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Abstract— Railway being an important mode of 
transportation, it demands highly precise management and 
decision support as it is extensively used for both commuter and 
cargo transportation. Also, it is considered as a salient element in 
smart  city  and  modern  infrastructure  planning.  Railway  track 
diagrams are available with service providers in 
portable document  format  where  a  single  document  consists  of 
information  from  one  station  to  another, including  information 
regarding the  tracks, signals,  crossovers, switches, and their 
location  details  denoted  using  a  standard  set  of  symbols  and 
drawn using a computer aided tool. A Management tool that has 
all details of individual symbols is an important tool for decision 
support systems.  This research focuses on developing an 
automated system to extract this information  based on deep 
learning  techniques.    The  method  consists  of  two  steps:  object 
detection  and  optical  character  recognition  (OCR).  State  of  the 
art Convolutional Neural Network (CNN) architectures are used 
to  perform  object  detection.  They  include  single  stage  detectors 
like YOLOv3 and SSD and two stage detectors like Faster-RCNN 
and  RFCN.  Among  the  selected,  RFCN  resulted  in  the  highest 
accuracy with the minimum loss value of 0.22, compared to other 
methods.  This  is  because  of  RFCNs  architecture catering  small 
object  detection  by  dividing  the  image  into  small  feature  maps. 
Then, OCR is performed on detected Regions of Interest (RoI) to 
extract and store the text in a dedicated database which has the 
information  of  all  the  signs  along  with  their  location  details. 
Image  processing  techniques  such  as  template  matching  and 
Neural Network (NN) based OCR is tested here. Out of these two 
approaches, NN based technique outperformed template 
matching drastically with more than 50% accuracy. 

Keywords—object  detection,  railway  sign  detection,  railway 
management systems, decision support tools 

I. INTRODUCTION  

In  today's  world,  effective  transportation  management 
systems are really important as it directly affects the general 
public and many industries. This can  be vital in many 
aspects for an instance, at a state of emergency in order to 
make feasible decisions not just experience and expert 
knowledge  but  having  decision  support  data  and  tools  are 
important. In the domain of transportation, railway services 
have a significant place around the globe where cargo and 
passenger  trains  are  used  to  transport  goods  and  people 
across  cities.  Unlike  road  transportation,  infrastructure  and 
resources  are  limited  in  this  domain  where  expansion  is 

possible at a higher cost. Therefore, utilizing the resources 
and managing the system effectively is a prior concern.  

There are railway track diagrams available, which 
include  all  the  information  regarding  the  tracks,  signals, 
crossovers, switches and their location details denoted using 
a standard set of symbols and drawn using a computer aided 
tool.  These  diagrams  are  in  a  portable  document  format 
(PDF)  where  a  single  document  contains  the  track  details 
from one station to another. Even though this information is 
available, there is no single database that has all details of 
these individual symbols. This research focuses on 
developing  an  automated  solution  to  use  these  available 
PDF documents and create a database, which includes 
information on individual symbols in order to build a 
decision  support  tool.  The  main  approach  is  to  extract  the 
document into images and use state of the art deep learning 
techniques to detect symbols. 

II. BACKGROUND  

Deep learning approaches based on convolutional neural 
networks (CNN) have been successful in image 
classification and object detection. CNNs have the 
capability  to  extract  localized  features  and  perform  image 
classification better than other neural network architectures. 
Object  detection  aims  at  locating  and  classifying  existing 
objects  in  any  image,  and  labeling  them  with  rectangular 
bounding boxes to show the confidences of existence. 
Object  detection  methods  can  mainly  be  categorized  into 
two types:  (i) Region proposal based (two stage object 
detection), where a two-step process, matches the attentional 
mechanism  of  human  brain  to  some  extent,  which  gives  a 
coarse scan of the whole scenario firstly and then focuses on 
regions  of  interest.  (ii)  Classification  based  (single  stage 
object detection), where one-step frameworks based on 
global regression/classification, mapping straightly from 
image pixels to bounding box coordinates and class 
probabilities, can reduce time expense. In this research  we 
will be using both region proposal technique based 
architectures and classification based architectures to detect 
symbols in rail track diagrams. Figure 1 shows some 
popular network architectures that are used in this study. 



 
Fig. 1. Neural network architectures used in object detection 

A. Faster RCNN 

The motivation behind R-CNN's is to tackle the 
problems  with  bounding  box  issues  [1].  Given  a  specific 
image, the need of having an option to draw bounding boxes 
over all identified objects is solved by R-CNN methods. The 
method  consists  of  two  stages  namely  the  region  proposal 
step and the classification step. Basic R-CNN strategy runs a 
neural  net classifier on samples  taken  from image data 
utilizing  remotely  computed  bounding  box  proposals.  The 
methodology costs much in computation. Fast R-CNN 
decreases the calculation by doing the feature extraction just 
a single time to the entire image. Faster R-CNN goes 
beyond  and  utilizes  the  extracted  features  to  make  class-
related bounding box proposals.  
 

B. SSD 

Single Shot Multi-Box Detector (SSD)  [2]  differs from 
the  R-CNN  based  methodologies  by  not  needing  a  second 
stage for each region proposal. This makes it quick enough 
for ongoing real-time applications. Nonetheless, this 
accompanies  a  cost  of  decreased  accuracy.  Here  the  key 
thought is a single network (for speed) and no requirement 
for  region  proposals  rather  it  utilizes  bounding  boxes  and 
afterward  changes  the  bounding  box  as  a  component  of 
prediction. 
 

C. RFCN 

In  contrast  to  previous  region-based  detectors  such  as 
Fast/Faster R-CNN that apply a costly per-region 
subnetwork hundreds of times, region-based detector is fully 
convolutional  with  almost  all  computation  shared  on  the 
entire  image  [3].  To  achieve  this  goal,  a  position-sensitive 
score maps to address a dilemma between translation-
invariance in image classification and translation-variance in 
object detection. This method can thus naturally adopt fully 
convolutional image classifier backbones, such as the latest 
Residual Networks (ResNets), for object detection. 
 

D. YOLOv3 

You Only Look Once version 3 is the available stable & 
fastest  method  among  YOLO  versions  proposed yet  and  it 
works on different principles than the before- mentioned R-
CNN models. Like in SSD, this runs a single convolutional 
network on the whole input image (once) to predict 

bounding boxes with confidence scores for each class 
simultaneously [4]. The advantage besides the simplicity of 
the  approach  is,  the  YOLO  model  is  fast  (compared  to 
Faster R-CNN and SSD) and it learns a general 
representation  of  the  objects.  However,  this  increases  the 
localization  error  rate.  Another  drawback  in  this  model  is 
that it performs poorly with images with new aspect ratios 
or  small  object  flocked  together,  but  it  reduces  the  false-
positive rate. In the overall scenario, this method is fast in 
predicting results. 
 

III. LITREATURE REVIEW 

With the advancement of Deep Learning and 
Computer Vision the area of Object Detection has gained a 
lot of success over the recent years. Many new models have 
been introduced to outperform the state of the art and 
achieve a high degree of accuracy in detecting objects 
efficiently.  Although  this  is  the  case  there  are  still  areas 
where object detection can improve specially when the 
object  size  gets  smaller  and  also  when  the  environment 
conditions change. Many object detection frameworks have 
been  introduced  to  provide  satisfactory  results  and  obtain 
high degrees of accuracy. 
 

Frank D. Julca-Aguilar in 2017 proposes a method 
to  detect  handwritten  symbols  using  Faster  R-CNN  object 
detection algorithm [5]. In their study they discuss the issues 
relative to the handwritten nature of data. Their results show 
that Faster-RCNN can be effectively used on both publicly 
available flowchart and mathematical expression 
(CROHME-2016) datasets. Guo X. Hu in 2018 proposes an 
effective approach to  detect small objects by extracting 
features  at  different  convolutional  levels  of  the  object  and 
using multi-scale features to detect small objects [6]. In their 
results  they  show  that  their  accuracy  in  detecting  small 
objects  is  11%  higher  than  the  state-of-the-art  models.  As 
previous  studies  have  not  looked  to  detect  small  objects 
such  as  railway  symbols  which  has  a  very  specific  shapes 
and  sizes.  In  this  study  we  look  to  implement  different 
object  detection  models  and  compare  their  results  while 
showing the state-of-the-art model for small object detection 
in the railway domain. 

IV. METHODOLOGY 

A. Dataset 

As  the  dataset,  first  we  had  a  PDF  of  Railway  signal 
diagrams  that  was  constructed  using  a  CAD  (Computer 
Aided Design) tool. In order to obtain individual images of 
the  dataset,  railway  signal  diagram  images  were  extracted 
from  the  PDF  and  saved  into  a  separate  directory  in  .jpg 
format.  The  dataset  contained  60  railway  signal  diagram 
images,  which  consists  of  four  main  symbols.  Figure  2 
shows  a sample image used for training and validation 
where  Figure  3  shows  the  list  of  symbols/objects  to  be 
detected. The mileposts are labelled as a single object where 
the detected region will be used to perform optical character 
recognition  and  store  the  milepost  details  for  respective 
symbols in a database. 



 
Fig. 2. Sample Railway Signal Diagram 

 
Fig. 3. Railway Signal Diagram labels 

B. Image Labelling 

The railway signal diagram images extracted is labelled 
using a labelling/annotation tool where each symbol of 
interest is marked with a corresponding bounding box and a 
corresponding label is assigned to each symbol. After 
labelling the images the labelled data annotations was 
exported  into  Extensible  Markup  Language  (XML)  format 
where a corresponding XML file was created for each 
labelled image. The XML file contains the label names and 
the coordinates of the bounding boxes that were drawn for 
each symbol in the image. 

C. Experimental Setup 

The  dataset  was  separated  as  train  and  test  sets  where 
2/3rd of the images were taken for training and 1/3rd of the 
images were taken for testing. For the training environment, 
we  used  Google  Colaboratory  which  is  a  free  online  GPU 
service.  The  dataset  was  trained  on  an  Nvidia  Tesla  K80 
GPU  with  12GB  of  RAM.  Due  to  the  scarcity  of  training 
data due to confidentiality concerns, Transfer Learning 
approach has been used. 

D. Use of Transfer Learing 

Transfer learning is a technique that reuses already trained 
models on a new problem. In transfer learning, the 
information on a previously prepared machine-learning 
model is applied to an alternate yet related issue. For 
instance,  if  you  prepared  a  basic  classifier  to  anticipate 
whether  a  picture  contains  a  bus,  you  could  utilize  the 
information that the model picked up during its preparation 
to perceive different items like a truck.  

With Transfer learning, we fundamentally attempt to exploit 
what has been realized in one errand to improve the 
speculation in another. We move the weights that a network 
has  learned  at  "task  A"  to  another  "task  B".  The  overall 
thought is to utilize the information a model has gained from 
an undertaking with a great deal of accessible labeled data, 
in another errand that does not have many training data. For 
training  we  implemented  the  Tensorflow  Object  Detection 
API,  which  has  pre-trained,  models  in-built  known  as  the 
model  zoo.  These  pre-trained  models  we  trained  on  the 
popular  MS  COCO  dataset.  MS  COCO  is  a  large-scale 
object detection segmentation and captioning dataset. 

E. Faster-RCNN, SSD and RFCN based object detection 

Faster  RCNN:  Faster-RCNN  is  one  of  the  most  popular 
region proposal based object detection networks [1]. It 
consists of two networks: Region Proposal Network (RPN) 
for  generating  region  proposals  and  a  network  using  these 
proposals to detect objects. Faster-RCNN showed good 
detection results on the famous PASCAL VOC 2007 test set 
giving  high  mAP  (mean  average  precision  %)  values.  Our 
study  uses  Faster-RCNN  with  a  batch  size  of  twelve,  with 
thousand training steps and fifty testing steps together with 
the tensorflow object detection API (framework for creating 
a deep learning network that solves object detection 
problems)  for  training  and  evaluating  the  object  detection 
model. 

SSD: SSD is a single-shot-detector, which has no delegated 
region  proposal  network  and  predicts  the  boundary  boxes 
and  the  classes  directly  from  feature  maps  in  one  single 
pass. SSD showed new records in performance and 
precision for object detection tasks, scoring over 74% mAP 
at 59 frames per second on standard datasets such as 
PASCAL  VOC  and  COCO.  Our  study  uses  SSD  with  a 
batch size of twelve, with thousand training steps and fifty 
testing  steps  together  with  the  tensorflow  object  detection 
API  (framework  for  creating  a  deep  learning  network  that 
solves object detection problems) for training and evaluating 
the object detection model. 

RFCN: RFCN is a Region-based Fully Convolutional 
Network, which uses a method known as position-sensitive-
ROI-pool, which is similar to the ROI pool in Fast R-CNN. 
In  position-sensitive-ROI-pool  process,  it  maps  the  score 
maps  and  RoI’s  to  the  vote  array.  After  calculating  all  the 
values for the position-sensitive ROI pool, the class score is 
taken as the average of all its elements. Both Faster RCNN 
and  RFCN  uses  ResNet  101  for  feature  extraction.  And 
RFCN performs 20 times faster than R-CNN giving higher 
mAP  (mean  average  precision  %).  Out  study  uses  RFCN 
with a batch size of eight, with thousand training steps and 
fifty testing steps together with the tensorflow object 
detection API (framework for creating a deep learning 
network that solves object detection problems) for training 
and evaluating the object detection model. 
 
YOLOv3: One of the state-of-the-art, one-stage object 
detector, YOLOv3, has been implemented as a customized 
version for this particular problem scenario using the 
generic  implementation  which  is  thoroughly  explained  by 



(Pylessons, 2018) at their tutorial series and the 
implementation which is provided at Git repository [1] and 
it  has  been  modified  to  address  the  problem  scenario  with 
the custom dataset and the requirements. 

Annotations file conversion: XML to YOLOv3 file 
structure.  Labeled  data  set  annotations  have  been  exported 
as  XML  data  and  those  were  needed  to  convert  into  a 
YOLOv3 implementation understandable single file format 
as follows. Each row contains all the labeled bounding box 
for  a  single  image.  To  train  the  custom  object  detection 
model it is required the annotations file and class file. Both 
of  these  files  have  been  created  with  an  external  single 
script. 

TRAIN_INPUT_SIZE = 416 
TRAIN_DATA_AUG = True 
TRAIN_TRANSFER = True 
TRAIN_LR_INIT = 1e-4 
TRAIN_LR_END = 1e-6 
TRAIN_WARMUP_EPOCHS = 2 
TRAIN_EPOCHS = 300 

F. Optical Character Recognition 

In order extract the required milepost text our first approach 
looked  at  implementing  optical  character  using  template 
matching where a template image for each character 
including  Numeric,  Alpha  Numeric  and  Special  Symbols 
was given and that image was used as a template so that the 
cropped image of the milepost that is extracted is matched 
using  image  processing  techniques  with  the  template  to 
recognize similar characters 

The  second  approach  looked  at  using  a neural  network 
based Optical Character Recognition using open source 
libraries. By implementing this approach together with 
image  processing  techniques  we  were  able  to  extract  the 
milepost texts as required. 

V. RESULTS 

A. Object Detection 

The following are the results obtained after training railway 
signal diagram images and building the models using Faster-
RCNN, RFCN, SSD and Yolov3 detecting the railway 
signal diagram symbols. 

Faster-RCNN,  SSD  RFCN  were  all  trained  on  1000  steps 
with 24 training images where Faster-RCNN with an initial 
learning rate of 0.00002 and a learning rate of 0.000002 at 
the end, SSD with 24 training images with an initial learning 
rate of 0.004 using RMSprop Optimizer and RFCN with an 
initial learning rate of 0.003 and a learning rate of 0.000003 
at  the  end.  The  Loss  Graphs  for  Faster-RCNN,  SSD  and 
RFCN  are  shown  in  Figure  4.  Table  I.  shows  the  results 
obtained from Faster-RCNN, SSD and RFCN where 
accuracies of detection box precision and recall with small 
and large mAP and loss values are shown. 

 
Fig. 4. Loss graphs of (i) Faster RCNN (ii) SSD (iii) RFCN 
 
 

TABLE I.  RESULTS FOR FASTER RCNN, SSD AND RFCN 

 
Faster 
RCNN 

SSD RFCN 

Detection Boxes Precision/mAP 0.39 0.02 0.41 
Detection Boxes Precision/mAP (large)  0.38 0.03 0.49 
Detection Boxes Precision/mAP (medium)  0.41 0.00 0.29 
Detection Boxes Precision/mAP@.50IOU  0.75 0.07 0.83 
Detection Boxes Precision/mAP@.75IOU  0.40 0.00 0.37 
Detection Boxes Recall/AR@100 (large)  0.55 0.04 0.55 
Detection Boxes Recall/AR@100 (medium) 0.49 0.00 0.47 
Loss/Box Classifier Loss/Classification 

Loss 

0.22 9.94

0 

0.28 
Loss/Box Classifier loss/Localization Loss 0.25 4.36 0.38 
Loss/RPN Loss/Localization Loss  0.13 - 0.13 
Loss/RPN Loss/Objectness Loss 0.04 - 0.02 
Loss /Total Loss 0.63 14.5 0.82 
Final Loss 0.30 3.88 0.22 

 
 
In YOLOv3, the loss function of YOLOv3 can be 
summarized as follows. Confidence loss determines whether 
there  are  objects  in  the  prediction  frame  (conf_loss).  Box 
Regression  loss,  calculated  only  when  the  prediction  box 
contains  objects  (giou_loss).  Classification  loss,  determine 
which category the objects in the prediction frame belong to 
(prob_loss). 
 
The  YOLOv3  model  was  trained  with  2400  steps  with  57 
training images. Initially the learning rate was set to 0.0001 
and  it  was  0.000001  at  the  end.  Fig.  5.  Shows  the  loss 
graphs plotted over number of steps and the Table 2 shows 
the results obtained with YOLOv3 model.  

 
Fig. 5. Loss graphs of YOLOv3 (i) Classification loss (ii) total loss 
 
 
 



TABLE II.  RESULTS OBTAINED WITH YOLOV3 

 giou loss conf loss prob loss total loss 

Training 8.81 2.88 4.22 15.91 

Validation 5.63 4.01 4.47 14.11 

 

B. Optical Character Recognition 

For extracting characters in the railway signal diagrams, two 
approaches  are  used.  Template  matching  based  approach 
and also a neural network-based architecture together with a 
LSTM implementation. Character detection accuracy using 
template-matching technique is 42.5% and the neural 
network-based character detection accuracy is 92%. 
   

VI. CONCLUSION 

According  to  the  results  obtained,  we  can  see  that  all  the 
models  (Faster-RCNN,  SSD,  RFCN  and  YOLOv3)  mostly 
are  better  at  detecting  larger  objects  than  smaller  ones. 
When  considering  the  final  loss  values,  we  can  see  that 
RFCN  outperforms  the  other  model  architectures.  YOLO 
and SSD, which are single stage detectors they are better at 
detecting real time images with less inference time, we can 
see that the accuracies are less compared to region proposed 
networks. Here we have tried two region proposed networks 
namely  Faster-RCNN  and  RFCN.  Both  of  these  networks 
outperform the single stage detectors even though their 
inference time is comparatively higher. In this scenario we 
are  more  concerned  about  the  accuracy  than  the  inference 
speed  therefore  we  can  arrive  at  a  conclusion  that  region 
proposed networks are more suitable network architectures 
for detecting railway signal diagrams. Here we can see that 
RFCN  has  the  best  detection  accuracies  as  they  divide  the 
image into small feature maps and create a voted array for 
each  of  these  feature  maps  as  a  result  it  is  able  to  easily 
identify smaller objects better than other architectures as it 
focuses on all the smaller areas of the image rather than on a 
specific  region.  For  optical  character  recognition,  we  have 
implemented two different techniques. The template 
matching approach was drastically outperformed by the 
neural network-based approach.  
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