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Abstract. Many energy time series captured by real-time systems con-
tain errors or anomalies that prevent accurate forecasts of time series
evolution. However, accurate forecasting of load time series and fluctu-
ating renewable energy feed-in as well as subsequent optimization of the
dispatch of controllable generators, storage and loads is crucial to en-
sure a cost-effective, sustainable and reliable energy supply. Therefore,
we investigate methods and approaches for a system solution that auto-
matically detect and replace anomalies in time series to enable accurate
forecasts. Here, we introduce an hybrid anomaly detection system for
energy consumption time-series, which consists of two different neural
networks (Seq2Seq and Auto-encoder) and two more classical approaches
(Entropy, SVM-Classification). This network is able to detect different
types of anomalies, namely outliers, zero points, incomplete data, change
points and anomalous (parts of) time series. These types are defined for
the first time mathematically. Our results show a clear advantage of
the hybrid modelling approach for detecting anomalies in previously un-
known energy time series compared to the single approaches. In addition,
due to the generalization capability of the hybrid model, our approach
allows very good estimation of energy values without requiring a large
amount of historical data to train the model.

Keywords: Anomaly detection, Energy consumption, Time series pro-
cessing, Seq2Seq, Autoencoder hybrid neural network

1 Introduction

Many energy data sets of real-time systems include errors or anomalies, which
hinders an appropriate prediction. However, the prediction and the following
optimization of energy load, generation and storage is crucial to prevent black-
outs or brownouts due to unbalanced fluctuations in the energy grid. [9] For



2 Rippstein,Lenk,Kummerow,Richter,Klaiber,Bretschneider

critical infrastructures, e. g. the energy sector, new challenges arises due to the
increasing amount of data to handle, the increasing automation level and pos-
sible threats by cyber attacks. Thus, resilience, i. e., to be prepared for and to
prevent threats, to protect systems against them, to respond to threats and to
recover from them, became more and more important.
Therefore, we study a system, which automatically detects and replaces anoma-
lies in time series to enable accurate predictions. Thereby, we define anomalies as
data, which do not belong to the normal characteristics of time series, whereas
errors are normal or anomalous parts of time series, which are known to be er-
roneous due to external information, e. g., information of fallen power pole.
To classify anomalies, we distinguish outliers, zero points, incomplete data,
change points and anomalous (part of) time series similarly to [3, 10], but we
concertised their definitions mathematically (see section 2). To study our de-
tection methods, we manipulated real, highly accumulated energy consumption
time series, which were manually verified and corrected [1].
An example is shown in figure 1 in which a part of such an accumulated en-

Fig. 1. Example of an anomalous time series including outliers with different anomaly
delta.

ergy consumption time series [1] (green) is shown. A classical approach to detect
anomalies is to calculate the difference between a prediction and an observa-
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tion [15]. This difference is called ”Surprise” by Goldberg et al. [4] and is calcu-
lated as the difference between the true and the observed values. Unfortunately,
this approach is only applicable if a precise prediction can be calculated, which
in case of a regression needs sufficient amount of data. Alternatively, neural net-
works show good results using unknown data, either by default or by techniques
such as domain adaption [16].
Three approaches to detect anomalies in energy data sets were suggested by
Zhang et al. [19] namely using Shannon entropy, classification or a regression ap-
proach. For unknown data sets, the regression approach is obviously inadequate
since the amount of training data is too small. However, using the well-known
Shannon entropy from information theory [12] to measure the surprise or un-
certainty of data points in a time series, it is possible to detect anomalous data
points in previously unknown time series to a limited amount. The Entropy H
is calculated as:

H(x) =

n∑
i=1

p(xi)logbp(xi) ,

where p is the probability of the energy consumption x. We also have b as the
base of the logarithm. The two common used bases are 10 or 2 [12]. However,
this measured accuracy and precision is not as high as a regression approach.
An neural network approach can be created by using Seq2Seq-Networks, which
are able to predict values of Time-Series [5] [6]. Thus, we can classify by using
the surprise.
Autoencoders otherwise showing strong in the reconstruction of data in general
[14] and also in time-series [11]. Hence, it can also be used to evaluate a time-
series by calculating a surprise based on the reconstruction error. Furthermore,
support vector machines (SVM) have a strong theoretical foundation and are
fast implementable to classify data. Yet, SVM have some disadvantages, like
overfitting and the need for labelled data, which are the common weaknesses of
supervised learning. Additionally, SVM needs good kernel (function) to separate
between classes [17]. i. e., normal data and anomalies
To overcome the limitations and drawbacks of these approaches a hybrid model
was developed for all defined anomalies.

2 Our Definitions

In general we consider a time series X as a sequence of n-tupels

((c1, t1), . . . , (cn, tn)) .

The discussed anomalies are defined in the following:

Definition 1: Noise Data

Noise Data is either incomprehensible for computers or unstructured
data. These can be logical errors or inconsistent data [3]. e.g. String in
Databases, not detected bit flips.
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Definition 2: Outlier

A time-series X∗ with Outlier can be created by modifying tuples of X
by multiply ci with factor oi ∈ R+

0 \ [0.9, . . . , 1.1] to the left elements of
the chosen tuples were the predecessor and successor of the single tuples
are not modified, i.e.

(oi ∗ ci, ti),where as i ∈ {2, . . . , n− 1}

Then the modified tuple is an Outlier.

Definition 3: Zero Point

Based on definition 2 an Outlier is called zero point if the modifying
factor oi is 0 instead.

Definition 4: Change Point

For given time series X is 2 ≤ m ≤ n − 2. Then a time-series X∗ with
Change Points can be created by replacing a consecutive m-sub-sequence
of X by oi ∈ R+

0 . Additionaly, the first modifier oj of the sub-sequence,
has to satisfy oj /∈ [0.9, . . . , 1.1], to the left elements of the chosen tu-
ples were the predecessor and successor of this m-sub-sequence are not
modified, i.e.

(oi ∗ ci, ti), where as i ∈ {j, . . . , j + m− 1}, |oi − 1| > |oi+1 − 1| and:

oi > 1 and oi+1 > 1 or

oi < 1 and oi+1 < 1, ∀i ∈ {j, . . . , j + m− 1}.

The points of this consecutive m-sub-sequence are called Change Points.

Definition 5: Incomplete data

For given time series X is 2 ≤ m ≤ n− 2. A time-series X∗ with Incom-
plete Data can be created by replacing a consecutive m-sub-sequence of
X by using factors oi ∈ R+

0 \ [0.9, . . . , 1.1], with oj being the first modifier
of the m-sub-sequence and oj = oi, where i ∈ {j, . . . , j + m − 1}, to the
left elements of the chosen tuples were the predecessor and successor of
this m-sub-sequence are not modified, i.e.

(oi ∗ ci, ti), where as i ∈ {j, . . . , j + m− 1}

The points of this consecutive m-sub-sequence are called Incomplete
Data.
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Definition 6: Anomalous time series/Outlier Type B

For given time series X is 2 ≤ m ≤ n − 2. A anomalous time series
X∗can be created by replacing a consecutive m-sub-sequence of the n-
sequence X by multiplying factors oi ∈ R, with oj being the first modifier
of the m-sub-sequence and oi 6= 1, where i ∈ {j, . . . , j + m − 1}, to the
left elements of the chosen tuples were the predecessor and successor of
this m-sub-sequence are not modified, and where the sub-sequence is nor
Incomplete Data or Change Point i.e.

(oi ∗ ci, ti), where as i ∈ {j, . . . , j −m− 1}

The points of this consecutive m-sub-sequence are called Incomplete
Data.
Information: Anomalous time series are similar to a set of Outliers,
therefore we decided to use the name Outlier Type B.

3 Our hybrid model

Our developed architecture is shown in figure 2.
It contains of the two previously mentioned neural networks, an Autoencoder

and a Seq2Seq network and the Shannon Entropy and SVM as a more classical
approach.
Autoencoder are able to reconstruct time-series to find anomalous data points [2].
Thus, autoencoder can be trained to reconstruct a time series and such a recon-
structed time series can be compared with the original time series using the
Mean Squared Error (MSE) or alternatives like RMSE to classify them.
We improved this approach by calculating the (squared) difference of every sin-
gle data point and using this as input for a convolutional neural network (CNN),
which is trained together with the autoencoder. The training process utilizes loss
weight to comply with the fact, that an good classification is more important
than a good reconstruction. To evaluate a whole time series we used a rolling
window (standard size 24 time stamps) to evaluate each single datapoint with
the single autoencoder.
Additionally, we created a Seq2Seq prediction network similar to the network by
Hwang et al. [6]. Seq2Seq networks are well known for their strong capabilities
in the field of natural language processing [8].
The Seq2Seq networks using the unrolling properties of RNN [13] to evaluate a
input. Again, a full time-set evaluation was be done using a rolling window.
By combining the two classical approaches (entropy and SVM) and the two neu-
ral networks (Autoencoder and Seq2Seq), a hybrid model was built (as shown
in fig. 2), which takes advantage of each of the single approaches. The hybrid
network in fig. 2 itself is a SVM, which evaluates the different results and com-
putes a more precise final decision. Decision trees or a neural network could be
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Fig. 2. Our Solution

used as well. These approaches have shown similar or even better scores in other
tasks [7]. The next step was used to substitute all detected anomalies by using
either interpolation, extrapolation or an Autoencoder, depending which of those
replacement algorithm is suited best for a given time-series.

4 Results

Before we show the hybrid results, we explain some benefits of our hybrid solu-
tion.
In the figure 3 we plotted the MSE of anomalies and of normal data after re-

construction by the Autoencoder as orange and blue lines, respectively. Here,
anomalies have a MSE of approx. 1.0, whereas for normal data, it fluctuates
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Fig. 3. MSE output of the auto-encoder

around 0.1. A classification based on the plotted MSE was done by using, e.g,
0.4 as the limit for normal data. This approach yields F1-Scores around 0.8, but
some data points are wrongly classified.
Here, we developed a different approach based on CNN as described in section
3. Instead of using the MSE, we used the squared error in a CNN for each sin-
gle data point which improved the F1-score. However, the reconstruction result
of the autoencoder is not longer usable for replacing the abnormal data, since
both networks, autoencoder and CNN, are trained together focusing on MSE for
classification. Thus, it will yield a large difference between MSE of normal and
abnormal datapoints but not necessarily anomalies will have a larger MSE.
The Seq2Seq network used the introduced surprise calculating approach. There-
fore, the network classifies data by building an internal confidence window [18].
Additionally, we used a similar CNN based approach as for the auto-encoder.
This approach showed, that the prediction accuracy of a Seq2Seq network de-
pends on the placement of the data-point within the sample window, i. e., the
closer to the window borders the worser the prediction accuracy. For better clas-
sification results, we combine the different anomaly detection results for a single
datapoint, i. e., 24 decisions for each datapoint due to a standard rolling window
size of 24. The result of a (part of a) energy consumption time series is shown in
figure 4 as green line. In this figure, the time-series is shown as red line and the
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Fig. 4. Seq2Seq Output

time stamp of generated anomalies (as a boolean index in the (not-shown) range
between 0 and 1). It is observable, that abrupt changes in the time-series results
in an increased detection rate by the Seq2Seq network as desired. Thus, points
with a higher surprise are detected more often then normal data. This Seq2Seq
worked to a certain degree as seen in figure 4. Here, the network detected a nor-
mal spike on datapoint 30 as outlier, but detected the real outlier only six times.
This behaviour is explainable because the network learned that outliers are al-
ways single points and, thus, it is not capable to distinguish correctly between
the two datapoints with high surprise. After adding change points or incomplete
data to our train set, this behaviour was not observed anymore. Unfortunately,
Seq2Seq networks, trained only with long anomalies, always detected at least 3
points as anomalies in test with single-point outliers. Our approach of deciding
upon majority votes, can be used to decrease the amount of false positive or
false negative. The hybrid solution is trained on using a higher or lower limit
depending on the Seq2Seq Networks.
It is notable, that the capability of the Seq2Seq network to generalise is not as
high as in case of the Autoencoder. Therefore, only inter-domain tests can be
well detected by the Seq2Seq network. A domain transfer approach is highly
recommended to get Seq2Seq networks, which can be usable for a larger variety
of data.
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So far, we have shown two approaches for detecting anomalies separately, yield-
ing reasonable results, but still improvable ones.
In consequence, this leads to our hybrid network, which combines both ap-
proaches. Before presenting the results, we want to emphasise that the achieved
results, we trained our hybrid model was trained with manipulated energy con-
sumption data from Germany and tested it with manipulated consumption data
from Austria. So, the evaluation was done with unknown data. The Results for
the Germany consumption test set showed slightly better results. An Example
of the F1-Score for our Networks and the hybrid network can be found in table
1 and in the figure 5. Here, we were able to reach F1-Scores for outliers above
0.99. Additionally, we studied the influence of the ratio between normal and ab-
normal values, here called anomaly delta. As shown in table 1, even anomalies
with a deviation of only 5% are detectable by the presented hybrid model. The
accuracy for the substitution of outliers is already satisfying as seen in fig. 5 by
comparing the real (broken yellow line) and corrected data (black solid line).
The substitution was done with an RBF Interpolation.
If domain adaption techniques were used, the F1-Score of the hybrid solution

Fig. 5. Example of the Hybrid Solution with anomaly delta of 10%

was decreased by 0.01.
Also the results of the other anomaly types are shown in table 2.
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Anomaly Delta Hybrid Result F1-Score Type

0,848 Auto-Encoder
10% 0.9976

0,899 Seq2Seq

0,748 Auto-Encoder
7,5% 0.9948

0,812 Seq2Seq

0,564 Auto-Encoder
6% 0.9917

0,845 Seq2Seq

0,567 Auto-Encoder
5% 0.9908

0,904 Seq2Seq
Table 1. F1-Scores for different Anomaly Deltas

Anomaly type Autoencoder Seq2Seq Hybrid network

Outlier 0.5715 0.8403 0.9941

Incomplete Data 0,7970 0.6209 0.8805

Change Points 0,8170 0,7623 0.9622

Table 2. Comparison of different anomaly types for a delta of 10%

5 Summary

We presented a hybrid model approach that uses two classical mathematical ap-
proaches and neural networks to detect anomalies and substitute them with an
appropriate algorithm. The results showed clear advantages of the hybrid model
for detecting anomalies in previously unknown energy time series compared to
the single approaches for outliers, but also for other types of anomalies. In ad-
dition, due to the generalization capability of the hybrid model, this approach
allows very good estimation of energy values without requiring a large amount
of historical data to train the model.
Our anomaly definitions were defined mathematically based on examples of
anomalies and will be adapted to better reflect statistical properties of time
series and their anomalies in future studies.
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