
EasyChair Preprint
№ 5974

Experimenting with Evolutionary Algorithms to
Reduce Feature Model Configuration Steps

Dalia Owdeh and Abdel Salam Sayad

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 1, 2021

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Experimenting with Evolutionary Algorithms to

Reduce Feature Model Configuration Steps

Dalia Owdeh

Master Program in Software

Engineering

Birzeit University

Ramallah, Palestine

dowdeh2@gmail.com

Abdel Salam Sayad

Master Program in Software

Engineering

Birzeit University

Ramallah, Palestine

abed.sayyad@gmail.com

Abstract— In the software engineering world, software

product lines constitute an approach to building reliable software

systems. These use feature models to capture, develop, and

document shared software for a base system. One of the main

challenges when using feature models to derive new products

configuration is a way of selecting a configuration that takes under

consideration the minimum number of steps and minimum

decision-making cost, taking into account resource constraints. To

satisfy the challenges of optimizing the configuration selection

technique, in this paper, we present an assessment approach that

makes use of genetic algorithms to generate the best product

configurations from feature models. Our empirical outcomes

reveal the effectiveness of the proposed approach in obtaining

product configurations that meet the feature model constraints

with minimum steps and decision cost, consequently, assist

customers in selecting the product configuration that fits their

requirements.

Keywords—Software engineering, software product line, feature

model, product configuration, genetic algorithm.

I. INTRODUCTION

Designers define product families using feature models
(FMs) within the so-called software product lines (SPLs) where
the FM displays the product line features together according to
certain values and constraints [1]. The importance of SPLs is
coming from the need to reuse software systems in order to
create new versions of products, so the products can be produced
more easily and at a lower cost [2]. Depending on the SPLs the
product is defined by identifying specific features from feature
model through a process called feature configuration process
[3], where this done by selecting and deselecting features from
that model taking into account FM constraints govern.

A SPL product, defined by a FM with a feature set, is
equivalent to a full product configuration where only the
selected features are defined and the implicitly deleted features
are deleted. This approach can be adopted in solving the problem
of reducing the configuration steps of the multi-step
configuration, such as producing a series of intermediate
configurations in which the configuration path goes from
specific feature to another. The mentioned configuration process
provides an ordered list of configuration steps represent by the
configuration path which identified the possible steps, so

through it, we can go from the initial feature to the desired final
feature without violating the FM constraints.

 Software engineers face challenges of generating product
configurations by using conventional mathematical
configuration method (especially when configuring big size
FM) , consequently, they face impossibility of evaluating the
resulted huge number of the potential configurations due to the
un-reasonability of the time taken to evaluate each of them to
decide which is the best (according to number of steps and
number of decision made) to be selected. Accordingly, we
motivated to propose a technique to generate good quality
solutions of configurations without generating all the potential
configurations, therefore, we skip the problem of evaluating all
possible configurations. To achieve that, we proposed using
research-based software engineering (SBSE) techniques,
specifically we used evolutionary genetic algorithms (EGA) to
obtain a best set of configurations that fit our multi-objective
optimization problem. The basic of evaluation process depended
on trading off the two mentioned desirable incompatible
objectives; reducing the number of configuration steps and
reduce a decision cost taking into account the constraints
involved in the FM.

Since there are no prior ways to solve such a problem,
therefore, we have contributed to find a way to reduce
configuration steps in exchange for a lower cost of decision-
making, accordingly we made it easy for software engineers to
generate a good quality configurations at a reasonable time
regardless of the FM size. Therefore assisting the customers to
select a configuration that fit their expectations, requirements,
and preferences.

The rest of the paper is organized as follows: section 2
highlights the knowledge background is needed to accomplish
our work; section 3 summarizes the related works for our
research problem; section 4 describes experimental setup and
procedures; section 5 demonstrates results; section 6 analyses
the empirical results found; and section 6 presents concluding
remarks.

II. BACKGROUND

A. Feature models (FMs)

Fig. 1 shows a FM called Banana model inspired by Sefika
Efeoglu. A feature model is a tree of features, every node in the
tree represents a feature and has one parent except the root
feature that does not has a parent (e.g., ‘BananaOs’). A terminal
feature (e.g., ‘BananaFS) is a leaf and a non-terminal feature
(e.g., ‘Browser) is an interior node of a feature graph [4], [5]. A
nonterminal feature acts as synthesis of features that are its
descendants.

 A FM is systematic hierarchically and is graphically drawn
as an AND-OR feature graph .there are a constraints called
cross-tree constraints (CTC) which used to act non-hierarchical
synthesis rules including mutual exclusion (excludes) , mutual
dependency (requires) and mutual relationships [6] . There are
six CTC in the Fig. 1.

Finding a configuration of terminal features help in
derivation products from a FM [5], thus feature selection
represents a specific product satisfying the customer’s
expectation and requirements. Additionally, we can calculate the
actual resources consumption and product benefits from a set of
terminal features [7].

A feature configuration is valid if a feature selection is valid,
in other words, if the feature selection allowed within the FM
constraints. The constraints of the FM defined by the
relationships and connections between the features and its group
of children.

The rules of feature selection may summarize as follows: if
a feature selected, then its parent should be also selected. So, if
a feature selected then all of its mandatory children participating
in an And-group should be selected. Also, if a feature has an Or-
group selected then at least one child should be selected for it.
Likewise, if the feature selected in an Alternative-group then
exactly one child should be selected. For example
'SupportModel' requires the selection of either ‘Remote’ or
'Other' Childs but not the both.

Fig. 1: Example of feature model for the BananaOS SPL

B. Multi-objective optimization problem (MOOP)

A solution to a multi-objective problem is the non-
dominated Pareto front. In this research the problem has two-
objective, and the solutions are represented by a curve described
by an infinite number of points [8]. We have been tracking the
Pareto using the direct way, which is by tracking points on the
peaks, taking into account Keeping the minimization of both
objectives as well as possible, within the framework of the trade-
offs between the two objectives.

C. Evolutionary multi-objective optimization algorithms

Evolutionary algorithms (EAs) are areas of decision-making
with multiple objectives, where the best decisions must be made
with trade-off between different objectives. This algorithm is
very attractive in analyzing multi-objective problems using
classic methods. The algorithms start their work with a set of
randomly selected solutions called initial population. Next
generations begin to arise by Offspring process through some
operators such as mutation, crossover and selection [9].

1) Genetic algorithms (GAs)

 Researchers proposed the concept of heuristics to override

unreasonability problem results. Using algorithms based on

heuristics does not mean obtaining an exact optimal

solution, but it will provide a set of close solutions within

an acceptable and reasonable time. To reach high-quality

solutions in multi-objective problems, GAs adopt the

principle of executing operations several times and do not

stop until reach the constraints completion, including the

predetermined number of iterations. The principle of

working with multi-objective algorithms is to evaluate each

objective in order to compare the resulted solutions and

determine which are best. The reason for comparing two

objectives is to determine whether one of them dominates

the other, to ensure that, all the objective’s values must be

the best possible (according to maximizing or minimizing

the objectives) or for a specific solution to be equal to

another solution, to confirm that it dominates. Thus the

algorithm compares all the solutions and finally gives a list

of the solutions that are not dominated [10]. GAs belong to

a large category of EAs, it generate a solutions for multi-

objective optimization problems through its natural

evolution by applying some operations, Fig. 2. In this work,

we used Non-dominated sorting GA II to optimize the

research problem.

Fig. 2: Main steps of GAs

a) Non-dominated sorting Genetic algorithm II (NSGA-

II)

Debt and et.al [11] developed NSGA-II in 2002 to

optimize the multi-objective problem as they combined

the genetic algorithm with a non-dominant sorting

approach, to take advantage of this sorting’s role in

multi-objective optimization. This algorithm contains

three parts for selecting a new generation of individuals:

non-dominant sorting, density estimation, and crowded

comparison [12] .

D. Problem definition

To obtain configurations that contain the minimum number

of steps within an acceptable time, we must order a features

in a certain way, therefore the concept of permutation is the

primary solution key in evaluating configurations by

achieving the best percentage of trade-off between the

objectives, which represent the inputs of the problem:

 Configuration step: it is a set of features that have
relationships with each other, if these features are
arranged consecutively within the configuration,
then they follow the same step, so, feature
permutation affects the number of steps and the
number of features within each step, where
whenever the number of features increases within
one step, whenever the number of the configuration
steps decreases.

 Configuration decision: it is a decision of selecting
or deselecting features according to user
preferences, such decisions must respect the
constraints imposed by the FM [6]. In this work, we
pay more attention to the totality of decision
evaluations through a series of steps that make up
the configuration.

We have adopted a specific approach in counting the

configuration steps and evaluating the cost of decision

making within the configuration. Our problem adaption

represented via two main processes, thus they are:

 Step counting: This process explains how to count
steps within a configuration. There are constraints
governing the step selection , in addition to the
order of the feature in that configuration which
governs the length of the step.

 Decision evaluation: It depends on two metrics; the
length of the step (the number of features in the
step),and the number of decisions within a single
step. Decision evaluation calculated by : Step
length * Number of decisions within a step.

According to the above evaluation, whenever the step

length increase, whenever the decision evaluation increase

also, which what we call the decision cost for that

configuration.

In order to deal with our research problem, we used the

official website of the SPL, where we downloaded the FMs

that we wanted to use as a data set represents the problem,

then we identified the problem through the following steps:

 We converted the FM from an XML file to a feature
model tree, thus the data formed became readable.

 We excluded basic features which found in each
configuration and kept them in a different file
(called basic skeleton) because they are not
considered as a relevant part of the evaluation.

 We took the features that were left and kept them
in a list.

 We counted the remaining features where their
number represents the length of the configuration
path.

 We identified fitness functions that perform an
evaluation for each objective as follows:

Objective O1: Minimize number of configuration
steps:

Minimize |{ f1,f2,…,fa}1 , {fa+1,fa+2,…}2, …….
,{…..}S|= S

 Where S=Number of steps and {...} 1 ∩ {…
}2….∩ { ..}s = Φ

And {… }1 ∪ {…} 2 ….∪ {…} s = {all features}
And 1 <= S <=n where n number of features

Objective O2: Minimize number of decision
taking. It rely upon the decision in the group that
contains a greater number of features is more than
the decision in the smaller number of feature group:

Minimize ∑ (𝑑𝑖𝑙𝑖)
𝑛
𝑖=1

Where n= number of the groups

And d= number of decision in the group

And l= length of the group And 1 <= l <=n

III. RELATED WORKS

Many literary focused on using EAs to solve problems
related to SPL, as a number of researchers applied GAs to
improve feature selection in the SPL. Kumari et al. [13]
Presented feasible and efficient GA for automated product
configuration based on the most reusable feature in order to
derive an optimal product configuration. They found that GA
can produce effective, efficient and fast results rregardless of the
increase in the size of the FM. Also, Guo et al. [14] proposed
using GA for features selection in order to derive automated
product derivation in SPL, where their derived algorithm gave
45-99% a better solution and reduced 45-97% time consumption
than exact and heuristic algorithm. The same challenge was
tackled using different technique, as White et al. [15] provided
a polynomial time approximation algorithm for selecting a
highly optimal set of features that adheres to a set of resource
constraints, their approach required significant computing time
for large-scale problems, In addition for a higher resource
tightness required , therefore, their approach has not proven as
an effective approach to optimize the problem compared to EAs
usage.

In the same context of using GA, Alidra et.al [16]
highlighted on reuse in software systems, they developed their
solution at design time, as they tackled the reusable components
by focusing on the concepts of them. They assigned the software

product family of GA and derived GA line from it. On the other
way, Afzal et.al [17] used algorithms by defining a real-world
feature model and optimized different sizes of small and large
FMs, as they used GAs to reduce inconsistencies in limitations
between features.

Some researchers tackled the product configuration issues
far from EAs, where White et al.[21] tackled the challenge of
creating SPL configuration that meets arbitrary software
requirements, they propose to do contributions on multi-step
configuration study for SPL, the first one by create a formal
model and map it with constraints satisfaction problem (CSP),
the second one is show how the solution of CSP problem can be
derived by constraints solver, and the third contribution is to do
empirical results showing that their CSP-based technique can
solve multi-step configuration problems involving hundreds of
features in seconds. Authors could prove scalability for their
model by prove the ability to scale to hundreds of features and
multiple steps.

Bagheri et al. [22] Searched about product line configuration
into one concrete product based on the stakeholders
requirements. They proposed building theoretical and
technological tools to help the stakeholders understanding the
interactions of a product line features, also, gathering the usage
of each feature for the stakeholders then help them making
decisions in order to dynamically building a decision model.
Their approach were be able to facilitate the application
engineers’ task by helping them understand the utility of the
features available in the product line and identifying their
preferences.

Tan et.al [23] tacked the issue of the relationships among
configurable features that need to be considered to select the
desired product features. They proposed to reduce configuration
features by selecting a small set of main features, thus
configuring a new product should depend on this set which is
based on features dependencies, therefore, the decisions made
for that set mean decisions for the rest of product line features.
Authors approach led to improve product line configuration, in
addition to that, using their approach is less likely to make
configuration mistakes because of depending on relationships
feature dependencies.

Chohan et al. [18] addressed two challenges in developing
software engineering, namely, the software ’lack of optimization
and re-use features, so, they proposed a tool for improving the
SPL by applying multi-objective optimization techniques.
Sharma et al. [19] proposed using SPL business process
modelling notation. They introduced different dimension of
BPMN and extended dimension to configurable BPMN (C-
BPMN) used to model many variations of a project system. They
have developed framework and utilized it to realize SPLs using
BPMN. Also, Sharma et al. [20] continued their previous work
and proposed a new version of BPMN, called C-BPMN.
Companies can specialize configuration process model as they
need, also, they have done a comparison between configurable
bbusiness pprocess mmodeling nnotation and configurable
Event Process Chain (C-EPC).

IV. EXPERIMENTATION

A. Setup

The objective of this step is to implement the problem of
reducing FM configuration steps and its resolution with genetic
algorithms using the JMetal library version 5.8. An important
major step in preparing for the experiment, is to define the
research questions that the experimental study aims to
investigate, as follows:

RQ1: how to get the best configuration in SPL?

Using GAs, we can get a high-quality solution, and in some
cases, it may be the best solution. We experimented with JCS
FM, which represents a small size FM. It produced 96 valid
configurations, which are difficult to evaluate to determine the
optimal solution one, otherwise, experimenting by using GAs,
will produce the best set of solutions as may produce the optimal
solution also.

RQ2: can we generate the optimal solution?

The optimal solution can only be calculated with trivial FM
in which finding optimal solutions does not affect the
development of a software or system, therefore we have tended
to work in another way, which is GAs

RQ3: what is the best approach to reach the best solution?
Why?

GAs are the best way may get to reach the best solutions that
are close to the optimal solution. If we assume that evaluating
one configuration in GAs consumes approximately the time that
it consumed to evaluate another configuration using traditional
computational methods, the process of evaluating all the
configurations occupied in this model with the two methods is
basically incomparable due to the unequal time spent to
complete the assessments as a whole, in addition, the size of The
feature model does not affect the evaluation execution time and
consumes only seconds.

RQ4: Why we used NSGA-II?

NSGA-II algorithm is good solution for multi-objectives
problems, as it is available, works very quickly , and depends on
elitism in selecting and multiplying individuals, so it was more
effective and safest for us to resort to this algorithm to optimize
the problem of reducing configuration steps.

RQ5: How to evaluate the configuration in SPL?

The evaluation of configurations in terms of the number of
steps and the number of decisions depends on the permutation
between features and their order within the configuration, where
we devised an approach to count the steps within the
configuration while evaluating the cost of decisions- making at
the same time.

B. Implementation

we expanded the infrastructure of the library to comply with
the problem of reducing the configuration steps in the FMs,
accordingly, we established the following structures; Fig. 4:

Fig. 4: class diagram of the problem domain

To evaluate the two competitive objectives of the research,
we developed a technique for counting the steps and evaluating
the cost of decisions making. Basically, we need to go over
permutation concept, thus it consider as a key for our approach.
Previously, in the problem definition section, we explained the
evaluation approach , here we implement this, see figure 6.

Fig. 5: implementation for the objective evaluation idea

C. Input files

In order to facilitate the experiments, we have implemented
the functionality in charge of reading the FM, as it converts it
from an XML file to another readable file. While the problem
definition is formulated therefore the input data of chromosomes
will be ready for GA use. The empirical study consists of three
realistic FMs differs in feature size and constraints: (JCS; 12
features, 25% ECR), (MLX; 37 features, 40% ECR) and
(Windows8o; 451 features, 30% ECR).

D. Output

In order to achieve the experiment objectives, the output of
the experiment will be an array of two elements, each element
represents an objective, the first represents the number of steps

while the second represents the cost of decisions, these results
act as fitness values and are store in a file called (FUN.tsv), the
number of arrays in the file represents the population size that
was predefining in the experiment. Therefore, the algorithm will
keep the best solutions corresponding to the mentioned fitness
values and store them in a file called (VAR.tsv) . The output of
the experiment as a whole will be stored in a file called
(allexpVal.tsv) , where the number of resulting arrays represents
the number of experiment repeated time. In addition, we defined
a method to decode the configuration as we use the indexes of
them in the GA, this method used a file called
(GeenArrayForDecode.tsv) , to return the feature names.

E. Experiment protocol

As an attempt to solve the research problem which the
researchers have not yet dealt with, nor by any method, we
devised a specific approach that takes into account the FM
constraints to count steps and evaluate decisions, also, to prove
the effectiveness of the approach, we defined the problem and
linked it with runner algorithm then conduct the experiment
three times, each with different FM. Each FM were executed by
the same algorithm; NSGA-II. the experiments were executed
10000 evaluations of 100 population size, thus we were could
catch the best 100 individuals for every FM, which means the
best 100 configurations.

V. RESULTS

The experiment results presented using the JFreeChart
library which provides the chart frames, as follows:

Experiment 1: was used JCS FM , the distribution of the
best solutions appear throughout the pareto fronts , Fig. (6, 7):

Fig. 6: the solutions distribution and Pareto front when JCS FM were
applied.

Fig. 7: the Pareto front when JCS FM were applied.

Experiment 2: was used MLX FM, the distribution of the
best solutions appear throughout the Pareto fronts , Fig. (8, 9)

Fig. 8: the solutions distribution and Pareto front when MLX FM were
applied.

Fig. 9: the Pareto front when MLX FM were applied.

Experiment 3: was used Windows8o FM, the distribution
of the best solutions appear throughout the Pareto fronts , Fig.
(10, 11):

Fig. 10: the solutions distribution and Pareto front when Windows8o FM
were applied.

Fig. 11: the Pareto front when Windows8o FM were applied.

VI. ANALYSIS

Through the previously resulted plots, we noticed that the
optimal solutions are focused at the bottom of the distribution
points, because whenever go towards the Centre from X-axis,
the decisions will be less cost, also, whenever go down towards
the Centre from Y-axis, the configuration steps will be as less as
possible. In other words, if a line is drawn at an angle of 450
from The two-axis then the intersection of the combination of
the points with the drawn line from the bottom will represent the
optimal solutions, the following figure shows the idea intended,
where the optimal solutions were identified at the intersection of
the white line with the solutions, Fig. 12.

Figure 31: The idea of identifying the best solution
combinations at the intersection of the white line with the
solutions

On the other hand, through the previous three experiments,
we noticed that the size of the FM almost does not affect the
execution time, which leads us to adopt the idea of GAs to solve
this problem, On the contrary, if we wanted to extract all the
configurations from a non-trivial FM, then this may take an
unreasonable time in execution, even if performed using a
supercomputer.

Although the comparison is not acceptable here because the
sources are mismatches, although, it is good to put table showing
the difference between the use of GAs and the conventional
mathematical method (which based on the factory method) in
finding a set of the optimal solutions to the research problem.
The table shows impossibility to generate all the configurations
from a non-trivial FM using the conventional method at a
reasonable time, consequently, evaluating configuration in this
way is illogical and unacceptable. See Table 1 below.

TABLE I. EVALUATING CONFIGURATION USING GA VS MATHEMATICAL

METHOD

FM No. of features GA Mathematical method

JCS 12 2.777 s 16.7 month

MLX 37 2.9075 s 81 e18 year

Windows80 450 3.718 s 1.7 e10000 year

VII. CONCLUSION

After experimenting and analysing the research problem, we
concluded the following remarks:

 Getting all constraint-meet configurations to
evaluate them according to certain multi objectives
can’t be solved using the conventional
mathematical method for the unreasonable time
needed to generate all the configurations where the
mentioned technique is more unacceptable with
large size FM.

 The GAs is an efficient choice to facilitate selecting
a suitable product configuration because it is
produce a good quality solutions in very short time.

 The GA may not produce an identified optimal
solution but at least produces a set of the best
solutions in very short time.

 For each run of GA, the problem may produce a
deferent solutions but all the solutions in each
execution nearly equal in quality.

 The GA nearly take the same execution time even
the FM size changed because the execution time
depends on the number of generation required to
produce a solution not on the size of the problem.

 The NSGA-II multi-objective algorithm makes an
effective trading-off between objectives especially
when objectives values are increased or decreased
in the opposite way.

ACKNOWLEDGMENT

This research was supervised by a software engineering
program at Birzeit university through Prof. DR. Abdel Salam
Sayad. The assistance provided by him was greatly appreciated,
so I wish to extend my special thanks to him for helping me until
finalizing the work.

REFERENCES

[1] Collis, J. and R. Hussey, Business Research: A practical guide for
undergraduate and post graduate students. Second edition ed. 2003:
Palgrave Macmillan.

[2] Robinson, G., Methods and Techniques in human geography. 1998,
Cheschister: Wiley & sons (Robinson, 1998)

[3] B.V, E. (2020). feature-configuration. sciencedirect. Retrieved from
https://www.sciencedirect.com/topics/computer-science/feature-
configuration

[4] Batory, D. (2005, September). Feature models, grammars, and
propositional formulas. In International Conference on Software Product
Lines (pp. 7-20). Springer, Berlin, Heidelberg.

[5] Thum, T., Batory, D., & Kastner, C. (2009, May). Reasoning about edits
to feature models. In 2009 IEEE 31st International Conference on
Software Engineering (pp. 254-264). IEEE.

[6] Feature_model. (2020). Retrieved from wikipedia:
https://en.wikipedia.org/wiki/Feature_model.

[7] White, J., Dougherty, B., & Schmidt, D. C. (2009). Selecting highly
optimal architectural feature sets with filtered cartesian flattening. Journal
of Systems and Software, 82(8), 1268-1284.

[8] Hatzakis, I., & Wallace, D. (2006, July). Dynamic multi-objective
optimization with evolutionary algorithms: a forward-looking approach.
In Proceedings of 52 the 8th annual conference on Genetic and
evolutionary computation (pp. 1201- 1208).

[9] Farmani, R., Savic, D. A., & Walters, G. A. (2005). Evolutionary multi-
objective optimization in water distribution network design. Engineering
Optimization, 37(2), 167-183.

[10] Elvassore, V. (2016). Experimenting with generic algorithms to resolve
the next release problem (Master's thesis, Universitat Politècnica de
Catalunya).

[11] Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast
and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions
on evolutionary computation, 6(2), 182-197.

[12] Tian, Y., Wang, H., Zhang, X., & Jin, Y. (2017). Effectiveness and
efficiency of non-dominated sorting for evolutionary multi-and many-
objective optimization. Complex & Intelligent Systems, 3(4), 247-263.

[13] Kumari, A. C. (2018). Feature selection optimization in SPL using genetic
algorithm. Procedia computer science, 132, 1477-1486.

[14] Guo, J., White, J., Wang, G., Li, J., & Wang, Y. (2011). A genetic
algorithm for optimized feature selection with resource constraints in
software product lines. Journal of Systems and Software, 84(12), 2208-
2221.

[15] White, J., Dougherty, B., & Schmidt, D. C. (2009). Selecting highly
optimal architectural feature sets with filtered cartesian flattening. Journal
of Systems and Software, 82(8), 1268-1284.

[16] Alidra, A., & Kimour, M. T. (2014). Towards a Software Factory for
Genetic Algorithms. International Journal of Computer and Electrical
Engineering, 6(1), 44.

[17] Yadav, H., Kumari, A. C., & Chhikara, R. (2020). Feature selection
optimisation of software product line using metaheuristic
techniques. International Journal of Embedded Systems, 13(1), 50-64.

[18] Chohan, A. Z., Bibi, A., & Motla, Y. H. (2017, December). Optimized
software product line architecture and feature modeling in improvement
of SPL. In 2017 International Conference on Frontiers of Information
Technology (FIT) (pp. 167-172). IEEE.

[19] Sharma, D. K., & Rao, V. (2014, February). Configurable business
process modeling notation. In 2014 IEEE International Advance
Computing Conference (IACC) (pp. 1424-1429). IEEE.

[20] Sharma, D. K., & Rao, V. (2015, May). Individualization of process
model from configurable process model constructed in C-BPMN. In
International 53 Conference on Computing, Communication &
Automation (pp. 750-754). IEEE.

[21] White, J., Dougherty, B., Schmidt, D. C., & Benavides Cuevas, D. F.
(2009). Automated reasoning for multi-step feature model configuration
problems. In SPLC 2009: 13th International Software Product Line
Conference (2009), p 11-20. ACM.

[22] Bagheri, E., & Ensan, F. (2014). Dynamic decision models for staged
software product line configuration. Requirements Engineering, 19(2),
187-212.

[23] Tan, L., Lin, Y., Ye, H., & Zhang, G. (2013, January). Improving product
configuration in software product line engineering. In Proceedings of the
Thirty-Sixth Australasian Computer Science Conference-Volume 135
(pp. 125- 133).

