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Abstract— To survive, protect and secure oneself in disasters 

like the epidemic which is akin to a situation where one has to 

trade-off to protect both from asymptomatic infected persons who 

are difficult carriers to assess and who have attributed to a 

significant number of Covid-19 cases as well as natural hazardous 

situations. This is clear because the healthy person (defender) 

must make decisions about both, for resources which are scarce 

like that of emergency health services. In this study, we have 

considered a game when the agents, i.e. the healthy person 

(defender) and the asymptomatic infected person/infection, move 

simultaneously. There may be some other realistic situations that 

may occur, such as when the defender makes a move first; and 

when the asymptomatically infected/disease progresses first. 

Finally, we arrive at conditions, where we observe that when all-

hazards protection is not amounting to a higher cost, it can 

combinedly protect both the natural disaster and infection. We 

also see that, as the cost increases, either or both protection against 

pure natural disaster protection or protection against specific 

asymptomatic infection joins in, based on the effectiveness of cost.  

Keywords—All-Hazards, Game Theory, Epidemic, Natural 

Hazard 

I. INTRODUCTION  

Few defences are effective against epidemics, especially 

against asymptomatic infections, or only against natural 

disaster. For Example, methods like social distancing, 

including steps of Janta Curfew in India to tackle Covid 19 in 

India can be effective against the spread of epidemics 

specifically through asymptomatic infections. Similarly, 

protecting coastline through wetlands can be used against 

tsunamis, hurricanes and various other types of natural hazards. 

Different kinds of investment—say, emergency planning or 

strengthening would be taken to counter “all-hazards” 

protection. Here, in this study, we intend to understand how a 

defender, i.e. a healthy person needs to distribute/ allocate 

his/her investments between protecting against natural disaster, 

asymptomatic infective persons and “all-hazards.” At first 

glance, one might expect the unit cost of “all-hazards” 

protection to be high, in which case protection against epidemic 

agents like asymptomatic infections and natural disaster on an 

individual basis may be preferable. However, this will not 

always be the case; for example, one can imagine that 

improving wetlands might be so costly in some situations that 

it would be cheaper to harden buildings instead. Natural 

disasters are a subcategory of non-intentional attacks. 

In contrast, epidemic contagion by asymptomatic infected 

agents may not be purely non-intentional, nor they may be 

intentional as these may be challenging to assess. For ease of 

exposition, this study refers to the trade-off between epidemic 

based on asymptomatic infective carriers and natural disasters. 

Still, the results can be well applied to trade-offs between 

intentional and nonintentional attacks.  

In this study, we use contest success functions to adequately 

represent the interaction between the healthy person, i.e. 

defender and asymptomatic infected person and the natural 

disaster. Contest success functions represent the interactions 

between intelligent agents. Contest success functions in the 

case of a natural emergency are considered more of a passive 

threat than in case of asymptomatic infects as in case of 

epidemics like Covid 19 may be unorthodox. Still, it serves a 

way to specify the intensity of this threat in a parametric way.  

Some Assumptions include,1) epidemic like Covid 19 can be 

spread naturally through various medium, i.e. it can be 

considered as more of a natural hazard and 2) Covid 19 is 

spread through corona positive infected persons who may be 

asymptomatic and may not have been tested. 

In Section 2, we present a simple model where we formulate to 

model the healthy person, i.e. defender’s investments as well as 

his/her utilities. Section 3 analyses the model when the defender 

and the asymptomatic infected person move simultaneously 

under different conditions. Section 4 provides a couple of useful 

propositions, and we conclude in Section 5. 

 

II. THE MODEL 

Let us consider  the healthy person, i.e. a defender, the person 

who defends against infected persons, who are asymptotic in an 

epidemic, i.e. people who do not have any symptoms but are 

infected, and a natural hazard which can occur with a 

probability p has been valued at V 

Suppose the defender executes an effort e1 at unit cost c1 to 

protect an inherent risk, and effort e2 at cost c2 to protect 

against infected asymptotic persons in an epidemic, an effort e3 

at cost c3 against all other hazards. The infected asymptomatic 

person/ infection moves around freely among the population 

incurs an effort I ≥ 0 at unit cost C1. The expenditures are  ci*ei 

(i=1,2 and 3), and I*C1 can reflect capital costs and expenses 

such as labour costs, while the magnitude of the natural disaster 

is given by a constant N. 



One of the assumptions that this paper makes is that the contests 

between the health person(defender) and asymptotically 

infected person, takes the form of conflict as well as rent-

seeking (Hirshleifer, 1995; Skaperdas, 1996). 

If a is a contest success function satisfying the following 

conditions, for the contest involving natural disaster, the 

healthy person retains a fraction a of its asset where  

𝜕𝑎/𝜕𝑒1 > 0 
𝜕𝑎/𝜕𝑒3 > 0 

                                        𝜕𝑎/𝜕𝑁 < 0  

For the game involving the asymptotic infected person, the 

defender maintains an expected fraction b of its asset, and the 

asymptotic infected person gets the other fraction B = 1 – b, 

where b represents contest success function as below  

                                         𝜕𝑏/𝜕𝑒2 > 0 
𝜕𝑏/𝜕𝑒3 > 0 
𝜕𝑏/𝜕𝐼 < 0 

The fractions a, b and B are fractions of the value of the person 

(if a natural disaster or asymptotic infected person/ infection 

results in partial damage), or probabilities that a natural disaster 

or an asymptotic infected person ultimately kills the person 

having a value V. 

Using the “common ratio formula (Hausken, 2005; Skaperdas, 

1996; Tullock, 1980)” 

𝑎 =
𝑒1+𝑒3

𝑒1+𝑒3+𝑁
, 𝑏 =

𝑒2+𝑒3

𝑒2+𝑒3+𝐼
, 𝐵 =

𝐼

𝑒2+𝑒3+𝐼
 ----------------------(1) 

 

Though in the current case we have considered a and b 

separately, the healthy person’s (defender’s) success of survival 

p depends mainly on the minimum (a,b) 

The defender’s (healthy person) DU and infected Utility 

function InfU  are given as below 

𝑈𝐷 = [𝑝 ∗  (
𝑒1+𝑒3

𝑒1+𝑒3+𝑁
) + (1 − 𝑝) ∗ (

𝑒2+𝑒3

𝑒2+𝑒3+𝐼
)] ∗ 𝑉 − 𝑐1 ∗ 𝑒1 − 𝑐2 ∗ 𝑒2 − 𝑐3 ∗ 𝑒3  

𝑈𝐼𝑛𝑓 = −(1 − 𝑝) ∗ (
𝐼

𝑒2+𝑒3+𝐼
) ∗ 𝑉 − 𝐼 ∗ 𝐶𝐼 ----------------(2) 

 

In this paper, we have considered the simultaneous movement 

of the healthy person(defender) and the asymptotic infected 

person. We can use even if they do not move simultaneously, 

as long as the agents/persons moving later are not aware of any 

earlier actions as in the case of Covid-19 epidemic.  But there 

may be situations where the games may be sequential, i.e. 

which are also called dynamic. Here, either the asymptotic 

infected person may make the first move, or the healthy person 

may make the first move, and the agents moving later may be 

aware of earlier agent’s actions. The mathematical approach 

will be different, and solutions can be obtained using backward 

induction.  
 

III. ANALYSIS OF THE MODEL 

The three first-order conditions for the health person(defender), 

as well as the first-order condition for the asymptomatic 

infected person which is unique, is given below. 

Please refer Appendix 1, where the Hessian Matrix, which 

satisfies the second-order conditions for maxima for the 

defender, InfU has been proved. Further, the second-order term 

for the infected person has also been shown to be convex. 

 

              
𝜕𝑈𝐷

𝜕𝑒1
=

𝑝∗𝑁∗𝑉

(𝑒1+𝑒3+𝑁)
2 − 𝑐1 = 0 

                  
𝜕𝑈𝐷

𝜕𝑒2
=

(1−𝑝)∗𝐼∗𝑉

(𝑒2+𝑒3+𝐼)
2 − 𝑐2 = 0 

                  
𝜕𝑈𝐷

𝜕𝑒3
=

𝑝∗𝑁∗𝑉

(𝑒1+𝑒3+𝑁)
2 +

(1−𝑝)∗𝐼∗𝑉

(𝑒2+𝑒3+𝐼)
2 − 𝑐3 = 0----------(3) 

                 
2 3inf

2

2 3

(1 )*( )*
0

( )
I

p e e VU
C

I e e I

− − +
= − =

 + +

 

To solve for the above set of first-order conditions, we need to 

settle for three unknowns (e1 + e3, e2 + e3 and I) 

We have three conditions for which we need to solve for these 

unknowns 

1)𝑐1 + 𝑐2 = 𝑐3 
2)𝑐1 + 𝑐2 < 𝑐3 

                                       3)𝑐1 + 𝑐2 > 𝑐3  

For situation 1)𝑐1 + 𝑐2 = 𝑐3  , we can obtain an interior 

solution, where there are multiple optima and which means that 

the cost that occurs in all-hazards protection, i.e. the investment 

is as effective as protection from both asymptomatic infected 

persons/infections and natural disaster individually. Although 

equality is very unlikely to hold in practice. Hence an interior 

solution is doubtful, as unit costs of such sizes are realistic, and 

therefore we do not consider this condition further.  

None withdraws from a simultaneous game as we use ratio 

contest success functions which imply that all are in 

equilibrium. (Equilibrium is defined as a solution from which 

no unilateral deviation of an agent is possible.) Hence, we can 

never have e2=e3=0 or I=0 for if this were to happen, then the 

relevant agencies would have to choose off equilibrium 

behaviour. Hence the five relevant corner solutions are 

e1=0, e2=0, e3=0, e1=e2=0, e1=e3=0 as illustrated below 

 

Let us consider the condition when 2)𝑐1 + 𝑐2 < 𝑐3 

In this case, we see that the sum of the defender’s other two-

unit costs is less than the more general all-hazards protection.  

Solving the first, second, and fourth equations in (3) 

 

𝑒1 = {√
𝑝𝑁

𝑐1/𝑉
− 𝑁𝑤ℎ𝑒𝑛

𝑝

𝑐1/𝑉
≥ 𝑁

0𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑒2 = √
(1 − 𝑝) ∗ 𝐶1 ∗ 𝑉

𝑐2 ∗ [𝐶1 − (1 − 𝑝) ∗ 𝑉]
, 

𝑒3 = 0, 
 

𝐼 = √
(1 − 𝑝) ∗ 𝑉 ∗ [𝐶1 − (1 − 𝑝) ∗ 𝑉]

𝐶1 ∗ 𝑐2
 

 
𝑇ℎ𝑖𝑠 
𝑒𝑥𝑖𝑠𝑡𝑠 
𝑖𝑓 

                    𝐶1 ≥ (1 − 𝑝) ∗ 𝑉 -------------------------------(4) 

And the respective utilities are  



𝑈𝐷 = [𝑝 ∗ (
1

1 +
𝑁

√
𝑝𝑁𝑉
𝑐1

− 𝑁

) + (1 − 𝑝)

∗ (
1

1 +
𝐼 ∗ 𝑐2 ∗ [𝐶1 − (1 − 𝑝) ∗ 𝑉]

√(1 − 𝑝) ∗ 𝐶1 ∗ 𝑉

)] ∗ 𝑉

− 𝑐1 ∗ (√
𝑝𝑁𝑉

𝑐1
− 𝑁) − 𝑐2

∗ (
√(1 − 𝑝) ∗ 𝐶1 ∗ 𝑉

𝐼 ∗ 𝑐2 ∗ [𝐶1 − (1 − 𝑝) ∗ 𝑉]
) 

𝑤ℎ𝑒𝑛
𝑝

𝑐1/𝑉
≥ 𝑁 

𝑈𝐷 =
𝑝

𝑁
+ (1 − 𝑝) ∗ 𝑉/𝐼 − 𝑐2 ∗ (

√(1 − 𝑝) ∗ 𝐶1 ∗ 𝑉

𝐼 ∗ 𝑐2 ∗ [𝐶1 − (1 − 𝑝) ∗ 𝑉]
) 

 
𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

       

inf 1
2 1

1

(1 )*( ) *
* *[ (1 )* ]

1
(1 )* *

V
U p C I

I c C p V

p C V

= − − −
− −

+
−

 

In this case, the defender protects against the natural disaster, 

except when the natural disaster is not sufficiently damaging to 

justify the cost or investment involved in protection. If the 

natural disaster is an agent that acts intentionally, N would have 

been chosen at a level where effort e1 would always be positive 

in equilibrium. However, since N is an independent variable 

and exogenously preferred, e1=0 is possible Further e1=e3=0 is 

also possible however e2=e3=0 is not possible due to the 

reasons that the asymptomatic infected person’s intentions are 

not clearly known and hence cannot be compared of that with 

the natural disaster. 

We observe that e1 is inverse U shaped in N and that e2 /I =  

(C1/V)*(c2/V) Thus, the defender doesn’t protect from a 

natural disaster in case threat is too small, but also when risk is 

massive as it cannot be countered cost-effectively. By contrast, 

the defender always invests in protection from asymptomatic 

infected persons, since withdrawal means losing himself when 

the asymptomatic infected person invests an arbitrarily small 

effort. Thus, if the healthy person doesn’t take actions to defend 

himself against the asymptomatically infected persons, it 

increases the threat to lose his life. 

Now, consider the condition 3)𝑐1 + 𝑐2 > 𝑐3  . 

In this case, the sum of the defender’s other two-unit costs has 

a higher cost than a general all hazards cost. This means that 

either e1=0 or e2 =0 at equilibrium. When e1=0, then e3 is 

applied against the disaster. For convenience, let s1 = e1 + e3, 

and s2 = e2 + e3. Then, solving the various equations, i.e.  

second, third, and fourth equations in (3) 

𝑐1 + 𝑐2 > 𝑐3 

 

                                         𝑒1 = 0  

𝑠1 = 𝑒1 + 𝑒3 = √
𝑝𝑁𝑉

𝑐2 − 𝑐3
−𝑁 

𝑠2 = 𝑒2 + 𝑒3 =
(1 − 𝑝) ∗ 𝑉 ∗ 𝐶1

𝑐22 ∗ (1 +
𝐶1
𝑐2
)2

 

 

                                       𝐼 =
(1−𝑝)∗𝑉

𝑐2∗(1+
𝐶1
𝑐2
)2

 -----(5) 

When s1≤ s2, then equation (5) implies that the defender, i.e. 

the healthy person invests in all-hazards protection at level s1, 

and e2 provides the remaining needed defence against the 

asymptotic infected person. If c2 is sufficiently large, then 

e2=0. This can occur when c2 < c3, and means that all-hazards 

protection takes care of both the disaster and the asymptotic 

infected person.  

Though we do not take efforts to analyse this case here, solving 

it amounts to setting e1=e2=0, and hence we solve the third and 

fourth equations in (3) concerning e3 and I, which gives a 

higher than second-order equation. By contrast, when c1 + c2 > 

c3 but e2 =0, then e3 is applied against asymptotically infected 

person. Solving the various equations of 3, i.e. the first, third, 

and fourth equations in (3) gives 

𝑐1 + 𝑐2 > 𝑐3 
𝑒2 = 0 

𝑠1 = 𝑒1 + 𝑒3 = √
𝑝𝑁𝑉

𝑐1
− 𝑁 

𝑠2 = 𝑒2 + 𝑒3 =
(1 − 𝑝) ∗ 𝐶1 ∗ 𝑉

(𝑐1 − 𝑐3)
2 ∗ (

𝑐3 − 𝑐1
𝐶1

− 1)2
 

                               𝐼 =
(1−𝑝)∗𝑉

(𝑐3−𝑐1)∗(
𝑐1−𝑐3
𝐶1

+1)2
------------(6) 

When s2 ≤ s1, equation (6) implies that the defender invests in 

all-hazards protection at level s2, and e1 provides the remaining 

much-needed defence against the natural disaster. If c1 is 

relatively large, then we will have effort e1 =0. This can occur 

when cost c1 < c3, and means that all-hazards protection takes 

care of both the disaster and the asymptomatic infected person. 

This is similar to the condition faced before where we obtain a 

higher-order equation and thus can neglect it. 

 

         

        IV. USEFUL PROPOSITIONS 

Proposition 1:  

The healthy person, i.e. defender, may have advantages in 

moving first, than in the simultaneous game because it may be 

associated with a sufficiently low unit cost of defence, as well 

as protection of his life as the defender can deter the 

asymptomatic person altogether.  

Proposition 2:  

In case of the asymptomatic infected moving first, than in a 

simultaneous game, the healthy person may be deterred to incur 

an effort which may result in zero utility and hence a loss of his 

life. 

 

 



        IV. CONCLUSIONS 

In this paper, we have considered two threats, threats from 

natural disaster and threats from an asymptomatic infected 

person in an epidemic, from which a healthy person, i.e. a 

defender can protect through three different kinds of 

investments. These protective defences are against the disaster 

created by nature only, against asymptomatic infected person/ 

infection only, or against all types of hazards. The healthy 

person, i.e., defender makes trade-offs between these three 

investments, under the assumption that how freely the 

asymptomatic person moves around in an epidemic, a fixed 

probability of occurrence a natural disaster of the magnitude 

that is independent, and the value of the healthy person, i.e. 

defender, one seeks to protect. We have considered the most 

probable realistic situation when the agents move 

simultaneously though in future we can model when the 

defender moves first or last. When an all-hazards type of 

protection is relatively cheap, it jointly protects against both the 

natural disaster as well as against asymptomatic infected 

person, with no need for either protection for a purely natural 

disaster or absolute asymptomatic infected/ infection 

protection. As the cost of all-hazards protection increases above 

a particular level, either pure protection against natural disaster 

or pure protection against an infected person (but not both) joins 

in as contrast to all-hazards protection. As the unit cost of all-

hazards protection increases further and higher, it eventually 

reaches a point, at which point protection against all-hazards 

falls to zero. However, one can also conclude that the history of 

large-scale natural disasters is much longer or at least equal to 

the history of asymptomatic infection. Though this work may 

indicate that the expenditures increase linearly in the 

investments, future research can verify the non-linear 

dependence of spending on the investments 

 

 

 

APPENDIX 1 
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2 3inf

2 3

2 3

2*(1 )*( )*
0

( )

.

p e e VU

I e e I
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satisfiesconvexity
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 + +

 

Hence the function Uinf has a minimum 

 

If e1= x, e2=y and e3=z, c1=a, c2=b, c3= c for convenience, 

calculating the hessian of the utility function of the defender 

we have  

 

 

> 

 

Whose result is given below 

To show that above Hessian H is negative semi-definite, it is 

sufficient to show  

the following three conditions:  

1)|𝐻11| <= 0 

2) |
𝐻11𝐻12
𝐻21𝐻22

| ≥ 0 

                          

                                      3) |

𝐻11𝐻12𝐻13
𝐻21𝐻22𝐻23

𝐻31𝐻32𝐻33

| ≡ 𝐻𝑎𝑛𝑑|𝐻| ≤ 0|  

 

 From 1) We have H11 as 
−2∗𝑝∗𝑁∗𝑉

𝑒1+𝑒3+𝑁
  

Which is negative 

From 2 we have 

|
𝐻11𝐻12
𝐻21𝐻22

| = [
2∗𝑝∗𝑁∗𝑉

(𝑒1+𝑒3+𝑁)
3] ∗

[(1−𝑝)∗
𝐶𝑖
𝑉
]1/2

4∗(𝑒2+𝑒3)
3/2  

Which is positive 

Finally, from 3 we have 

 

|

𝐻11𝐻12𝐻13
𝐻21𝐻22𝐻23

𝐻31𝐻32𝐻33

| 

= 

 

                                                        −
𝑝2∗𝑁2∗𝑉3

(𝑒1+𝑒3+𝑁)
6 ∗

[
((1−𝑝)∗𝐶𝑖/𝑉)

1/2

(𝑒2+𝑒3)
3/2 ]  

Which is negative 

Hence the Hessian is negative semi indefinite. 
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