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Abstract: Our chloroplastic robots are able to passively move toward a light source in a reactive manner. In this paper, we
apply the swarm robotic system to a task that requires the chloroplastic robots to cover the entire environment including
shadow areas. In order for the robots to achieve the covering task, we propose a global path of the light source. The light
source moving along the path illuminates shadow areas. Thus the robots are able to cover the entire environment. The
global path is generated in consideration of the formation of robots performing the task. Through simulation experiments,
the proposed path is compared to others generated for the traveling salesman problem, TSP, and evaluated in terms of the
task efficiency and performance. Finally, we discuss the effectiveness of the global path for the covering task.
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1. INTRODUCTION
Area covering is an important task. The task is appli-

cable to mowing, snow shoveling, sweeping, etc. For the
covering task, we use multiple mobile robots. In the field
of swarm robotics, emerging behaviors from the local
interaction among robots have been presented [1]. The
authors have proposed a swarm robotic system inspired
by the collective behavior of organelles, namely, chloro-
plasts [2]. Chloroplasts in plant cells move toward a light
source while escaping shadows in a reactive manner. This
property is called phototaxis. Consequently, the behav-
ior similar to the chloroplasts has emerged in the swarm
robotic system, as shown in Fig. 1.

Light sensors

Range sensors

0
.5

2
 [

m
]

(a)Chloroplastic robot

Light source
Chloroplastic robots

Shadow areas

(b)Collective behavior of robots

Fig. 1 Swarm robotic system

Fig. 1(a) shows the prototype of the actual chloroplas-
tic robot. The robot has eight range and light sensors, re-
spectively. By using the light sensors, the robots are able
to move toward a light source while escaping shadows.
The range sensor allows the robot to detour around the
obstacle for the collision avoidance. In Fig. 1(b), three
chloroplastic robots are sweeping the environment from
the right side toward the left light source.

The robots successfully swept a part of the environ-
ment without obstacles. The swarm robotic system, how-
ever, still suffers from environments with obstacles and a
fixed light source as shown in Fig. 2.

Fig. 2(a) shows a simulation environment. In this en-
vironment, eight robots are vertically arranged to the light
source. Since the light source is fixed at a destination in
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Fig. 2 Top view of simulation environment

the environment, the shadow areas due to the obstacles
are also fixed. In this case, the robots are able to cover
the illuminated white area and pass the narrow area be-
tween the obstacles as can be seen in Fig. 2(b). On the
other hand, the shadow areas remain uncovered. Further-
more, the initial formation suitable for the covering task
is misaligned after the robots passed the narrow area.

In order for the robots to keep the initial formation, we
have proposed a movement model of the light source [3].
In this paper, therefore, we propose a global path of the
light source. The light source moving along the path illu-
minates shadow areas. Thus the robots are able to cover
the entire environment including shadow areas. Through
simulation experiments, the proposed path is compared
and evaluated in terms of the task efficiency and perfor-
mance. Finally, we discuss the effectiveness of the global
path for the covering task.

2. APPROACH FOR GLOBAL PATH

In stead of a destination, subgoals are arranged all over
the environment. We then generate a global path that
passes through the subgoals. Graph theory based meth-
ods are one of approaches to generate such global paths.
In these methods, subgoal nodes are arranged in an envi-
ronment. The nodes are connected by edges. Finally, a
set of edges is the generated path. In terms of efficiency,
it is necessary to minimize the path length. This bench-



mark has been treated as the traveling salesman problem,
TSP, in the field of optimization.

For the TSP, a large number of exact algorithms and
heuristics have been proposed. As the number of nodes is
increased to more than 20, however, it is difficult to com-
pute the optimal (i.e. minimum) path. In this case, heuris-
tic algorithms are used to compute a suboptimal path in a
reasonable time. Especially, λ-opt [4] is a simple but ef-
fective algorithm for solving the TSP. Furthermore, meta-
heuristics such as genetic algorithm, GA, and ant colony
optimization, ACO [5], have been proposed.

While the TSP solvers minimize the path length, per-
formance of multiple robots for the covering task is not
taken into account. In contrast to the TSP solvers, the
proposed global path is generated in consideration of the
formation of robots performing the task. A light source
moves along the path and visits all the nodes sequentially.
Following the light source, the robots also move along the
path while keeping the formation. This reactive behavior
enables the robots to cover the entire environment.

3. GLOBAL PATH FOR COVERING
TASK

The global path is generated through the following six
steps:
1. rectangle division;
2. segmentation;
3. random node arrangement;
4. segmented paths;
5. candidate path(s); and
6. evaluation.
In the second step, the formation of robots performing
the covering task is taken into account for generating the
global path. In the fifth step, several candidate paths
might be generated in the environment. In the sixth
step, therefore, these paths are evaluated to determine the
global path. Fig. 3 illustrates an example procedure.

Fig. 3(a) is a target environment. A black obstacle
is located in the square. Fig. 3(b) is a result of the first
step. White area in the environment is divided into two
rectangles. Fig. 3(c) is a result of the second step. The
rectangles in Fig. 3(b) are further segmented on the basis
of the width of formation of robots, WR. Fig. 3(d) is a
result of the third step. Nodes are randomly arranged in
the white area. In the fourth step, nodes in each segment
are sequentially connected by edges from the one closest
to a short side toward the opposite side. As a result, a
local path is generated in each segment. In Fig. 3(e),
these are segmented paths. Red nodes in each segmented
path are defined as end nodes.

In Fig. 3(f), one of candidate paths is drawn. First off,
one of two end nodes of a segmented path in Fig. 3(e)
is selected as a start. After that, the other node is con-
nected to the nearest end node of another segmented path
as shown by a dashed edge. This connection process con-
tinues until all the segmented paths are connected. The
other end node of the last segmented path is a goal. Since
the fifth step is repeated according to the number of end
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Fig. 3 Procedure for generating global path (top view)

nodes, the number of candidate paths corresponds to the
number of end nodes. In the sixth step, these candidate
paths are evaluated on the basis of the total length. Fi-
nally, the shortest one is determined as the global path.

4. SIMULATION EXPERIMENT
4.1. Simulation settings

In this experiment, four chloroplastic robots are used.
Each robot has a diameter of 0.3m. Thus the width of the
robots’ formation, WR, is 1.2m. The maximum veloc-
ities are 0.2m/s (light source) and 0.1m/s (robots). The
movement model [3] is applied to the light source. Thus
the velocity vector is v = [vh, vv], where vh and vv rep-
resent the horizontal and vertical components of velocity
to a current subgoal node. These are calculated from Eqs
(1) and (2) as follows:

vh =

{
k1e

σ2−k2
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k1e
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c (σ2 > k3)
, (1)
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where σ2 represents the variance of robots in the vertical
direction to the subgoal node. c is a constant, ω is an an-
gular velocity, and t is a unit time. k1 to k9 are parameters
optimized using the real-coded genetic algorithm [6].

Fig. 4 illustrates three target environments for the cov-
ering task. Each environment is surrounded by a square
wall of 6×6m2.
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Fig. 4 Top view of target environments

In environment 1, there is no obstacle (see Fig. 4(a)).
In environment 2, one obstacle of 1.2×4.8m2 is located
around the center (see Fig. 4(b)). In environment 3,
two obstacles of 1.2×3.0m2 are located around the corner
(see Fig. 4(c)).

In addition to the proposed global path, two other
global paths are generated by using heuristic and meta-
heuristic algorithms, λ-opt and ACO, where λ = 2 and
the number of ants is 200. Nodes are arranged in the same
way in each environment. The number of nodes is 100 in
environment 1, 84 in environment 2, and 76 in environ-
ment 3, to maintain the equal node density.

The covering task is finished when all the robots are
within a radius of 0.9m from the goal node. These global
paths are compared on the basis of the following coverage
rate, C:

C =
Ac

At
× 100, (3)

where Ac represents the total area covered by the robots.
Even if a robot covers an area already covered by another
robot, the covered area is not counted. At represents the
area colored by white in Fig. 4. Therefore, higher value
of C increases the performance for the covering task.

Moreover, the following work rate, W , is used to com-
pare the global paths:

W =
C

t
, (4)

where C represents the coverage rate calculated in Eq.
(3). t represents the work time of robots. Therefore,
higher value of W increases the efficiency.

4.2. Simulation results
In Fig. 5, the three global paths of the light source are

generated. In each result, marks “S” and “G” represent
the start and goal nodes.

Although the same number of nodes was arranged at
the same positions in each environment, different global
paths were generated depending on the methods. In ad-
dition, the start and goal nodes were also different. Com-
pared to the proposed path and 2-opt path, the ACO path
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Fig. 5 Generated global paths

crossed in many places. Thus the ACO resulted in the
longest paths as listed in Table 1.

Table 1 Comparison of total path length (m)

Environment
1 2 3

Proposed path 62.9 48.6 43.9
2-opt path 44.7 43.0 34.7
ACO path 66.2 68.1 49.2

2-opt generated the shortest paths in all the environ-
ments. This result indicates that 2-opt is the most effec-
tive method for the TSP. While the proposed paths were
longer than the 2-opt path, these were shorter than the
ACO paths. ACO is a metaheuristic algorithm for the
TSP, i.e., minimizing the path. Therefore, even though
the proposed paths were generated focusing mainly on
the covering task rather than the optimization, these paths
were practical solutions for the TSP. In consequence, the
work time spent on the covering task was increased in
proportion to the path length as listed in Table 2.

Table 2 Comparison of work time (s)

Environment
1 2 3

Proposed path 401 371 308
2-opt path 344 377 260
ACO path 455 553 573

Both the proposed and 2-opt paths resulted in the
shorter work time than the ACO path. As for the result in



environment 2, it is noticeable that, although the length
of proposed path was longer than the 2-opt path as listed
in Table 1, the work time of robots based on the proposed
path was slightly shorter than the 2-opt path.

Fig. 6 shows the result of covering task. The area
covered by the robots is painted in green. The trajectory
of the light source is indicated by the red dashed line.
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Fig. 6 Covered areas and trajectories

Since the generated paths were different depending on
the methods as shown in Fig. 5, the robots covered dif-
ferent areas. From these results, the coverage rate C and
work rate W are calculated by Eqs. (3) and (4). Through
the result shown in Fig. 7, we evaluate the generated
global paths. The coverage rate is indicated by the bar
graph and the work rate is indicated by the square plot.

Compared to 2-opt, the proposed method resulted in
the better coverage rate in every environment. In environ-
ment 3, ACO resulted in the best coverage rate, whereas
the work rate was the lowest. As can be seen in Figs. 6(g)
to 6(i), compared to the covered area based on ACO, the
proposed method and 2-opt resulted in larger uncovered
areas. In this regard, however, the covered area was fre-
quently overlapped; eventually, the ACO resulted in the
lowest efficiency not only in environment 3 but also in the
other environments, 1 and 2.

From the comparison and evaluation results described
above, the proposed path has
• higher efficiency than the ACO path and
• higher performance than the 2-opt path.
Therefore, the proposed path is most effective for the cov-
ering task.
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Fig. 7 Coverage rate and work rate

5. CONCLUSIONS
In order for chloroplastic robots to cover the entire en-

vironment including shadow areas, we proposed a global
path of a moving light source. The global path was gener-
ated in consideration of the formation of robots perform-
ing the covering task. Through simulation experiments,
the proposed path was compared to other paths gener-
ated by using 2-opt and ACO for the TSP, and evaluated
in terms of the task efficiency and performance. Finally,
the effectiveness of the global path for the covering task
performed by the chloroplastic robots was shown. In fu-
ture works, we will generate the global path in the actual
swarm robotic system as shown in Fig. 1.
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