
EasyChair Preprint
№ 6641

Detection of Metrics Based Code Cloning Using
Optimised SVM Algorithm

S Karthik and B Rajdeepa

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 21, 2021

Detection of Metrics based code cloning using

Optimised SVM Algorithm
1 S.Karthik, Research Scholar & Assistant Professor

Department of Information Technology, PSG College of Arts & Science, Coimbatore-14.

karthikyessekar@gmail.com
2 Dr. B. Rajdeepa, Associate Professor & Head

Department of Information Technology, PSG College of Arts & Science, Coimbatore-14.

rajdeepab@gmail.com

Abstract

Code segments usually arises due to replication from one place and then rewrite them in to

another segment of code with or without variations / changes are software cloning and the

copied code is called clone. Generally Code Cloning defines the designing and development of

software systems. Detection can be done based on Textual analysis, Lexical analysis, Syntax analysis,
Se-mantic analysis, Hybrid analysis and Metric analysis. The major drawback of the research is that it

emphasises more on fragments of copied code and does not focus on the feature that the fragments of
duplicated code are may be part of a larger replicated program. In this process, many methods take a

lot of time and it generates intricacy. In our study, a program source code is inspected for detecting
various methods by adopting an “OPTIMIZED SVM ALGORITHM” and the method definitions are

extracted and collected by means of a CLONE CODE. To evaluate the performance parameters we
calculate the LOC, the number of recurrences, and maximum and minimum LOC. To enhance the

performance metrics precision recall, accuracy and reduce the error rate and time complexity.

Keywords: Clone Detection; SVM; Functional Clones; Fitness Function.

1. Introduction

Software program development and fortification will be the most current and also big-budgeted time of

SDLC [1]. The major difficulty behind the product assist is the exchange of modern programming

framework by using new functionalities, to rectify errors within the product framework or due to the

new necessities of the cooperation that would not recognized among those prerequisite phase. However,

the maximum severe endeavours are required while extending the modern programming by way of such

as new functionalities. One of the frameworks used for programming assist is software re-engineering

is the maximum utilized [2]. Software program Re-engineering is to study the modern framework and

manufacture it once more with higher functionalities.
In software re-engineering code cloning is done by way of reusing code as it is or differently with a few
changes. This technique is referred to as code cloning. It is observed to be a major issue in industrial
framework.
In the existence of clones, the everyday functionalities of the sys-tem might not be selected. However,
without control measures with aid of the maintenance group, similarly enhancement as well become

prohibitively costly.

1.1. Definition of code clone

Replicating code sections and afterward reuse by sticking with or without minor changes or variations

are commonplace activities in programming advancements. This kind of reuse approach of existing
code is called code cloning and the stuck code fragment (with or without alterations) is referred to as
the image of the unique [3], [4]. Replicating square are referred to as clones and copying execution,
including little modifications is cloning. Code cloning is the major issue in industrial framework.
Moreover, it also increase the redundancy in the program and it also frequently suggest the layout issues
[5]. Figure 1 shows code with clone.

mailto:karthikyessekar@gmail.com
mailto:rajdeepab@gmail.com

Fig: 1.1 Original Code with Renamed Code
1.2. Types of code clone

Code clone possibly will be of any type that depend upon method of the developer and the capability
of utilizing the code which differ from replicating as it is to duplicate the code, however with less
change which would be done at diverse level in the method [1].
There are two types of similarities between two codes textual similarity or functional similarity. The
clone belongs to first type is mostly the output of copy paste technique. The first three types come under
the texture similarity and the fourth TYPE is under the functional clone [6]. Here we describe replica
kinds relied at the type of indistinguishable paired code sections could be:
Textual Similarity: A binary code fragments may be related to the similarity in their source code text.
The varieties of clones are described in an effort to seek texture similarity.
TYPE I: It is known as exact clone in which a copied code component is identical or same to the specific

code fragment besides for a few feasible variations in comments and whitespaces.

TYPE II: A Type II clone is same as a TYPE I clone. In this there exist fragments which are syntactically
identical except variation in comments, whitespaces, literals, identifiers, tokens and so on.
TYPE II is also referred to as renamed clones.

TYPE III: In this type copied the fragments with further modification consisting of changed, added or

removed statements at the side of various dissimilarities in format, identifiers, comments, literals, and

types. The agency of code fragment can be altered and they will even look or act slight in a different

way. This type of clone is hard to be located, for the purpose that the wholly framework expertise is

needed. It is also known as Gapped clones.

Functional Similarities: Similarity factor of two code fragments are often based on their functionalities.

If the two code fragments has comparable functionalities, then these are referred as TYPE IV clones or

semantic clones [7].
TYPE IV: These type of clones are also referred to as semantic or logic clones. It provides an alternate
approach to resolve the same issues. In this category of specific clones, the cloned part ís not necessarily
copied from the first one. Two code fragments may possibly be established by two different
programmers too.

Code clone detection techniques

Software program clone detection is generally carried out for the rearrangement, maintenance,

refactoring and reengineering of software. Clone detection process, minimized the maintenance cost

and reduce redundancy in the program and make that soft-ware more efficient.

Software clone detection techniques are as follow:

1) Textual based Approach: It is the textual content based method where in the fragments of code are

compared wíth every other to discover similarities of texts or stríngs. If similarity factor is true then

code is cloned code [8], [9].

2) Token Based Approach: To somehow it is same as text based approach but instead of taking line of

code directly for representation, it converts each and every line of code in to tokens. Since of

tokenization phase this approach is slower than text based method. This approach is also referred as

lexícal approach [10], [11], [12].

3) Syntactic Approaches: This technique also referred to as Abstract Syntax Tree (AST). In this method

it uses a parser to convert source code in to AST which can be used to detect cloned code by using tree

matching or structural metric method [13], [14].

4) Semantic Approaches: Some methods uses static application evaluation to provide specific facts than

truly syntactic similarity. In some of the methods, the source code is represented as a PDG (Program

dependency graph) [11].

5) Metric based Approach: For comparing code fragments directly, different metrics are computed and

then compared to detect the clones from the code. This metric approach is more accurate and scalable

and give more precise result as compare to other techniques [15].

6) Hybrid Approach: This approach is the combination of more than one technique to detect the cloned

code. In this approach source code is represented syntactically and semantically both.

3. Related work
Since 1990’s, Code clone detection is dynamic research locale. Detection of cloned clone is directly

related to maintenance cost, reuse, code redesigning and making the code more reliable and efficient.

The survey on the clone detection shows, that there are various different techniques and algorithms

which are used for detection of clones.

E. Kodhai, et al presented a hybrid approach for detection of clones. In this research, hybrid approach

is used to locate clones in multiple alterations of code. Metrics computation and textual analysis

techniques are combined to design hybrid approach. The features of clone manager tool are enhanced

in this research by integrating the code modification and detection functionalities in it. Results are

evaluated on 6 projects which are publically available. The performance parameters used in this study

are precision and recall [16]. Shruti et al. discussed about the importance of detection of similar clones.

According to the author, detection of similar clones is equally important as the detection of identical

clones. In this research, support vector machines are used. C language pro-grams are used to perform

the detection of similar clones. Feature sets are generated using parser and for classification purpose,

SVM is used. The code clone detection process can be performed by producing the feature sets for

fragments of code and then matching process id done for finding the similarity. Libsvm and Tkinter

tools are used in this research. Results are evaluated in the terms of accuracy [17]. Nils Gode et al.

discussed about the algorithms used for detection of clones. In this study, incremental clone detection

algorithm is proposed which can be used to find the clones in the number of versions of project or

program. Previous version results are used to find the clones in the next version of the program. The

tool named as iclone, is used in this study. The results of this research work are compared with the

traditional detection techniques. 5 projects, each having 2 versions are used in this study. The results of

this study shows that iclone provides best results as compare to traditional clone detection approaches

[18].

Sushma et al. presented a technique for detection of module level code clones in projects. In this

research, process of detection of code clones is performed with the use of software metrics. JS clone

detection tool (JSCCD) is used to find the first and second type of clones. Java programs are used as

input files for detection of code clones. Nine software metrics are used in this study. The precision and

recall parameters are calculated in order to evaluate the results [19]. Yoshiki et al. presented code clone

detection technique based on the PDG approach. In this paper, PDG based detection and specialization

heuristics are proposed as the enhancement for PDG approach. Four open source projects are used in

this study. Results of this study describes the effectiveness of this approach. Detection time is reduced

in this research work [20].

Kavitha et al. implemented a novel technique for code clone detection. In this study, FP-growth

technique is used to detect simple and functional code clones. According to the author FP-growth

method is suitable for only type 1 and type four clones. The results describes that data mining techniques

are best suitable for detection of clones [21]. Yang Yuan et al, presented an accurate and efficient token

based technique. To define feature matrices, Boreas define a new counting approach. It was proficient

to consider the accuracy and minimize the compilation time by using tool Deckard [22].

Mohammed Abdul Bari et al, defines with antiquity and contextual concept of code cloning, describes

over-all classification of recent approaches and tools, classify development tools in binary dissimilar

format as static-code clone and vibrant code cloning, both accessible with the executable program, as a

solution, the static-code is four types; Type-1, Type-2, Type-3 and Type-4, to completely design a

procedure to perceive and eliminate code cloning [23].

4. Proposed approach
Previous studies prove that machine-learning algorithms are suitable for incremental clone detection

process and wide in industrial practice [23], [24], [25]. In our research work, optimized code manager

based on support vector machine is used. Optimized code manager with input parameters are used in

present study. Optimized support vector machine use supervised machine learning algorithm for

training purpose. Figure 2 shows proposed flow chart.

Fig:2 Proposed Flow Chart for Optimized support vector machine use supervised machine

learning algorithm

a) Artificial Bee Colony Optimization (ABC)

In this algorithm, an artificial bee colony consists of working bees, onlookers and scouts. It contains

bystander bee i.e; bee coming up on the dance area to obtaín the information about food sources, and

employed bee i.e; a bee going to the food source, and a guide bee i.e; a bee carrying out accidental

search [31]. ABC is used to filter the data. In this, cost fitness function is used to Re-filter the data,

which gives the most favourable solution for the desired problem. Figure 3 shows fitness function

Figure 3: Fitness Function

 b) Optimized Support Vector Machine (Code Clone Optimized Manger)

An optimization technique is designed to resolve various difficulties. This technique is used to initialize

the population i.e; set of size. It is used to provide the new population that would be superior to other

prevíous one. The fitness function is used to select the results whích are particular to form new solution.

The optimization techniques can solve an optimization issue by using the following three operators: (1)

Selectíon (2) Crossover and (3) Mutatíon [26].

Optimized Support Vector Machines have been expansively re-searched in the information mining and

learning populations for the last time and dynamically applied to requests in several fields. Optimized

Vectors are normally used for machine learning classification [27], ranking methods for which they are

known as classifying optimized support vector machine. Optimized Support Vector Machine is two

special properties are that OSVM achieve:

(i) High-generalization by maximizing the margin and

(ii) Support an effective learning of non-linear methods by kernel trick.

Optimized SVM helps to perform the mapping between the input-space and feature-space to support

non-linear classification issues [3], [18]. The kernel function is harmful for responsibility this by

permitting the absence of the exact formulation of the method of mapping which can cause the issue of

curse of dimensions. This makes a linear classification in the novel-space equal to non-linear

classification in the input-space. Based on the need of extending the knowledge in the field of detection

of clones, the proposed method emphasize on the detectíon of clones using an optimized code manager

which is the combination of textual analysis and metrics computation to calculate the performance

parameters. In Optimized SVM there are two section training section and testing phase in which code

files are trained and tested. In training Phase, there is pre-processing of the uploaded code files and

extract the features which is known as metric computation. In SVM [28] the classification is done by

hyper-plane (kernel function) [29] [30] in this study Radius bias function (Rbf) is used for linear and

nonlinear classification because Rbf is string based.

5. Experimental evaluation
Here we present the empirical analysis of our proposed technique. For implementation, we used a tool

named MATLAB. To start with, the produced datasets are defined in section 5.1. Second, the

experimental outcomes of our proposed procedure in section 5.2. Lastly, the analysis of our progressive

tool for precision, recall, and accuracy are depicted in section 5.3.

5.1. Experimental setup
Various datasets are used to find the clones and system’s efficiency. Here in table 1 the data sets like

wget, struts etc. used with various revisions. It consists of 1 project from C language and 4 from JAVA

with significantly different sizes. Multiple revisions of the program are available, which makes these

programs reliable in use each program has a different size.

Table 1: Datasets for Code Clone Detection

SNo Project Name No. of Revisions Max Files MinLOC MaxLOC

1 Wget 10 114 3657 22294

2 Struts 11 1928 107723 270734

3 jhotdraw 8 680 17960 135400

4 Jfreechart 6 1007 282368 332546

5 jedit 8 549 170098 177768

5.2. Results and discussions
In this section the changes to the mentioned projects in table 1 are measured for multi clone detection

process on each revision. The table 2 shows the number of clones detected for the dataset by using

OSVM. Detection time is one of the important factor when working with the various large datasets. In

table 3, it explained the experimental results programs from C language have been selected, which be

different significantly size.

Table 2: Detected Clones on Uploaded Datasets

Revision Wget Strut jHotdraw Jfreechart Jedit

 ICM OSVM ICM OSVM ICM OSVM ICM OSVM ICM OSVM

1 14 19 11980 13697 1018 1192 129800 135962 9843 10934

2 15 21 12113 12654 1103 1262 130741 130965 9843 9920

3 15 17 12832 12953 1902 2182 130796 134667 9849 9967

4 15 17 13906 14268 1919 2045 130819 132775 9855 9826

5 15 17 13911 14698 2091 2186 130997 132698 9736 9833

6 17 23 13965 14256 2524 2658 131234 131954 9738 9826

7 37 48 14078 14965 2605 2785 - - 9848 9965

8 37 43 14078 14968 2697 2675 - - 9891 9936

9 37 43 14079 14962 - - - - - -

10 41 47 14244 14987 - - - - - -

11 - - 14287 14985 - - - - - -

Table 3: Time Comparison for Detection

Revision Wget Strut jHotdraw Jfreechart Jedit

 ICM OSVM ICM OSVM ICM OSVM ICM OSVM ICM OSVM

1 5 3 1055 945 18 13 2545 2064 1268 1136

2 2 0.5 95 72 5 3 120 106 92 78

3 0.9 0.5 98 76 7 6 76 62 94 79

4 0.9 0.3 125 106 8 5 78 63 93 75

5 0.9 0.3 45 43 12 9 95 78 96 79

6 5 2 54 29 13 10 110 91 92 78

7 3 1.9 65 35 16 14 - - 95 76

8 3 1.9 68 38 17 14 - - 112 92

9 3 1.9 64 35 - - - - - -

10 3 1.9 86 54 - - - - - -

11 - - 88 58 - - - - - -

5.3. Evaluation of parameters
Results of this study which is done to evaluate performance parameters such as precision, recall, and

accuracy by using Optimized Code Manager. In this study calculated average precision of dataset is

0.98 approx whereas recall is approximately 0.99 and accuracy is recorded to be 97.02. Comparison of

our proposed approach with existing one showed that Optimized code manager with 5 projects used as

dataset provide better results than previous incremental clone detection approach.

Precision is referred to as positive predicted value is independent of accuracy as it can be precise, but

can be inaccurate [32], [33].

Precision = 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑣𝑒 / 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
Recall is defined as a part of relevant data that have been fetched over the total set of relevant data [33].

Recall = 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 / 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

Fig 5: Precision Comparison

Fig. 6: Recall Comparison

Accuracy is refer to the proximity of a calculated value to the benchmark value

Accuracy= (TP + TN) / (TP + FP + TN + FN)
Where TP is True Positive, TN is True Negative, FP is False Positive and FN is False Negative.

6. Conclusion
Our proposed approach used in this study provide optimization in clone detection process. Clone

detection process requires high accuracy and precision. We compared the results with existing technique

called incremental clone detection and observed that better results are obtained with OSVM.

After winding up the results, we conclude that this technique illustrate high precision, recall and

accuracy and also it is low in rejected values.

References
[1] C.K. Roy, J.R. Cordy, A Survey on Software Clone Detection Re-search, Technical Report 2007-

541, Queen’s University at Kingston Ontario, Canada, 2007, p. 115.

[2] G. Kaur, "The Survey of the Code Clone Detection Techniques and Process with Types (I, II, III

and IV)", International Journal on Future Revolution in Computer Science & Communication

Engineering, vol. 4, no. 2, pp. 392-399, 2018.

[3] A. Sheneamer and J. Kalita, “Semantic Clone Detection Using Ma-chine Learning,” 2016 15th IEEE

International Conference on Ma-chine Learning and Applications (ICMLA), 2016.

[4] B. A. Kitchenham, S. Charters, Guidelines for performing systematic literature reviews in software

engineering. Technical Report EBSE- 2007-01, School of Computer Science and Mathematics,

KeeleUniversity, Keele and Department of Computer Science, University of Durham, Durham, UK,

2007, p.65.

[5] T. Kamiya, S. Kusumoto, K. Inoue, CCFinder: A multi linguistic token based code clone detection

system for Large-scale source code, IEEE Transactions on Software Engineering 28 (7) (2002) 654–

670.

[6] Bellon S et.al. Comparison and evaluation of clone detection tools. IEEE Transactions on Software

Engineering vol 33(9) (2007), pp.577- 591.

[7] “Software clone detection: A systematic review”Dhavleesh Rattan, Rajesh Bhatia, Maninder Singh.

Information and Software Technology, Volume 55, Issue 7, July 2013, Pages 1165–1199.

[8] S. Ducasse, M. Rieger, S. Demeyer, A language independent approach for detecting duplicated code,

in: Proceedings of the 15th International Conference on Software Maintenance (ICSM’99), Ox-ford,

England, UK, 1999, pp. 109–119.

[9] G. M. K. Selim, K. C. Foo and Y. Zou. “Enhancing Source-Based Clone Detection Using

Intermediate Representation”, Proc. WCRE, 2010, pp.227-236.

[10] S. Lee, I. Jeong, SDD: High performance code clone detection sys-tem for large scale source code,

in: Proceedings of the Object Oriented Programming Systems Languages and Applications Companion

to the 20th annual ACM SIGPLAN conference on Object-oriented programming, systems, languages,

and applications (OOPSLA Companion ’05), San Diego, CA, USA, 2005, pp.140– 141.

[11] Roy CK, Cordy JR, Koschke R. Comparison and evaluation of clone detection techniques and

tools: A qualitative approach. Science of Computer Programming 2009; 74:470–495.

[12] Patenaude, J-F, Ettore Merlo, Michel Dagenais, & Bruno Laguë, (1999) "Extending Software

Quality Assessment Techniques to Java Systems", 7th International Workshop on Program

Comprehension (IWPC'99), pp 49-56

[13] K. Kontogiannis, R. Demori, E. Merlo, M. Galler, M. Bernstein, Pattern matching for clone and

concept detection, Automated Soft-ware Engineering 3 (1–2) (1996).pp.77–108.

[14] Roy CK, Cordy JR. A survey on software clone detection research. TR2007-541, Queen’s School

of Computing, 2007; 115.

[15] K. Kontogiannis, R. Demori, E. Merlo, M. Galler, M. Bernstein, Pattern matching for clone and

concept detection, Automated Soft-ware Engineering 3 (1–2) (1996).pp.77–108.

[16] Kodhai, E., &Kanmani, S. (2016). Method-level incremental code clone detection using hybrid

approach. International Journal of Computer Applications in Technology, 54(4), 279-289.

[17] Sn. Göde and R. Koschke, "Incremental Clone Detection", 2009 13th European Conference on

Software Maintenance and Reengineering, 2009.

[18] Jadon, S. (2016, April). Code clones detection using machine-learning technique: Support vector

machine. In Computing, Communication and Automation (ICCCA), 2016 International Conference on

(pp. 399-303).IEEE.

[19] A Novel Metrics Based Technique for Code Clone Detection", International Journal of Engineering

and Computer Science, 2016.

[20] Y. Higo and S. Kusumoto, "Code Clone Detection on Specialized PDGs with Heuristics", 2011

15th European Conference on Software Maintenance and Reengineering, 2011.

[21] K. Rajakumari and T. Jebarajan, "A novel approach to effective detection and analysis of code

clones", Third International Conference on Innovative Computing Technology (INTECH 2013), 2013.

[22] Yuan, Yang, and Yao Guo. "Boreas: an accurate and scalable to-ken-based approach to code clone

detection." In Automated Soft-ware Engineering (ASE), 2012 Proceedings of the 27th IEEE/ACM

International Conference on, pp. 286-289. IEEE, 2012.

[23] Yu, D., Wang, J., Wu, Q., Yang, J., Wang, J., Yang, W., & Yan, W. (2017, July). Detecting Java

Code Clones with Multi-granularities Based on Byte code. In Computer Software and Applications

Conference (COMPSAC), 2017 IEEE 41st Annual (Vol. 1, pp. 317-326). IEEE.

[24] Dang, Y., Zhang, D., Ge, S., Huang, R., Chu, C., &Xie, T. (2017, May). Transferring code-clone

detection and analysis to practice. In Proceedings of the 39th International Conference on Software

Engineering: Software Engineering in Practice Track (pp. 53-62). IEEE Press.

[25] Sheneamer, Abdullah, and JugalKalita. "Code clone detection using coarse and fine-grained hybrid

approaches." In Intelligent Computing and Information Systems (ICICIS), 2015 IEEE Seventh

International Conference on, pp.472- 480. IEEE, 2015.

[26] Fradkin, D., &Muchnik, I. (2006). Support vector machines for classification. DIMACS Series in

Discrete Mathematics and Theoretical Computer Science, 70, 13-20.

[27] B. Joshi, P. Budhathoki, W. Woon and D. Svetinovic, "Software Clone Detection Using Clustering

Approach", Neural Information Processing, pp. 520-527, 2015.

[28] Ju C, Guo F (2010) a distributed data-mining model based on support vector machines DSVM [J].

30(10):1855–1863.

[29] Fuguang Wang, Ketai He, Ying Liu, Li Li and Xiaoguang Hu, "Re-search on the selection of kernel

function in SVM based facial expression recognition", 2013 IEEE 8th Conference on Industrial

Electronics and Applications (ICIEA), 2013.

[30] Zhu S, Zhang R (2008) Research for selection of kernel function used in support vector machine

[J]. SciTechnolEng 8(16):4513–4517.

[31] Karaboga, Dervis, and BahriyeBasturk. "On the performance of artificial bee colony (ABC)

algorithm." Applied soft computing eight, no. 1 (2008), pp. 687-697.

[32] A. Beger, "Precision-Recall Curves", SSRN Electronic Journal, 2016.

[33] M. Buckland and F. Gey, "The relationship between Recall and Precision", Journal of the American

Society for Information Science, vol. 45, no. 1, pp. 12-19, 1994.

