1 (top),
Algorithm 2 (middle) and Algorithm 3 (bottom) for each formula.

Hash-based Preprocessing and Inprocessing Techniques in SAT Solvers 15

50 100 150 200 250 300 350 400
Index

0.0

0.2

0.4

0.6

0.8

1.0
#
Po
sit
iv
e
/ #

To
ta
l c
he

ck
s

Signature test ratio

Subsumption
BCE
BVE

Fig. 6. The fraction of positive signature checks for Algorithms 1-3.

due to the extra time spent constructing the larger occurrence lists to include
the clause signatures. The accumulative time spent on the benchmark was 116
seconds with signature-based tests enabled and 96 seconds without.

Lastly, Figure 6 plots the ratio of positive signature-based checks divided
by the total number of checks for Algorithms 1-3 (note that I have once again
ordered the ratios, wherefore indices between different algorithms do not neces-
sarily coincide). Importantly, it shows the fraction of explicit checks which could
be avoided by testing the clause signatures. Figure 6 is in close agreement with
the experimental findings of Figure 5, as well as the theoretical analysis of Sec-
tion 4. In particular, explicit testing of subsumption/blockedness properties for
a large number of clauses arising in practical applications can be avoided using
signature-based methods.

6 Conclusions

I have discussed the use of hash-based methods using clause signatures and their
application in Subsumption, BCE, and BVE. The theoretical findings of Section
4 promote their use in Subsumption and BCE, but not in BVE. This was verified
in the evaluation, which shows a significant decrease in execution time for the
Subsumption and BCE algorithms, especially on larger formulae.

In addition to fast pre-checking of clause relations, implementations of
signature-based methods hold the advantage of not having to access clause con-
tainers. This seems to be the most salient factor in reducing runtime, although
it comes at the cost of having to construct and maintain larger occurrence lists
for storing clause signatures.

References

1. Bakhtiari, S., Safavi-Naini, R., Pieprzyk, J., et al.: Cryptographic hash functions:
A survey. Tech. rep., Citeseer (1995)

16 Henrik Cao

2. Balyo, T., Froleyks, N., Heule, M.J., Iser, M., Järvisalo, M., Suda, M.: Proceedings
of sat competition 2020: Solver and benchmark descriptions (2020)

3. Bayardo, R.J., Panda, B.: Fast algorithms for finding extremal sets. In: Proceedings
of the 2011 SIAM International Conference on Data Mining. pp. 25–34. SIAM
(2011)

4. Eén, N., Biere, A.: Effective preprocessing in sat through variable and clause elim-
ination. In: International conference on theory and applications of satisfiability
testing. pp. 61–75. Springer (2005)

5. Han, H., Somenzi, F.: On-the-fly clause improvement. In: International conference
on theory and applications of satisfiability testing. pp. 209–222. Springer (2009)

6. Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: International
conference on tools and algorithms for the construction and analysis of systems.
pp. 129–144. Springer (2010)

7. Järvisalo, M., Heule, M.J., Biere, A.: Inprocessing rules. In: International Joint
Conference on Automated Reasoning. pp. 355–370. Springer (2012)

8. Jovanović, D., Janičić, P.: Logical analysis of hash functions. In: International
Workshop on Frontiers of Combining Systems. pp. 200–215. Springer (2005)

9. Korhonen, T., Berg, J., Saikko, P., Järvisalo, M.: Maxpre: an extended maxsat pre-
processor. In: International Conference on Theory and Applications of Satisfiability
Testing. pp. 449–456. Springer (2017)

10. Legendre, F., Dequen, G., Krajecki, M.: Encoding hash functions as a sat problem.
In: 2012 IEEE 24th International Conference on Tools with Artificial Intelligence.
vol. 1, pp. 916–921. IEEE (2012)

11. de Mare, M., Wright, R.N.: Secure set membership using 3sat. In: International
Conference on Information and Communications Security. pp. 452–468. Springer
(2006)

12. Mironov, I., Zhang, L.: Applications of sat solvers to cryptanalysis of hash func-
tions. In: International Conference on Theory and Applications of Satisfiability
Testing. pp. 102–115. Springer (2006)

13. Nejati, S., Liang, J.H., Gebotys, C., Czarnecki, K., Ganesh, V.: Adaptive restart
and cegar-based solver for inverting cryptographic hash functions. In: Working
Conference on Verified Software: Theories, Tools, and Experiments. pp. 120–131.
Springer (2017)

14. Wang, J., Shen, H.T., Song, J., Ji, J.: Hashing for similarity search: A survey. arXiv
preprint arXiv:1408.2927 (2014)

15. Wang, J., Zhang, T., Sebe, N., Shen, H.T., et al.: A survey on learning to hash.
IEEE transactions on pattern analysis and machine intelligence 40(4), 769–790
(2017)

16. Weaver, S., Heule, M.: Constructing minimal perfect hash functions using sat tech-
nology. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 34,
pp. 1668–1675 (2020)

17. Weaver, S.A., Ray, K.J., Marek, V.W., Mayer, A.J., Walker, A.K.: Satisfiability-
based set membership filters. Journal on Satisfiability, Boolean Modeling and Com-
putation 8(3-4), 129–148 (2012)

18. Wotzlaw, A., van der Grinten, A., Speckenmeyer, E.: Effectiveness of pre-and in-
processing for cdcl-based sat solving. arXiv preprint arXiv:1310.4756 (2013)

19. Zhang, L.: On subsumption removal and on-the-fly cnf simplification. In: Interna-
tional conference on theory and applications of satisfiability testing. pp. 482–489.
Springer (2005)

