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Abstract— In the software engineering world, software 

product lines constitute an approach to building reliable software 

systems. These use feature models to capture, develop, and 

document shared software for a base system. One of the main 

challenges when using feature models to derive new products 

configuration is a way of selecting a configuration that takes under 

consideration the minimum number of steps and minimum 

decision-making cost, taking into account resource constraints. To 

satisfy the challenges of optimizing the configuration selection 

technique, in this paper, we present an assessment approach that 

makes use of genetic algorithms to generate the best product 

configurations from feature models. Our empirical outcomes 

reveal the effectiveness of the proposed approach in obtaining 

product configurations that meet the feature model constraints 

with minimum steps and decision cost, consequently, assist 

customers in selecting the product configuration that fits their 

requirements. 

Keywords—Software engineering, software product line, feature 

model, product configuration, genetic algorithm. 

I. INTRODUCTION  

Designers define product families using feature models 
(FMs) within the so-called software product lines (SPLs) where 
the FM displays the product line features together according to 
certain values and constraints [1]. The importance of SPLs is 
coming from the need to reuse software systems in order to 
create new versions of products, so the products can be produced 
more easily and at a lower cost [2]. Depending on  the SPLs the 
product is defined by identifying specific features from feature 
model through a process called feature configuration process  
[3], where this done by selecting and deselecting features from 
that model taking into account FM constraints govern. 

A SPL product, defined by a FM with a feature set, is 
equivalent to a full product configuration where only the 
selected features are defined and the implicitly deleted features 
are deleted. This approach can be adopted in solving the problem 
of reducing the configuration steps of the multi-step 
configuration, such as producing a series of intermediate 
configurations in which the configuration path goes from 
specific feature to another. The mentioned configuration process 
provides an ordered list of configuration steps represent by the 
configuration path which identified the possible steps, so 

through it, we can go from the initial feature to the desired final 
feature without violating the FM constraints. 

 Software engineers face challenges of generating product 
configurations by using conventional mathematical 
configuration method (especially when configuring big size 
FM) , consequently, they face impossibility of evaluating the 
resulted huge number of the potential configurations due to the 
un-reasonability of the time taken to evaluate each of them to 
decide which is the best (according to number of steps and 
number of decision made) to be selected. Accordingly, we 
motivated to propose a technique to generate good quality 
solutions of configurations without generating all the potential 
configurations, therefore, we skip the problem of evaluating all 
possible configurations. To achieve that, we proposed using 
research-based software engineering (SBSE) techniques, 
specifically we used evolutionary genetic algorithms (EGA) to 
obtain a best set of configurations that fit our multi-objective 
optimization problem. The basic of evaluation process depended 
on trading off the two mentioned desirable incompatible 
objectives; reducing the number of configuration steps and 
reduce a decision cost taking into account the constraints 
involved in the FM. 

Since there are no prior ways to solve such a problem, 
therefore, we have contributed to find a way to reduce 
configuration steps in exchange for a lower cost of decision-
making, accordingly we made it easy for software engineers to 
generate a good quality configurations at a reasonable time 
regardless of the FM size. Therefore assisting the customers to 
select a configuration that fit their expectations, requirements, 
and preferences. 

The rest of the paper is organized as follows: section 2 
highlights the knowledge background is needed to accomplish 
our work; section 3 summarizes the related works for our 
research problem; section 4 describes experimental setup and 
procedures; section 5 demonstrates results; section 6 analyses 
the empirical results found; and section 6 presents concluding 
remarks. 



II. BACKGROUND 

A. Feature models (FMs) 

Fig. 1  shows a FM  called Banana model inspired by Sefika 
Efeoglu. A feature model is a tree of features, every node in the 
tree represents a feature and has one parent except the root 
feature that does not has a parent (e.g., ‘BananaOs’). A terminal 
feature (e.g., ‘BananaFS) is a leaf and a non-terminal feature 
(e.g., ‘Browser) is an interior node of a feature graph [4], [5]. A 
nonterminal feature acts as synthesis of features that are its 
descendants. 

     A FM is systematic hierarchically and is graphically drawn 
as an AND-OR feature graph .there are a constraints called 
cross-tree constraints (CTC) which used to act non-hierarchical 
synthesis rules including mutual exclusion (excludes) , mutual 
dependency (requires) and mutual relationships [6] . There are 
six CTC in the Fig. 1. 

Finding a configuration of terminal features help in 
derivation products from a FM [5], thus feature selection 
represents a specific product satisfying the customer’s 
expectation and requirements. Additionally, we can calculate the 
actual resources consumption and product benefits from a set of 
terminal features [7]. 

A feature configuration is valid if a feature selection is valid, 
in other words, if the feature selection allowed within the FM 
constraints. The constraints of the FM defined by the 
relationships and connections between the features and its group 
of children.  

The rules of feature selection may summarize as follows: if 
a feature selected, then its parent should be also selected. So, if 
a feature selected then all of its mandatory children participating 
in an And-group should be selected. Also, if a feature has an Or-
group selected then at least one child should be selected for it. 
Likewise, if the feature selected in an Alternative-group then 
exactly one child should be selected. For example 
'SupportModel' requires the selection of either ‘Remote’ or 
'Other' Childs but not the both. 

 

Fig. 1: Example of feature model for the BananaOS SPL 

B. Multi-objective optimization problem (MOOP) 

A solution to a multi-objective problem is the non-
dominated Pareto front. In this research the problem has two-
objective, and the solutions are represented by a curve described 
by an infinite number of points [8]. We have been tracking the 
Pareto using the direct way, which is by tracking points on the 
peaks, taking into account Keeping the minimization of both 
objectives as well as possible, within the framework of the trade-
offs between the two objectives. 

C. Evolutionary multi-objective optimization algorithms 

Evolutionary algorithms (EAs) are areas of decision-making 
with multiple objectives, where the best decisions must be made 
with trade-off between different objectives. This algorithm is 
very attractive in analyzing multi-objective problems using 
classic methods. The algorithms start their work with a set of 
randomly selected solutions called initial population. Next 
generations begin to arise by Offspring process through some 
operators such as mutation, crossover and selection [9].  

1) Genetic algorithms (GAs) 

   Researchers proposed the concept of heuristics to override 

unreasonability problem results. Using algorithms based on 

heuristics does not mean obtaining an exact optimal 

solution, but it will provide a set of close solutions within 

an acceptable and reasonable time. To reach high-quality 

solutions in multi-objective problems, GAs adopt the 

principle of executing operations several times and do not 

stop until reach the constraints completion, including the 

predetermined number of iterations. The principle of 

working with multi-objective algorithms is to evaluate each 

objective in order to compare the resulted solutions and 

determine which are best. The reason for comparing two 

objectives is to determine whether one of them dominates 

the other, to ensure that, all the objective’s values must be 

the best possible (according to maximizing or minimizing 

the objectives) or for a specific solution to be equal to 

another solution, to confirm that it dominates. Thus the 

algorithm compares all the solutions and finally gives a list 

of the solutions that are not dominated [10]. GAs belong to 

a large category of EAs, it generate a solutions for multi-

objective optimization problems through its natural 

evolution by applying some operations, Fig. 2. In this work, 

we used Non-dominated sorting GA II to optimize  the 

research problem. 

 
Fig. 2: Main steps of GAs 

 

a) Non-dominated sorting Genetic algorithm II (NSGA-

II) 

Debt and et.al [11] developed NSGA-II in 2002 to 

optimize the multi-objective problem as they combined 

the genetic algorithm with a non-dominant sorting 



approach, to take advantage of this sorting’s role in 

multi-objective optimization. This algorithm contains 

three parts for selecting a new generation of individuals: 

non-dominant sorting, density estimation, and crowded 

comparison [12] . 

D. Problem definition 

To obtain configurations that contain the minimum number 

of steps within an acceptable time, we must order a features 

in a certain way, therefore the concept of permutation is the 

primary solution key in evaluating configurations by 

achieving the best percentage of trade-off between the 

objectives, which represent the inputs of the problem: 

 

 Configuration step: it is a set of features that have 
relationships with each other, if these features are 
arranged consecutively within the configuration, 
then they follow the same step, so, feature 
permutation affects the number of steps and the 
number of features within each step, where 
whenever the number of features increases within 
one step, whenever the number of the configuration 
steps decreases. 

 Configuration decision: it is a decision of selecting 
or deselecting features according to user 
preferences, such decisions must respect the 
constraints imposed by the FM [6]. In this work, we 
pay more attention to the totality of decision 
evaluations through a series of steps that make up 
the configuration. 

We have adopted a specific approach in counting the 

configuration steps and evaluating the cost of decision 

making within the configuration. Our problem adaption 

represented via two main processes, thus they are: 

 Step counting: This process explains how to count 
steps within a configuration. There are constraints 
governing the step selection , in addition to the 
order of the feature in that configuration which 
governs the length of the step. 

 Decision evaluation: It depends on two metrics; the 
length of the step (the number of features in the 
step),and the number of decisions within a single 
step. Decision evaluation calculated by : Step 
length * Number of decisions within a step. 

According to the above evaluation, whenever the step 

length increase, whenever the decision evaluation increase 

also, which what we call the decision cost for that 

configuration. 

In order to deal with our research problem, we used the 

official website of the SPL, where we downloaded the FMs 

that we wanted to use as a data set represents the problem, 

then we identified the problem through the following steps: 

 We converted the FM from an XML file to a feature 
model tree, thus the data formed became readable. 

 We excluded basic features which found in each 
configuration and kept them in a different file 
(called basic skeleton) because they are not 
considered as a relevant part of the evaluation. 

 We took the features that were left and kept them 
in a list. 

 We counted the remaining features where their 
number represents the length of the configuration 
path.  

 We identified fitness functions that perform an 
evaluation for each objective as follows: 

Objective O1: Minimize number of configuration 
steps: 

Minimize |{ f1,f2,…,fa}1 , {fa+1,fa+2,…}2, ……. 
,{…..}S|= S 

 Where S=Number of steps and {...} 1 ∩ {… 
}2….∩ { ..}s = Φ  

And {… }1 ∪ {…} 2 ….∪ {…} s = {all features} 
And 1 <= S <=n where n number of features 

Objective O2: Minimize number of decision 
taking. It rely upon the decision in the group that 
contains a greater number of features is more than 
the decision in the smaller number of feature group: 

Minimize ∑ (𝑑𝑖𝑙𝑖)
𝑛
𝑖=1  

Where n= number of the groups  

And d= number of decision in the group  

And l= length of the group And 1 <= l <=n 

III. RELATED WORKS 

Many literary focused on using EAs to solve problems 
related to SPL, as a number of researchers applied GAs to 
improve feature selection in the SPL. Kumari et al. [13] 
Presented feasible and efficient GA for automated product 
configuration based on the most reusable feature in order to 
derive an optimal product configuration. They found that GA 
can produce effective, efficient and fast results rregardless of the 
increase in the size of the FM. Also, Guo et al. [14] proposed 
using GA for features selection in order to derive automated 
product derivation in SPL, where their derived algorithm gave 
45-99% a better solution and reduced 45-97% time consumption 
than exact and heuristic algorithm. The same challenge was 
tackled using different technique, as White et al. [15] provided 
a polynomial time approximation algorithm for selecting a 
highly optimal set of features that adheres to a set of resource 
constraints, their approach required significant computing time 
for large-scale problems, In addition for a higher resource 
tightness required , therefore, their approach has not proven as 
an effective approach to optimize the problem compared to EAs 
usage. 

In the same context of using GA, Alidra et.al [16] 
highlighted on reuse in software systems, they developed their 
solution at design time, as they tackled the reusable components 
by focusing on the concepts of them. They assigned the software 



product family of GA and derived GA line from it. On the other 
way, Afzal et.al [17] used algorithms by defining a real-world 
feature model and optimized different sizes of small and large 
FMs, as they used GAs to reduce inconsistencies in limitations 
between features. 

Some researchers tackled the product configuration issues 
far from EAs, where White et al.[21] tackled the challenge of 
creating SPL configuration that meets arbitrary software 
requirements, they propose to do contributions on multi-step 
configuration study for SPL, the first one by create a formal 
model and map it with constraints satisfaction problem (CSP), 
the second one is show how the solution of CSP problem can be 
derived by constraints solver, and the third contribution is to do 
empirical results showing that their CSP-based technique can 
solve multi-step configuration problems involving hundreds of 
features in seconds. Authors could prove scalability for their 
model by prove the ability to scale to hundreds of features and 
multiple steps. 

Bagheri et al. [22] Searched about product line configuration 
into one concrete product based on the stakeholders 
requirements. They proposed building theoretical and 
technological tools to help the stakeholders understanding the 
interactions of a product line features, also, gathering the usage 
of each feature for the stakeholders then help them making 
decisions in order to dynamically building a decision model. 
Their approach were be able to facilitate the application 
engineers’ task by helping them understand the utility of the 
features available in the product line and identifying their 
preferences. 

Tan et.al [23] tacked the issue of the relationships among 
configurable features that need to be considered to select the 
desired product features. They proposed to reduce configuration 
features by selecting a small set of main features, thus 
configuring a new product should depend on this set which is 
based on features dependencies, therefore, the decisions made 
for that set mean decisions for the rest of product line features. 
Authors approach led to improve product line configuration, in 
addition to that, using their approach is less likely to make 
configuration mistakes because of depending on relationships 
feature dependencies. 

Chohan et al. [18] addressed two challenges in developing 
software engineering, namely, the software ’lack of optimization 
and re-use features, so, they proposed a tool for improving the 
SPL by applying multi-objective optimization techniques. 
Sharma et al. [19] proposed using SPL business process 
modelling notation. They introduced different dimension of 
BPMN and extended dimension to configurable BPMN (C-
BPMN) used to model many variations of a project system. They 
have developed framework and utilized it to realize SPLs using 
BPMN. Also, Sharma et al. [20] continued their previous work 
and proposed a new version of BPMN, called C-BPMN. 
Companies can specialize configuration process model as they 
need, also, they have done a comparison between configurable 
bbusiness pprocess mmodeling nnotation and configurable 
Event Process Chain (C-EPC). 

IV. EXPERIMENTATION  

A. Setup 

The objective of this step is to implement the problem of 
reducing FM configuration steps and its resolution with genetic 
algorithms using the JMetal library version 5.8. An important 
major step in preparing for the experiment, is to define the 
research questions that the experimental study aims to 
investigate, as follows: 

RQ1: how to get the best configuration in SPL? 

Using GAs, we can get a high-quality solution, and in some 
cases, it may be the best solution. We experimented with JCS 
FM, which represents a small size FM. It produced 96 valid 
configurations, which are difficult to evaluate to determine the 
optimal solution one, otherwise, experimenting by using GAs, 
will produce the best set of solutions as may produce the optimal 
solution also. 

RQ2: can we generate the optimal solution? 

The optimal solution can only be calculated with trivial FM 
in which finding optimal solutions does not affect the 
development of a software or system, therefore we have tended 
to work in another way, which is  GAs 

RQ3: what is the best approach to reach the best solution? 
Why? 

GAs are the best way may get to reach the best solutions that 
are close to the optimal solution. If we assume that evaluating 
one configuration in GAs consumes approximately the time that 
it consumed to evaluate another configuration using traditional 
computational methods, the process of evaluating all the 
configurations occupied in this model with the two methods is 
basically incomparable due to the unequal time spent to 
complete the assessments as a whole, in addition, the size of The 
feature model does not affect the evaluation execution time and 
consumes only seconds. 

RQ4: Why we used NSGA-II? 

NSGA-II algorithm is good solution for multi-objectives 
problems, as it is available, works very quickly , and depends on 
elitism in selecting and multiplying individuals, so it was more 
effective and safest for us to resort to this algorithm to optimize 
the problem of reducing configuration steps. 

RQ5: How to evaluate the configuration in SPL? 

The evaluation of configurations in terms of the number of 
steps and the number of decisions depends on the permutation 
between features and their order within the configuration, where 
we devised an approach to count the steps within the 
configuration while evaluating the cost of decisions- making at 
the same time. 

B. Implementation 

we expanded the infrastructure of the library to comply with 
the problem of reducing the configuration steps in the FMs, 
accordingly, we established the following structures; Fig. 4: 



 

Fig. 4: class diagram of the problem domain 

To evaluate the two competitive objectives of the research, 
we developed a technique for counting the steps and evaluating 
the cost of decisions making. Basically, we need to go over 
permutation concept, thus it consider as a key for our approach. 
Previously, in the problem definition section, we explained the 
evaluation approach , here we implement this, see figure 6. 

 

Fig. 5: implementation for the objective evaluation idea 

C. Input files 

In order to facilitate the experiments, we have implemented 
the functionality in charge of reading the FM, as it converts it 
from an XML file to another readable file. While the problem 
definition is formulated therefore the input data of chromosomes 
will be ready for GA use. The empirical study consists of three 
realistic FMs differs in feature size and constraints: (JCS; 12 
features, 25% ECR), (MLX; 37 features, 40% ECR) and 
(Windows8o; 451 features, 30% ECR). 

D. Output 

In order to achieve the experiment objectives, the output of 
the experiment will be an array of two elements, each element 
represents an objective, the first represents the number of steps 

while the second represents the cost of decisions, these results 
act as fitness values and are store in a file called (FUN.tsv), the 
number of arrays in the file represents the population size that 
was predefining in the experiment. Therefore, the algorithm will 
keep the best solutions corresponding to the mentioned fitness 
values and store them in a file called (VAR.tsv) . The output of 
the experiment as a whole will be stored in a file called 
(allexpVal.tsv) , where the number of resulting arrays represents 
the number of experiment repeated time. In addition, we defined 
a method to decode the configuration as we use the indexes of 
them in the GA, this method used a file called 
(GeenArrayForDecode.tsv) , to return the feature names. 

E. Experiment protocol 

As an attempt to solve the research problem which the 
researchers have not yet dealt with, nor by any method, we 
devised a specific approach that takes into account the FM 
constraints to count steps and evaluate decisions, also, to prove 
the effectiveness of the approach, we defined the problem and 
linked it with runner algorithm then conduct the experiment 
three times, each with different FM. Each FM were executed by 
the same algorithm; NSGA-II. the experiments were executed 
10000 evaluations of 100 population size, thus we were could 
catch the best 100 individuals for every FM, which means the 
best 100 configurations. 

V. RESULTS 

The experiment results presented using the JFreeChart 
library which provides the chart frames, as follows: 

Experiment 1: was used JCS FM , the distribution of the 
best solutions appear throughout the pareto fronts , Fig. (6, 7): 

 

Fig. 6: the solutions distribution and Pareto front when JCS FM were 
applied. 

  

Fig. 7: the Pareto front when JCS FM were applied. 



Experiment 2: was used MLX FM, the distribution of the 
best solutions appear throughout the Pareto fronts , Fig. (8, 9) 

 

Fig. 8: the solutions distribution and Pareto front when MLX FM were 
applied. 

 

Fig. 9: the Pareto front when MLX FM were applied. 

Experiment 3: was used Windows8o FM, the distribution 
of the best solutions appear throughout the Pareto fronts , Fig. 
(10, 11): 

 

 

Fig. 10: the solutions distribution and Pareto front when Windows8o FM 
were applied. 

 

Fig. 11: the Pareto front when Windows8o FM were applied. 

VI. ANALYSIS 

Through the previously resulted plots, we noticed that the 
optimal solutions are focused at the bottom of the distribution 
points, because whenever go towards the Centre from X-axis, 
the decisions will be less cost, also, whenever go down towards 
the Centre from Y-axis, the configuration steps will be as less as 
possible. In other words, if a line is drawn at an angle of 450 
from The two-axis then the intersection of the combination of 
the points with the drawn line from the bottom will represent the 
optimal solutions, the following figure shows the idea intended, 
where the optimal solutions were identified at the intersection of 
the white line with the solutions, Fig. 12. 

 

Figure 31: The idea of identifying the best solution 
combinations at the intersection of the white line with the 
solutions 

On the other hand, through the previous three experiments, 
we noticed that the size of the FM almost does not affect the 
execution time, which leads us to adopt the idea of GAs to solve 
this problem, On the contrary, if we wanted to extract all the 
configurations from a non-trivial FM, then this may take an 
unreasonable time in execution, even if performed using a 
supercomputer. 

Although the comparison is not acceptable here because the 
sources are mismatches, although, it is good to put table showing 
the difference between the use of GAs and the conventional 
mathematical method (which based on the factory method) in 
finding a set of the optimal solutions to the research problem. 
The table shows impossibility to generate all the configurations 
from a non-trivial FM using the conventional method at a 
reasonable time, consequently, evaluating configuration in this 
way is illogical and unacceptable. See Table 1 below. 



TABLE I.  EVALUATING CONFIGURATION USING GA VS MATHEMATICAL 

METHOD 

FM No. of features GA Mathematical method 

JCS 12 2.777 s 16.7 month 

MLX 37 2.9075 s 81 e18 year 

Windows80 450 3.718 s 1.7 e10000 year 

 

VII. CONCLUSION 

After experimenting and analysing the research problem, we 
concluded the following remarks: 

 Getting all constraint-meet configurations to 
evaluate them according to certain multi objectives 
can’t be solved using the conventional 
mathematical method for the unreasonable time 
needed to generate all the configurations where the 
mentioned technique is more unacceptable with 
large size FM. 

 The GAs is an efficient choice to facilitate selecting  
a suitable product configuration   because it is 
produce a good quality solutions in very short time. 

 The GA may not produce an identified optimal 
solution but at least produces a set of the best 
solutions in very short time. 

 For each run of GA, the problem may produce a 
deferent solutions but all the solutions in each 
execution nearly equal in quality. 

 The GA nearly take the same execution time even 
the FM size changed because the execution time 
depends on the number of generation required to 
produce a solution not on the size of  the problem. 

 The NSGA-II multi-objective algorithm makes an 
effective trading-off between objectives especially 
when objectives values are increased or decreased 
in the opposite way. 
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