
EasyChair Preprint
№ 2755

Ready Rescue – A platform which connects
mechanics with customers in need of Roadside
assistance

Yohan Silva

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

February 22, 2020

Ready Rescue – A platform which connects

mechanics with customers in need of Roadside

assistance
Yohan Silva

dept. of Science and Technology

Informatics Institute of Technology (of Affiliation) University of Westminster

Colombo, Sri Lanka

yohan.2016235@iit.ac.lk

Abstract— In this fast-moving world facing a problem where the

traveling vehicle breakdowns will cause a problem to the person and

put the person into a great difficulty to recover from this situation.

This problem might get worse depending on the place of breakdowns

such as being on a highway or an unknown area. The “Ready

Rescue” application will provide the user the ability to select the type

breakdown which has occurred and request the closest mechanics in

the area to come and provide assistance. This application has 2 main

sections which are the User’s portal and the Mechanic’s portal. Both

the users will require to register or login before using the application.

By using GPS, the user could pin the location of the breakdown and

the mechanic could see this location through the application and

proceed there. Considering the Mechanic’s section, the mechanic

could register to the application by selecting the services which he

desires to provide and once he has registered to the system the

mechanic data will be updated in the Firebase database. The

mechanic will not be able to use the application until the application

admin which will be using a web-based system provides access to the

mechanic. The Mechanic will be able to find the location of the user

and provide the user his live location using Google Maps API. By

using the GeoLocation feature with Firebase the mechanic’s and

user’s location could be shared amongst all in Realtime. The User

will receive the Closest Mechanic who is registered for the service

requested. The users can furthermore request a mechanic to become

a favorite and the user could later straightaway request for him.

Furthermore, users could take quizzes on vehicle maintenance

during the time taken by the mechanic to arrive and gain Points that

could be redeemed later.

Index Terms— Google Map API, Realtime Database, Firebase,

List of Favorites, Mechanic Services, Redeemable Points, BI

tools.

I. INTRODUCTION

Vehicles are an essential mode of transportation, and the

demand for vehicles keep on increasing every day. According

to a government statistical survey of All types of vehicles

registered from 2013 to 2017 have increases from 5,203,678 to

7,247,122 (Refer Annexure 3). This is clear evidence that the

demand and the number of vehicles has increased along the

years (Traffic, Department of Motor, 2018). With the use of the

increase in the use of these vehicles it is evident that at some

point a vehicle will go through a breakdown even with utmost

care and proper service it could at least experience a tire

puncture on the road. Therefore, a vehicle breakdown is

unpredictable, and we may never know when or where it would

happen. “A breakdown can be a stressful experience – and no

matter how old or new the car, every car can be susceptible to

a breakdown under the right conditions. While all cars have

their differences there are a few common reasons that all cars

tend to breakdown” (Colorado, 2018) At the face of an actual

breakdown the inefficiency in reach out for roadside assistance

could be considered as the main problem for the drivers.

According to the distribution of top 20 occupations, where

the greatest number of employees quitted from 2015 to June

2017. It is observed that employees who are already working

in this sector are quitting their job which is 440 in 2015, 870 in

2016 and 415 in 2017 (Department of Census and Statistics,

2017). From this we can understand that there is a considerable

number of people leaving the industry. All the people here who

quitted will be unemployed at this situation. Due to this

instability of the availability of vehicle mechanics the mechanic

a customer expects from a service center might not be available

the next day the customer requires a service.

There might be many reasons why a person might drive a

vehicle or be driven by it, some reasons are such as going to

work daily, going grocery shopping, going on trips, etc. at these

instances mainly in driving on trips the user might drive into an

area who is unknow and completely new to. “A person driving

this vehicle is in a new neighborhood where they have no clue

about any repairing centers in their vicinity or they themselves

know nothing about fixing their vehicles.” (Philip, Nayak,

Patel, & Devashrayee, 2018). Accordingly, when a vehicle

breakdown in an unknown region it is hard to contact a

mechanic and request for assistance.

II. METHODOLOGY

All these vehicles broken down at some point on the road will

need roadside assistance to recover from the situation. This is

where roadside assistance comes into action to provide the

broken-down vehicles the assistance they need. Roadside

assistance can come in various meanings, here it is used for the

definition of the assistance provided by a vehicle mechanic to a

customer who is in need in a situation of a vehicle breakdown.

For a customer to a connect with a mechanic Firstly the

mechanic should set his state as working which will trigger a

flag in the firebase database as to true. After that the mechanic

will start receiving requests from the customer. Once a

customer has experienced a vehicle breakdown the person

could select the type of service which are Tire Change, Battery

Jump Start, Lock Smith Service, Fuel Delivery, Engine Issues,

Towing Services. After they have selected the required services

require which they need they could pin their location and

request for a mechanic this request will be updated in the

database. Once a mechanic accepts the request the request The

Customer location will be updated on the mechanic end as well

as the mechanic location will be updated in the customer end

this will be done using the Geo Fire feature which updates the

firebase with the longitude and latitude. The location will be

displayed on the device with the use of Google Maps API and

GPS. Furthermore, a customer could request mechanics to be a

favorite which will be saved in the database. Using the time

taken by mechanics to come to their location customers could

take a game quiz to increase their knowledge on how to

maintain vehicles and service them according to how they score

they will receive points.

Furthermore, other than the customer and the mechanic there

will be a system admin which will be using a web-based system

and will receive all the registrations made by mechanics to a

separate page. Here the admin could verify the mechanic and

grant him access to use the app. There will be a dashboard using

BI tools where the system admin could monitor the progress

and various details about the application.

III. SYSTEM ARCHITECTURE

Fig. 1. System Architecture of the whole system

The mechanic and the user will be using an android platform

for their system and this will share the same database using

firebase. All the registration details, location info. Etc. could be

easily share across the whole platform using a single firebase

project and multiple applications embedded in the project.

Accordingly, the system admin too could refer the same

database and access all the data. Google analytics are embedded

in the firebase itself which will be helpful in providing stats for

the admin.

IV. SYSTEM OVERVIEW

A. Mechanic Section

The Mechanic section will be separate application for the

mechanic to be installed on his device. This separate device will

be linked with the common Firebase project.

1. Login or Register

The First thing a mechanic will be directed to once the

application is loaded is the login page. If the mechanic already

has an account, he could just simply login to the system, if he

does not have an account, he could register for a new account

by selecting the services he wishes to provide. Once the user

registers He will not receive any requests from customers since

he can’t start working. This will be enabled only after the admin

has given access to the mechanic to use the app. This process is

handled by setting a default flag in the DB Authorization as

False. Once the mechanic has registered or logged into the

system the user does not need to login every time, he opens the

app. It will identify that the use has already logged in and direct

to the mechanic’s working page.

mAuth = FirebaseAuth.getInstance();

firebaseAuthListner = new FirebaseAuth.AuthStateListener() {
 @Override
 public void onAuthStateChanged(@NonNull FirebaseAuth
firebaseAuth) {
 FirebaseUser user =
FirebaseAuth.getInstance().getCurrentUser();
 if (user!=null){
 Intent intent = new
Intent(MechanicRegisterActivity.this,
MechanicMapActivity.class);
 startActivity(intent);
 finish();
 return;
 }
 }
};

mAuth.createUserWithEmailAndPassword(email,
password).addOnCompleteListener(MechanicRegisterActivity.thi
s, new OnCompleteListener<AuthResult>() {
 @Override
 public void onComplete(@NonNull Task<AuthResult> task) {
 if(!task.isSuccessful()){

Toast.makeText(MechanicRegisterActivity.this,"sign up
error", Toast.LENGTH_LONG).show();
 }
 else{
 user_id = mAuth.getCurrentUser().getUid();
 DatabaseReference current_user_db =
FirebaseDatabase.getInstance().getReference().child("Users")
.child("Mechanics").child(user_id);
 current_user_db.setValue(true);
 DatabaseReference userName =
FirebaseDatabase.getInstance().getReference().child("Users")
.child("Mechanics").child(user_id).child("Name");
 userName.setValue(name);
 DatabaseReference number =
FirebaseDatabase.getInstance().getReference().child("Users")
.child("Mechanics").child(user_id).child("Phone");
 number.setValue(phone);

 setMechanicServices();

 DatabaseReference auth =
FirebaseDatabase.getInstance().getReference().child("Users")
.child("Mechanics").child(user_id).child("Authorization");
 auth.setValue(false);

 DatabaseReference working =
FirebaseDatabase.getInstance().getReference().child("Users")
.child("Mechanics").child(user_id).child("WorkingState");
 working.setValue(false);

 DatabaseReference customerAccept =
FirebaseDatabase.getInstance().getReference().child("Users")

.child("Mechanics").child(user_id).child("CustomerAccepted")
;
 customerAccept.setValue(false);
 }

2. Mechanic could start working

Once the Mechanic has Logged into the system, he could

set his status as working or stopped working. This is a flag

which is set in the database and on the click of the button the

flag will be set to true or false. Once it is set to true the firebase

“onDataChange()” method will be triggered and it will find if

any customer has requested for a service which the mechanic

has subscribed for. If there is a customer found requesting for a

service, the request would popup on the screen Once the

mechanic accepts the request there is a flag for the mechanic

which is CustomerAccepted in the database which will be set

to true this will prevent from customer requesting a mechanic

who has already accepted a request.

userID =
FirebaseAuth.getInstance().getCurrentUser().getUid();
DatabaseReference workingRef =
FirebaseDatabase.getInstance().getReference().child("Users")
.child("Mechanics").child(userID);
workingRef.addValueEventListener(new ValueEventListener() {
 @Override
 public void onDataChange(@NonNull DataSnapshot
dataSnapshot) {
 if (dataSnapshot.exists()){
 Map<String, Object> map = (Map <String, Object>)
dataSnapshot.getValue();
 workingState =
map.get("WorkingState").toString();
 authorization =
map.get("Authorization").toString();
 startWorking();
 }
 }

3. Mechanic Map

The mechanic map will identify the current location of the

mechanic and using Google Maps API and the GeoFire

function of Firebase the data will be updated to a child in the

database called MechanicAvailable and this child of the DB

will store the longitude and the altitude of the Mechanic. This

location will be used by the customer to locate the closest

mechanic to send the request. Once the mechanic has accepted

the request this will be deleted from the MechanicAvaialble

child and sent to a new child called MecahanicWorking so that

other customers will not be able to see the Mechanic when

requesting for a service. After a service is completed the

customer could rate the mechanic on the service provided.

LocationCallback mLocationCallback = new LocationCallback(){
 @Override
 public void onLocationResult(LocationResult
locationResult) {

 connectDriver();
 for (Location location :
locationResult.getLocations()){
 mLastLocation = location;

 LatLng latlng = new
LatLng(location.getLatitude(),location.getLongitude());

mMap.moveCamera(CameraUpdateFactory.newLatLng(latlng));

mMap.animateCamera(CameraUpdateFactory.zoomTo(15));

 String userID =
FirebaseAuth.getInstance().getCurrentUser().getUid();
 DatabaseReference availableRef =
FirebaseDatabase.getInstance().getReference("MechanicAvailab
le");
 DatabaseReference workingRef =
FirebaseDatabase.getInstance().getReference("MechanicsWorkin
g");

 GeoFire geoFireAvailable = new
GeoFire(availableRef);
 GeoFire geoFireWorking = new
GeoFire(workingRef);

 switch (customerId){
 case "":
 geoFireWorking.removeLocation(userID,
new GeoFire.CompletionListener() {
 @Override
 public void onComplete(String key,
DatabaseError error) {}
 });
 geoFireAvailable.setLocation(userID, new
GeoLocation(location.getLatitude(),
location.getLongitude()), new GeoFire.CompletionListener(){
 @Override
 public void onComplete(String key,
DatabaseError error) { }
 });
 break;

 default:
 if(customerRequestAccepted) {

geoFireAvailable.removeLocation(userID, new
GeoFire.CompletionListener() {
 @Override
 public void onComplete(String
key, DatabaseError error) {}
 });
 geoFireWorking.setLocation(userID,
new GeoLocation(location.getLatitude(),
location.getLongitude()), new GeoFire.CompletionListener() {
 @Override
 public void onComplete(String
key, DatabaseError error) {}
 });
 }
 if (!customerRequestAccepted){

geoFireWorking.removeLocation(userID, new
GeoFire.CompletionListener() {
 @Override
 public void onComplete(String
key, DatabaseError error) {}
 });
 geoFireAvailable.setLocation(userID,
new GeoLocation(location.getLatitude(),
location.getLongitude()), new GeoFire.CompletionListener(){
 @Override
 public void onComplete(String
key, DatabaseError error) { }
 });
 }

4. Mechanic Favorite list

The mechanic favorite list is formed by requests sent by

customers sending requests for mechanics once the mechanic

accepts the request it will be saved child as FavoriteCustomers

the mechanic could always view the list of customers and if

needed remove any when he requires. If the mechanics state is

as working the customer could straightaway request a mechanic

to come and assist the customer.

5. Mechanic Dashboard

The Mechanic dashboard will display important details

which the mechanic will need to identify his progress on how

he has performed during the past services he has provided. This

will include details such as total number of services, total

earnings, most provided service, most demanding area, etc. all

these details will be filterable to the mechanics desire.

B. Customer Section

The Customer section will be separate application for the

customers to installed. This will be linked with the common

Firebase project to be shared with the Mechanics and Admin.

1. Login or Register

The First time a customer opens the application the login

page is displayed. If the customer already has an account, the

user could simply login to the system, if not the user could

register for a new account. Once the mechanic has registered or

logged into the system the user does not need to login every

time, he opens the app. Same as the Mechanic it will identify

that the use has already logged in and direct to the request

services page of the customer.

mAuth.createUserWithEmailAndPassword(email,
password).addOnCompleteListener(CustomerRegisterActivity.thi
s, new OnCompleteListener<AuthResult>() {
 @Override
 public void onComplete(@NonNull Task<AuthResult> task) {
 if(!task.isSuccessful()){

Toast.makeText(CustomerRegisterActivity.this,"sign up
error", Toast.LENGTH_SHORT).show();
 }
 else{
 String user_id =
mAuth.getCurrentUser().getUid();
 DatabaseReference current_user_db =
FirebaseDatabase.getInstance().getReference().child("Users")
.child("Customers").child(user_id);
 current_user_db.setValue(true);
 DatabaseReference userName =
FirebaseDatabase.getInstance().getReference().child("Users")
.child("Customers").child(user_id).child("Name");
 userName.setValue(name);
 DatabaseReference number =
FirebaseDatabase.getInstance().getReference().child("Users")
.child("Customers").child(user_id).child("Phone");
 number.setValue(phone);
 }
 }
});

2. Select Services to be requested

Once a customer needs a service, the user could select the

service or multiple services if needed and add any special notes

such as the severity or any special requirements through this.

Once these details are completed the customer could proceed to

the next part of the request which is selecting the location and

requesting the mechanic to come and assist.

 String userId = FirebaseAuth.getInstance().getUid();

 DatabaseReference tireChange =
FirebaseDatabase.getInstance().getReference("Users").child("
Customers").child(userId).child("Services").child("TireChang
e");
 if (mTire.isChecked())
 tireChange.setValue(true);
 else
 tireChange.setValue(false);

 DatabaseReference batteryChange =
FirebaseDatabase.getInstance().getReference("Users").child("
Customers").child(userId).child("Services").child("BatteryJu
mpStart");
 if (mBattery.isChecked())
 batteryChange.setValue(true);
 else
 batteryChange.setValue(false);

 DatabaseReference lockSmithService =
FirebaseDatabase.getInstance().getReference("Users").child("
Customers").child(userId).child("Services").child("LockSmith
Service");
 if (mLockSmith.isChecked())
 lockSmithService.setValue(true);
 else
 lockSmithService.setValue(false);

 DatabaseReference FuelDelivery =
FirebaseDatabase.getInstance().getReference("Users").child("
Customers").child(userId).child("Services").child("FuelDeliv
ery");
 if (mFuel.isChecked())
 FuelDelivery.setValue(true);
 else
 FuelDelivery.setValue(false);

 DatabaseReference EngineIssues =
FirebaseDatabase.getInstance().getReference("Users").child("
Customers").child(userId).child("Services").child("EngineIss
ues");
 if (mEngine.isChecked())
 EngineIssues.setValue(true);
 else
 EngineIssues.setValue(false);

 DatabaseReference towingServices =
FirebaseDatabase.getInstance().getReference("Users").child("
Customers").child(userId).child("Services").child("TowingSer
vices");
 if (mTowing.isChecked())
 towingServices.setValue(true);
 else
 towingServices.setValue(false);

3. Customer Map

Once the customer selects the services needed the next

step is using Google Maps API, pining the location and sending

the request to the mechanic to accept the request. The request

of the customers location will be updated as a child in the DB

as CustomerRequest. This location will be able to be displayed

by the mechanic when he accepts the request on his map. Once

the mechanic accepts the request and after the mechanic

location is shifted to the child MecahanicWorking the customer

will be able to see the mechanics location on application map.

The mechanism used to find the closest mechanic will be used

by the Geo Location quarries. Here in order to send the request

to the closest mechanic there are few constraints. It will use the

event listener “addGeoQueryEventListener()” and the method

“onKeyEntered()” which will be triggered once a mechanic is

found this by using a radius of 1 which will increment by 1 each

and every time a mechanic is not found. This will consider the

closest mechanic, if the mechanic is working and that he has

not accepted any other customers request. After a service is

completed the customer could rate the mechanic on the service

provided.

private int radius = 1;
private Boolean mechanicFound = false;
private String mechanicFoundID;

private void getClosestMechanic() {

 DatabaseReference mechanicLocation =
FirebaseDatabase.getInstance().getReference().child("Mechani
cAvailable");

 GeoFire geoFire = new GeoFire(mechanicLocation);
 GeoQuery geoQuery = geoFire.queryAtLocation(new
GeoLocation(mPickupLocation.latitude,
mPickupLocation.longitude), radius);
 geoQuery.removeAllListeners();

 geoQuery.addGeoQueryEventListener(new
GeoQueryEventListener() {
 @Override
 public void onKeyEntered(String key, GeoLocation
location) {
 if
(!mechanicFound&&validateMechanicService(key)&&mechanicWorki
ng(key)) {
 mechanicFound = true;
 mechanicFoundID = key;

 DatabaseReference mechanicRef =
FirebaseDatabase.getInstance().getReference().child("Users")
.child("Mechanics").child(mechanicFoundID);
 HashMap map = new HashMap();
 map.put("CustomerID", userId);
 mechanicRef.updateChildren(map);

 services = serviceDetails.dataSnapshot;
 if
(Boolean.parseBoolean(services.child("Mechanics").child(key)
.child("CustomerAccepted").getValue().toString())) {

 getMechanicLocation();
 mRequest.setText("Looking for a
Mechanic");
 }
 else
 getClosestMechanic();
 }
 }

 @Override
 public void onKeyExited(String key) { }

 @Override
 public void onKeyMoved(String key, GeoLocation
location) { }

 @Override
 public void onGeoQueryReady() {
 if (!mechanicFound){
 radius++;
 getClosestMechanic();
 }
 }

 @Override
 public void onGeoQueryError(DatabaseError error) {
}
 });
}

4. Customer Favorites list

The customer favorite list is formed by requesting

mechanics to become of their favorites. If the mechanic accepts

it will be saved child in the customer’s section as

FavoriteMechanics and as FavoriteCustomers in the

mechanic’s section. The customer could always view the list of

mechanics and if needed remove any when it is required. If the

mechanics state is as working the customer could straightaway

request a mechanic.

5. Customer Game and points

The customer could play a game which will be a quiz

regarding vehicle servicing and knowledge on vehicles. The

customer could play this during the time taken to the mechanic

to come to the location of the breakdown. The points earned by

the game will be added to the child points under customer of

the DB. These points could be later redeemable by the customer

when using services later.

C. System Admin Section

The system admin will be able to monitor all the activities of

the mechanics and the customers. The mechanic will have

specific page to see all the registered mechanics, once the

authentication process of the mechanic is complete the admin

could grant access for the mechanic to start providing services.

The system admin could furthermore view all the statistics of

the application such as user count, total revenue, total services

provided, most provided service and many more by using a BI

tool which is power BI.

V. OUTPUT

A. Mechanic Section

Fig. 2. Registration page of Mechanic

Fig. 3. Start and stop working page of Mechanic

Fig. 4. Customer Request Pop Up for Mechanic

Fig. 5. Customer location on Mechanic Map

B. Customer Section

Fig. 6. Customer Registration page

Fig. 7. Customer Service Selection page

Fig. 8. Customer Confirm request location page

Fig. 8. Customer Confirm request location page

VI. FUTURE SCOPE

For future implementations a recombination and suggestion

system will be implemented where if the system identifies that

a user is doing the same repair for a multiple time within a short

period of time, it will suggest the user to give more attention to

the issue. Another improvement will be where the system will

identify the area which the user travels the most and

recommend mechanics to be added to their favorite list.

REFERENCES

• Bhatt, P., Gupta, S., Singh, P., & Dhiman, P. (2017).

Accident and Road Quality Assessment using. IEEE.

• Chowdhury, A., Banerjee, T., Chakravarty, T., &

Balamuralidhar, P. (2015). Smartphone Based Sensing

Enables Automated. IEEE.

• Communit, A. e. (2017). What are the main problems of

mobile apps today. androiddeveloper.

• Department of Census and Statistics. (2017). Labour
Demand Survey. Ministry of National Policies and

Economic Affaires.

• JMango. (2019). Mobile App versus Mobile Website

Statistics: 2018 and beyond.

• KAI, O. J. (2019). DEVELOPING A REAL TIME DIGITAL

EMERGENCY PERSONAL SAFETY APP TO ASSIST IN
EMERGENCY SITUATIONS USING BEST TIME. Kampar:

Universiti Tunku Abdul Rahman.

• Khanapuri, A., D’souza, G., D’souza, S., & Shastri, A.

(2015). On Road: A car assistant application. IEEE.

• Kumar, K., Bose, J., & Kumar, S. (2017). A Generic

Visualization Framework based on a Data. IEEE.

• Mahajan, S., Parekh, M., Patel, H., & Patil, S. (2017). BRB

Dashboard: A Web-based Statistical Dashboard.

• Mullet, J. (2019). Goodyear As-A-Service Project Report.

Williams Honors College, Honors Research.

• Philip, J., Nayak, S., Patel, S., & Devashrayee, Y. (2018).

Mobile Mechanic – An innovative step towards Digital

Automobile Service. IEEE.

• Programiz. (2019). Learn Java (Introduction and Tutorials

to Java Programming).

• Ramamurthy, K., Singh, M., Davis, M., Kevern, J., Klein,

U., & Peran, M. (2015). Identifying Employees for Re-

Skilling using an Analytics-Based Approach. IEEE.

• Traffic, Department of Motor. (2018). Number of motor

vehicles by type. Department of Census and Statistics.

• Wijesiri, L. (2020). Web-based taxi services: Regulation

needed. Daily News.

