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Abstract: The Riemann hypothesis and the P versus NP problem are two of the most important
unsolved Millennium Prize Problems. Let Ψ(n) = n · ∏q|n

(
1 + 1

q

)
denote the Dedekind Ψ function

where q | n means the prime q divides n. Define, for n ≥ 3; the ratio R(n) = Ψ(n)
n·log log n where log is

the natural logarithm. Let Nn = 2 · . . . · qn be the primorial of order n. We prove if the inequality
R(Nn+1) < R(Nn) holds for all primes qn (greater than some threshold), then the Riemann hypothesis
is true. In this note, we show that the previous inequality always holds for all large enough prime
numbers. A precise statement of the P versus NP problem was introduced independently by Stephen
Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem have failed.
Another major complexity class is NP-complete. It is well-known that P is equal to NP under the
assumption of the existence of a polynomial time algorithm for some NP-complete. We show that
the Monotone Weighted Xor 2-satisfiability problem (MWX2SAT) is NP-complete and P at the same
time.

Keywords: Elementary number theory; Computational complexity; Riemann hypothesis; prime
numbers; complexity classes; polynomial time

1. Introduction
1.1. The Riemann hypothesis

The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros
only at the negative even integers and complex numbers with real part 1

2 . It is considered by
many to be the most important unsolved problem in pure mathematics. The hypothesis was
proposed by Bernhard Riemann (1859). The Riemann hypothesis belongs to the Hilbert’s
eighth problem on David Hilbert’s list of twenty-three unsolved problems. This is one of the
Clay Mathematics Institute’s Millennium Prize Problems. In recent years, there have been
several developments that have brought us closer to a proof of the Riemann hypothesis.
There are many approaches to the Riemann hypothesis based on analytic number theory,
algebraic geometry, non-commutative geometry, etc.

The Riemann zeta function ζ(s) is a function under the domain of complex numbers. It
has zeros at the negative even integers: These are called the trivial zeros. The zeta function
is also zero for other values of s, which are called nontrivial zeros. The Riemann hypothesis
is concerned with the locations of these nontrivial zeros. Bernhard Riemann conjectured
that the real part of every nontrivial zero of the Riemann zeta function is 1

2 .
The Riemann hypothesis’s importance remains from its deep connection to the dis-

tribution of prime numbers, which are essential in many computational and theoretical
aspects of mathematics. Understanding the distribution of prime numbers is crucial for
developing efficient algorithms and improving our understanding of the fundamental
structure of numbers. Besides, the Riemann hypothesis stands as a testament to the power
and allure of mathematical inquiry. It challenges our understanding of the fundamental
structure of numbers, inspiring mathematicians to push the boundaries of their field and
seek ever deeper insights into the universe of mathematics.

1.2. The P versus NP problem

P versus NP is one of the most important and challenging problems in computer
science [1]. It asks whether every problem whose solution can be quickly verified can also
be quickly solved. The informal term “quickly” here refers to the existence of an algorithm
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that can solve the task in polynomial time [1]. The general class of problems for which such
an algorithm exists is called P or “class P” [1].

Another class of problems called NP, which stands for “nondeterministic polynomial
time”, is defined by the property that if an input to a problem is a solution, then it can
be quickly verified [1]. The P versus NP problem asks whether P equals NP. If it turns
out that P ̸= NP, which is widely believed to be the case, it would mean that there are
problems in NP that are harder to compute than to verify [1]. This would have profound
implications for various fields, including cryptography and artificial intelligence [2].

Solving the P versus NP problem is considered to be one of the greatest challenges in
computer science [1]. A solution would have a profound impact on our understanding of
computation and could lead to the development of new algorithms and techniques that
could solve many of the world’s most pressing problems [1]. The problem is so difficult
that it is considered to be one of the seven Millennium Prize Problems, which are a set of
seven unsolved problems that have been offered a 1 million prize for a correct solution [1].

2. Materials and methods
2.1. The Riemann hypothesis

In mathematics, the Chebyshev function θ(x) is given by

θ(x) = ∑
q≤x

log q

with the sum extending over all prime numbers q that are less than or equal to x, where log
is the natural logarithm. We know the following inequalities:

Proposition 1. For r ≥ 0 and −1 ≤ x < 1
r [3, pp. 1]:

(1 + x)r ≤ 1
1 − r · x

.

Proposition 2. For x > −1 [3, pp. 1]:

x
1 + x

≤ log(1 + x) ≤ x.

Leonhard Euler studied the following value of the Riemann zeta function (1734) [4].

Proposition 3. We define [4, (1) pp. 1070]:

ζ(2) =
∞

∏
k=1

q2
k

q2
k − 1

=
π2

6
,

where qk is the kth prime number (We also use the notation qn to denote the nth prime number). By
definition, we have

ζ(2) =
∞

∑
n=1

1
n2 ,

where n denotes a natural number. Leonhard Euler proved in his solution to the Basel problem that

∞

∑
n=1

1
n2 =

∞

∏
k=1

q2
k

q2
k − 1

=
π2

6
,

where π ≈ 3.14159 is a well-known constant linked to several areas in mathematics such as number
theory, geometry, etc.
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The number γ ≈ 0.57721 is the Euler-Mascheroni constant which is defined as

γ = lim
n→∞

(
− log n +

n

∑
k=1

1
k

)

=
∫ ∞

1

(
− 1

x
+

1
⌊x⌋

)
dx.

Here, ⌊. . .⌋ represents the floor function. In number theory, Ψ(n) = n · ∏q|n

(
1 + 1

q

)
is

called the Dedekind Ψ function, where q | n means the prime q divides n.

Definition 1. We say that Dedekind(qn) holds provided that

∏
q≤qn

(
1 +

1
q

)
≥ eγ

ζ(2)
· log θ(qn).

A natural number Nn is called a primorial number of order n precisely when,

Nn =
n

∏
k=1

qk.

We define R(n) = Ψ(n)
n·log log n for n ≥ 3. Dedekind(qn) holds if and only if R(Nn) ≥ eγ

ζ(2) is
satisfied.

Proposition 4. Unconditionally on Riemann hypothesis, we know that [5, Proposition 3 pp. 3]:

lim
n→∞

R(Nn) =
eγ

ζ(2)
.

The well-known asymptotic notation Ω was introduced by Godfrey Harold Hardy
and John Edensor Littlewood [6]. In 1916, they also introduced the two symbols ΩR and
ΩL defined as [7]:

f (x) = ΩR(g(x)) as x → ∞ if lim sup
x→∞

f (x)
g(x)

> 0;

f (x) = ΩL(g(x)) as x → ∞ if lim inf
x→∞

f (x)
g(x)

< 0.

After that, many mathematicians started using these notations in their works. From the last
century, these notations ΩR and ΩL changed as Ω+ and Ω−, respectively. There is another
notation: f (x) = Ω±(g(x)) (meaning that f (x) = Ω+(g(x)) and f (x) = Ω−(g(x)) are
both satisfied). Nowadays, the notation f (x) = Ω+(g(x)) has survived and it is still used
in analytic number theory as:

f (x) = Ω+(g(x)) if ∃k > 0 ∀x0 ∃x > x0 : f (x) ≥ k · g(x)

which has the same meaning to the Hardy and Littlewood older notation. For x ≥ 2, the
function f was introduced by Nicolas in his seminal paper as [8, Theorem 3 pp. 376], [9,
(5.5) pp. 111]:

f (x) = eγ · log θ(x) · ∏
q≤x

(
1 − 1

q

)
.

Finally, we have the Nicolas Theorem:
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Proposition 5. If the Riemann hypothesis is false then there exists a real b with 0 < b < 1
2 such

that, as x → ∞ [8, Theorem 3 (c) pp. 376], [9, Theorem 5.29 pp. 131]:

log f (x) = Ω±(x−b).

Putting all together yields a proof for the Riemann hypothesis.

2.2. The P versus NP problem

NP-complete problems are a class of computational problems that are at the heart of
many important and challenging problems in computer science. They are defined by the
property that they can be quickly verified, but there is no known efficient algorithm to solve
them. This means that finding a solution to an NP-complete problem can be extremely
time-consuming, even for relatively small inputs. In computational complexity theory, a
problem is considered NP-complete if it meets the following two criteria:

1. Membership in NP: A solution to an NP-complete problem can be verified in poly-
nomial time. This means that there is an algorithm that can quickly check whether a
proposed solution is correct [10].

2. Reduction to NP-complete problems: Any problem in NP can be reduced to an
NP-complete problem in polynomial time. This means that any NP-problem can be
transformed into an NP-complete problem by making a small number of changes [10].

If it were possible to find an efficient algorithm for solving any one NP-complete problem,
then this algorithm could be used to solve all NP problems in polynomial time. This would
have a profound impact on many fields, including cryptography, artificial intelligence, and
operations research [2]. Here are some examples of NP-complete problems:

• Boolean satisfiability problem (SAT): Given a Boolean formula, determine whether
there is an assignment of truth values to the variables that makes the formula true [11].

• K-CLOSURE problem: Given a directed graph G = (V, A) (V is the set of vertices
and A is the set of edges) and positive integer k, determine whether there is a set V′

of at most k vertices such that for all (u, v) ∈ A either u ∈ V′ or v /∈ V′ (see reference
[Queyranne, 1976] from the Johnson and Garey book) [11]. Note that in this problem
the statement “either u ∈ V′ or v /∈ V′” does mean the same as (u ∈ V′ or v ∈ V′) or
(u /∈ V′ or v /∈ V′) since the logical implication of the word “Either” indicates that at
least one of the following statements must be true, but not necessarily both.

These are just a few examples of the many NP-complete problems that have been studied
and have a close relation with our current result. On the one hand, a vertex cover (some-
times called a node cover) of a graph G is a subset of its vertices, denoted by V′, such that
every edge in G has at least one endpoint in V′. On the other hand, an independent set V′

is a subset of vertices in a graph G where no two vertices in the set are connected by an
edge.

Definition 2. Vertex Cover and Independent Set
INSTANCE: An undirected graph G = (V, E) and a positive integer k.
QUESTION: Is there set V′ of at most k vertices such that V′ is both a vertex cover and an

independent set in G?
REMARKS: This problem can be easily solved in polynomial time [11].

In this work, we show there is an NP-complete problem that can be solved in polyno-
mial time using the previous problem. Consequently, we prove that P is equal to NP.

3. Results
3.1. The Riemann hypothesis

Several analogues of the Riemann hypothesis have already been proved. Many authors
expect (or at least hope) that it is true. Nevertheless, there exist some implications in case
of the Riemann hypothesis could be false. The following is a key Lemma.
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Lemma 1. If the Riemann hypothesis is false, then there exist infinitely many prime numbers qn
such that Dedekind(qn) fails (i.e. Dedekind(qn) does not hold).

Proof. The function g is defined as [5, Theorem 4.2 pp. 5]:

g(x) =
eγ

ζ(2)
· log θ(x) · ∏

q≤x

(
1 +

1
q

)−1
.

We claim that Dedekind(qn) fails whenever there exists some real number x0 ≥ 5 for which
g(x0) > 1 or equivalent log g(x0) > 0 and qn is the greatest prime number such that
qn ≤ x0. It was proven the following bound [5, Theorem 4.2 pp. 5]:

log g(x) ≥ log f (x)− 2
x

.

By Proposition 5, if the Riemann hypothesis is false, then there is a real number 0 < b < 1
2

such that there exist infinitely many numbers x for which log f (x) = Ω+(x−b). Actually
Nicolas proved that log f (x) = Ω±(x−b), but we only need to use the notation Ω+ under
the domain of the real numbers. According to the Hardy and Littlewood definition, this
would mean that

∃k > 0, ∀y0 ∈ R, ∃y ∈ R (y > y0) : log f (y) ≥ k · y−b.

The previous inequality is also log f (y) ≥
(

k · y−b · √y
)
· 1√

y , but we notice that

lim
y→∞

(
k · y−b · √y

)
= ∞

for every possible values of k > 0 and 0 < b < 1
2 . Now, this implies that

∀y0 ∈ R, ∃y ∈ R (y > y0) : log f (y) ≥ 1
√

y
.

Note that, the value of k is not necessary in the statement above. In this way, if the
Riemann hypothesis is false, then there exist infinitely many wide apart numbers x such
that log f (x) ≥ 1√

x . Since 1√
x0

> 2
x0

for x0 ≥ 5, then it would be infinitely many wide apart
real numbers x0 such that log g(x0) > 0. In addition, if log g(x0) > 0 for some real number
x0 ≥ 5, then log g(x0) = log g(qn) where qn is the greatest prime number such that qn ≤ x0.
The reason is because of the equality of the following terms:

∏
q≤x0

(
1 +

1
q

)−1
= ∏

q≤qn

(
1 +

1
q

)−1

and
θ(x0) = θ(qn)

according to the definition of the Chebyshev function.

This is a new Criterion for the Riemann hypothesis.

Lemma 2. The Riemann hypothesis is true whenever for each large enough prime number qn, there
exists another prime qn′ > qn such that

R(Nn′) ≤ R(Nn).
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Proof. By Lemma 1, if the Riemann hypothesis is false and the inequality

R(Nn′) ≤ R(Nn)

is satisfied for each large enough prime number qn, then there exists an infinite subsequence
of natural numbers ni such that

R(Nni+1) ≤ R(Nni ),

qni+1 > qni and Dedekind(qni ) fails. By Proposition 4, this is a contradiction with the fact
that

lim inf
n→∞

R(Nn) = lim
n→∞

R(Nn) =
eγ

ζ(2)
.

By definition of the limit inferior for any positive real number ε, only a finite number of
elements of R(Nn) are less than eγ

ζ(2) − ε. This contradicts the existence of such previous
infinite subsequence and thus, the Riemann hypothesis must be true.

This is the main insight.

Theorem 1. The inequality R(Nn) > R(Nn+1) holds for all primes qn (greater than some thresh-
old).

Proof. By Lemma 2, the Riemann hypothesis is true if for all primes qn (greater than some
threshold), the inequality

R(Nn′) < R(Nn)

is satisfied for some prime qn′ > qn. In particular, we will consider the case of n′ = n + 1.
That is the same as

∏q≤qn′

(
1 + 1

q

)
log θ(qn′)

<
∏q≤qn

(
1 + 1

q

)
log θ(qn)

and

log log θ(qn′) > log log θ(qn) + ∑
qn<q≤qn′

log
(

1 +
1
q

)
after of applying the logarithm to the both sides and distributing the terms. That is
equivalent to

1 >
log log θ(qn)

log log θ(qn′)
+

∑qn<q≤qn′
log
(

1 + 1
q

)
log log θ(qn′)

after dividing both sides by log log θ(qn′). This is possible because of the prime number qn′

is large enough and thus, the real number log log θ(qn′) would be greater than 0. We can
apply the exponentiation to the both sides in order to obtain that

e > exp
(

log log θ(qn)

log log θ(qn′)

)
·
(

∏
qn<q≤qn′

(
1 +

1
q

)) 1
log log θ(qn′ )

.

For large enough prime qn′ , we have

e = (log θ(qn′))
1

log log θ(qn′ )

since e = x
1

log x for x > 0. Hence, it is enough to show that

log θ(qn′) > ∏
qn<q≤qn′

(
1 +

1
q

)
.
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That is equal to

log θ(qn+1) > 1 +
1

qn+1

under the assumption that n′ = n + 1. In addition, the previous inequality is satisfied when

log θ(qn+1) ≥ 2.

We would have

1 + ϵ1 = exp
(

log log θ(qn)

log log θ(qn′)

)
and

e · (1 − ϵ2) =

(
∏

qn<q≤qn′

(
1 +

1
q

)) 1
log log θ(qn′ )

.

We only need to prove that
e > (1 + ϵ1) · e · (1 − ϵ2)

which is
ϵ2 >

ϵ1

ϵ1 + 1
.

In addition, we can see that

1 − e−1 ·
(

∏
qn<q≤qn′

(
1 +

1
q

)) 1
log log θ(qn′ )

= ϵ2.

We have (
∏

qn<q≤qn′

(
1 +

1
q

)) 1
log log θ(qn′ )

=

(
1 + ∏

qn<q≤qn′

(
1 +

1
q

)
− 1

) 1
log log θ(qn′ )

≤ 1

1 −
(

∏qn<q≤qn′

(
1+ 1

q

)
−1
)

log log θ(qn′ )

=
log log θ(qn′)

log log θ(qn′) + 1 − ∏qn<q≤qn′

(
1 + 1

q

)
by Proposition 1, since

−1 ≤
(

∏
qn<q≤qn′

(
1 +

1
q

)
− 1

)
< log log θ(qn′)

due to qn and qn′ are large enough. It is a fact that if we take n′ = n + 1, then we obtain(
∏

qn<q≤qn+1

(
1 +

1
q

)
− 1

)
=

1
qn+1

< log log θ(qn+1)

and thus, whenever we have
1 ≤ log log θ(qn+1),

then that would be quite enough. As a consequence, we obtain that

1 − e−1 · log log θ(qn′)

log log θ(qn′) + 1 − ∏qn<q≤qn′

(
1 + 1

q

) ≤ ϵ2.
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Putting all together, we show that

1 − e−1 · log log θ(qn′)

log log θ(qn′) + 1 − ∏qn<q≤qn′

(
1 + 1

q

) >
ϵ1

ϵ1 + 1
.

That is equal to say that

ϵ1 + 1
ϵ1

−
e−1 · ϵ1+1

ϵ1
· log log θ(qn′)

log log θ(qn′) + 1 − ∏qn<q≤qn′

(
1 + 1

q

) > 1

and

1 >
e−1 · (ϵ1 + 1) · log log θ(qn′)

log log θ(qn′) + 1 − ∏qn<q≤qn′

(
1 + 1

q

) .

where

log log θ(qn′) + 1 − ∏
qn<q≤qn′

(
1 +

1
q

)
> e−1 · (ϵ1 + 1) · log log θ(qn′)

after making a simple distribution of the terms. If we take n′ = n + 1, then we obtain

− 1
qn+1

>
(

e−1 · (ϵ1 + 1)− 1
)
· log log θ(qn+1).

That would be
1 < qn+1 ·

(
1 − e−1 · (ϵ1 + 1)

)
· log log θ(qn+1)

which is
0 < log qn+1 + log

(
1 − e−1 · (ϵ1 + 1)

)
+ log log log θ(qn+1).

That could be rewritten as

0 < − e−1 · (ϵ1 + 1)
1 − e−1 · (ϵ1 + 1)

+ log qn+1 + log log log θ(qn+1)

and
1

e · (ϵ1 + 1)−1 − 1
< log qn+1 + log log log θ(qn+1)

by Proposition 2 since −e−1 · (ϵ1 + 1) > −1. The inequality

1
e · (ϵ1 + 1)−1 − 1

< log qn+1 + log log log θ(qn+1)

would be
1

exp
(

1 − log log θ(qn)
log log θ(qn+1)

)
− 1

< log qn+1 + log log log θ(qn+1)

because of

ϵ1 = exp
(

log log θ(qn)

log log θ(qn+1)

)
− 1.

We know that

1

exp
(

1 − log log θ(qn)
log log θ(qn+1)

)
− 1

< log qn+1 + log log log θ(qn+1)
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holds when

log qn+1 + log log log θ(qn+1) < exp
(

1 − log log θ(qn)

log log θ(qn+1)

)
· (log qn+1 + log log log θ(qn+1))

also holds. However, we deduce that

log qn+1 + log log log θ(qn+1) < exp
(

1 − log log θ(qn)

log log θ(qn+1)

)
· (log qn+1 + log log log θ(qn+1))

trivially holds since

exp
(

1 − log log θ(qn)

log log θ(qn+1)

)
> 1

under the supposition that qn and qn+1 are large enough.

This is the main theorem.

Theorem 2. The Riemann hypothesis is true.

Proof. By Lemma 2, the Riemann hypothesis is true if for all primes qn (greater than some
threshold), the inequality

R(Nn′) ≤ R(Nn)

is satisfied for some prime qn′ > qn. Therefore, the Riemann hypothesis is true by Theorem
1.

3.2. The P versus NP problem

Formally, an instance of Boolean satisfiability problem (SAT) is a Boolean formula ϕ
which is composed of:

1. Boolean variables: x1, x2, . . . , xn;
2. Boolean connectives: Any Boolean function with one or two inputs and one output,

such as ∧(AND), ∨(OR), ⇁(NOT), ⇒(implication), ⇔(if and only if);
3. and parentheses.

A truth assignment for a Boolean formula ϕ is a set of values for the variables in ϕ. A
satisfying truth assignment is a truth assignment that causes ϕ to be evaluated as true. A
Boolean formula with a satisfying truth assignment is satisfiable. The problem SAT asks
whether a given Boolean formula is satisfiable [11].

We define a CNF Boolean formula using the following terms: A literal in a Boolean
formula is an occurrence of a variable or its negation [10]. A Boolean formula is in conjunc-
tive normal form, or CNF, if it is expressed as an AND of clauses, each of which is the OR
of one or more literals [10]. A Boolean formula is in 2-conjunctive normal form or 2CNF, if
each clause has exactly two distinct literals [10].

For example, the Boolean formula:

(x1∨ ⇁ x1) ∧ (x3 ∨ x2) ∧ (⇁ x1∨ ⇁ x3)

is in 2CNF. The first of its three clauses is (x1∨ ⇁ x1), which contains the two literals x1
and ⇁ x1.

We define the following problem:

Definition 3. Monotone Weighted Xor 2-satisfiability problem (MWX2SAT)
INSTANCE: An n-variable 2CNF formula with monotone clauses (meaning the variables are

never negated) using logic operators ⊕ (instead of using the operator ∨) and a positive integer k.
QUESTION: Is there exists a satisfying truth assignment in which at most k of the variables

are true?
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The following is key Lemma.

Lemma 3. MWX2SAT ∈ NP–complete.

Proof. For any given instance G = (V, A) of the K-CLOSURE problem, one can construct
an equivalent MWX2SAT problem with a variable for each vertex of a graph and two
variables for each edge of a graph. Each edge (u, v) of the graph may be represented by the
2CNF clauses (u ⊕ xuv) ∧ (xuv ⊕ v) ∧ (xvu ⊕ xuv) where xvu and xuv are two new variables
such that for a possible satisfying truth assignment, either both variables u and v are true
and belong to a closure V′ or both variables u and v are false and belong to V − V′. By
definition, the k-vertex closure cannot have any outgoing edges pointing to vertices outside
the closure. Therefore, no edge can exist where one vertex belongs to the solution and the
other does not. Both endpoints of any edge must either be inside the closure or outside
it. Then the satisfying instances of the resulting 2CNF formula using logic operators ⊕
encode solutions to the K-CLOSURE problem, and there is a satisfying truth assignment
with at most k + |A| true variables if and only if there is a closure with at most k vertices
where | . . . | is the cardinality set function. Therefore, like K-CLOSURE, MWX2SAT is
NP-complete.

This is the main theorem.

Theorem 3. MWX2SAT ∈ P.

Proof. There is a connection between finding a satisfying truth assignment in MWX2SAT
with at most k true variables and finding a set of at most k vertices that is both a vertex
cover and an independent set in a specific graph construction.

Here’s a breakdown of the equivalence:

1. Graph Construction:

• Each vertex in the original graph represents a variable in the MWX2SAT formula.
• Edges are created between variables based on the structure of the 2CNF clauses:

If two variables appear in a clause (e.g., (x ⊕ y)), then an edge is drawn between
the corresponding vertices in the graph.

2. MWX2SAT and the Graph:

• A truth assignment in MWX2SAT where at most k variables are true directly
translates to a set of at most k vertices in the constructed graph where true
variables correspond to the vertices included in the set.

• The properties of MWX2SAT clauses ensure that:

– Vertex Cover: The chosen vertices cover all the edges (due to the structure
of the clauses and the way edges are formed). This satisfies the vertex cover
condition.

– Independent Set: The chosen vertices don’t have any edges connecting them
(because the variables are connected in the graph, and only one variable
from each clause can be true). This satisfies the independent set condition.

Therefore, finding a satisfying truth assignment with at most k true variables in MWX2SAT
is indeed equivalent to finding a set of at most k vertices that fulfills both vertex cover and
independent set requirements in the corresponding graph. However, we know the problem
of finding a set of at most k vertices that is both a vertex cover and an independent set
can be easily solved in polynomial time [11]. Consequently, the instances of the problem
MWX2SAT can be solved in polynomial time as well.

4. Conclusion

On the one hand, the Riemann hypothesis has far-reaching implications for mathemat-
ics, with potential applications in cryptography, number theory, and even particle physics.
Certainly, a proof of the hypothesis would not only provide a profound insight into the
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nature of prime numbers but also open up new avenues of research in various mathematical
fields. On the other hand, a proof of P = NP will have stunning practical consequences,
because it possibly leads to efficient methods for solving some of the important problems
in computer science [1]. The consequences, both positive and negative, arise since various
NP-complete problems are fundamental in many fields [2]. But such changes may pale
in significance compared to the revolution an efficient method for solving NP-complete
problems will cause in mathematics itself [1]. Research mathematicians spend their careers
trying to prove theorems, and some proofs have taken decades or even centuries to be
discovered after problems have been stated [1]. A method that guarantees to find proofs for
theorems, should one exist of a “reasonable” size, would essentially end this struggle [1].
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