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Abstract. This paper proposes a system identification method combining a data-

driven state-space model and the unscented Kalman filter (UKF) to estimate dis-

placement time histories of systems with complex material nonlinearities under 

seismic excitations. In this method, the state-space equations are first constructed 

based on a series of polynomial functions using training data which are the dy-

namic responses generated from a finite element (FE) model with complex hyste-

resis behaviors. Specifically, the state-space equations are trained separately for 

the linear and nonlinear regions of the responses. Subsequently, the trained state-

space equations are employed in the UKF to estimate the system displacements. 

In this stage, only the accelerations of the test data are regarded as observations. 

In the UKF, the time-variant process noise covariance matrix and the time-invar-

iant measurement noise variance are inferred by the Robbins-Monro algorithm 

and the Markov chain Monte Carlo method, respectively. The proposed method 

is demonstrated on an FE bridge pier  model using different input ground motions, 

and the results show that the proposed approach enables to accurately estimate the 

system displacements. 

Keywords: Displacement estimation, State-space model identification, Data-

driven approach, Unscented Kalman filter, Seismic response 

 

1 Introduction 

Rapid assessment of structure damages after an earthquake is of great importance from 

a safety and economic point of view. To evaluate the safety conditions of structures, 

displacement responses, especially the maximum displacement and the residual dis-

placement, are preferable indicators. In practice, measuring structure displacement un-

der seismic excitation still remains a challenging work. For example, a reliable station-

ary reference point is necessary for contact displacement sensor such as LVDTs [1], 

which is not practical for onsite application; Noncontact technologies, such as laser 
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scanning instruments, global position systems, and computer vision-based techniques 

possess the drawbacks of high-equipment cost, low sampling rate, low resolution and 

so on. Nowadays, comparing with displacement transducers, accelerometers are more 

widely employed for structural health monitoring. Displacements can also be estimated 

by integrating acceleration signals and applying appropriate high-pass filter [2], how-

ever, this approach cannot be applied to a system undergoing nonlinear deformations 

because the low-frequency components including the residual displacements are inevi-

tably removed.  

In addition, displacement estimation by combining measurement signals and system 

information has also been investigated, and the Kalman filter (KF) is one of the most 

attractive techniques. When a nonlinear system is represented in the KF, the system 

equations are usually defined using the assumed physical hysteresis model, and its pa-

rameters are inferred by e.g., the genetic algorithm [3] and the Markov chain Monte 

Carlo (MCMC) method [4]. However, when the model discrepancies are large, the esti-

mation accuracies may deteriorate significantly. Alternatively, the system equations can 

also be obtained purely from input-output data. In the data-driven approach, the system 

equations are approximated by a series of basis functions without assuming an explicit 

hysteresis model. Ni et al. [5] approximated the state-space equation of a wire-cable 

isolator as a polynomial function in terms of displacement and hysteretic restoring force 

under cyclic loading. Lai and Nagarajaiah [6] developed a sparse system identification 

method, in which the state-space equations of systems with nonlinear hysteresis behav-

ior under seismic excitation are approximated by sparse regression with the basis func-

tions that include the input ground acceleration. 

In this study, we augment the sparse system identification method by Lai and Naga-

rajaiah [6] by training the state-space equations separately for the linear and nonlinear 

system responses. Then, it is combined with the UKF to estimate the displacement of 

structures with complex material nonlinearities under seismic excitations. In the UKF, 

the process noise covariance matrix and the measurement noise variance are automati-

cally estimated using Robbins-Monro (RM) algorithm and the MCMC method, respec-

tively. The proposed approach is verified through a numerical example using a nonlinear 

finite element (FE) bridge pier model under various earthquake inputs. In the following, 

Section 2 outlines the detailed procedure of the proposed method; the numerical verifi-

cations are then presented in Section 3; finally, Section 4 gives the conclusions. 

2 Nonlinear system identification under seismic excitation 

2.1 Data-driven state-space model identification under seismic excitation 

The equation of motion of a single degree-of-freedom (DOF) system is written as: 

 {
𝑚�̈� + 𝑓ℎ = −𝑚�̈�𝑔

𝑓ℎ̇ = 𝑔(𝑥, �̇�, 𝑓ℎ)
 (1) 
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where 𝑚 denotes the mass; 𝑥 is the relative displacement; �̈�𝑔 is the input ground accel-

eration; 𝑓ℎ is the nonlinear restoring force which also includes structural damping. This 

equation of motion can be represented as a state-space model: 

 �̇� = 𝑓(𝒙, �̈�𝑔) = [

�̇�
−𝑎ℎ − �̈�𝑔

1

𝑚
𝑔(𝑥, �̇�, 𝑚𝑎ℎ)

] (2) 

where 

 𝒙 = [

𝑥
�̇�

𝑎ℎ

] (3) 

where 𝑎ℎ is the absolute acceleration, which is calculated as the negative sum of the 

relative acceleration �̈� and the input ground acceleration �̈�𝑔. According to Lai and Na-

garajaiah [6], the nonlinear system function 𝑓 can be approximated by the sum of basis 

function as follows: 

 �̇� = 𝚵[𝚯(𝒙, �̈�𝑔)]
′
 (4) 

where 𝚯 denotes the assembly of the basis functions; 𝚵 is the corresponding coefficient 

matrix. Specifically, the assembly 𝚯 can be written as: 

 𝚯(𝒙, �̈�𝑔) = [1 𝑿 𝑿2  ⋯ �̈�𝑔] (5) 

where 𝑿 = [𝑥 �̇� 𝑎ℎ  |�̇�| |𝑎ℎ|]; 𝑿𝑖  (𝑖 = 2, 3, ⋯) is the higher-order polynomial terms. For 

example, 𝑿2 is the second-order polynomial terms expressed as: 

 𝑿2 = [𝑥2  ⋯ |𝑎ℎ|2 𝑥�̇�  ⋯  𝑥|𝑎ℎ| �̇�𝑎ℎ  ⋯ |�̇�||𝑎ℎ|] (6) 

In this study, �̇� and 𝚯(𝒙, �̈�𝑔) are both computed using a numerical model of the tar-

get system. Based on these artificially generated seismic response data, the coefficient 

matrix 𝚵 can be estimated by sparse regression using the LASSO algorithm [7]. The 

highest order of the polynomial terms and the regularization factor in the LASSO algo-

rithm are determined based on Akaike information criterion (AIC). The reader can refer 

to Lai and Nagarajaiah [6] for the detailed procedure of sparse regression.  

Under strong seismic excitation, the third row in 𝚵 can differ for the linear and non-

linear regions of the system responses. Hence, the seismic response data �̇� and 𝚯(𝒙, �̈�𝑔) 

are divided into three sections: region A before the nonlinear responses are observed; 

region B where the input ground motion increases and the nonlinear responses are ob-

served; region C after the nonlinear responses are finished. Then, the state equation of 

each region is estimated, respectively, as follows: 

 �̇�𝑘 = 𝚵𝑙𝑎𝑠𝑠𝑜[𝚯(𝒙𝑘, �̈�𝑔𝑘)]
′
 (7) 

where 
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 𝚵𝑙𝑎𝑠𝑠𝑜 = {

𝚵𝐴,𝑙𝑎𝑠𝑠𝑜      (1 ≤ 𝑘 ≤ 𝑇𝑎)        

𝚵𝐵,𝑙𝑎𝑠𝑠𝑜      (𝑇𝑎 + 1 ≤ 𝑘 ≤ 𝑇𝑏)

𝚵𝐶,𝑙𝑎𝑠𝑠𝑜       (𝑇𝑏 + 1 ≤ 𝑘 ≤ 𝑇)

 (8) 

where 𝑇𝑎 and 𝑇𝑏  denote the time where the Sections A and B are finished, respectively; 

𝑇 is the total length of the discrete input ground motion. In this paper, 𝑇𝑎 and 𝑇𝑏  are 

determined manually from the datasets. It is noted that, they can also be automatically 

estimated by identifying the time-variant system stiffness [8, 9] or the natural frequency 

history of the system [10]. 

2.2 Displacement estimation by UKF 

Based on the state-space model derived in the previous section, the UKF [11] is utilized 

to estimate the system displacement using available observations.  

The state equation and the observation equation are expressed as follows: 

 �̇�𝑘 = 𝚵𝑙𝑎𝑠𝑠𝑜[𝚯(𝒙𝑘, �̈�𝑔𝑘)]
′

+ 𝒗𝑘 (9) 

 𝑦𝑘 = 𝑪�̇�𝑘 + 𝑤𝑘 (10) 

where 𝒗𝑘 and 𝑤𝑘 represent the process noise and observation noise, respectively; 𝑦𝑘  de-

notes the observations; 𝑪 indicates the observation matrix. In this study, the absolute 

acceleration of the system is employed as the observations; thus, 𝑪 is a simple selection 

matrix:  

 𝑪 = [0 0 1] (11) 

In the UKF, the state estimate 𝒙𝑘+1 is obtained as: 

 𝒙𝑘+1 = 𝒙𝑘+1
− + 𝑮𝑘+1(𝑦𝑘+1 − �̂�𝑘+1

− ) (12) 

where 𝒙𝑘+1
−  denotes the prior state estimate; 𝑮𝑘+1 is the Kalman gain; �̂�𝑘+1

− = 𝑪𝒙𝑘+1
−  is 

the prior estimate of the observation quantities. The prior state estimate 𝒙𝑘+1
−  is obtained 

from a total of 2𝑛 + 1 sigma points 𝓧𝑖,𝑘+1
−  (𝑖 = 1, ⋯ , 2𝑛 + 1) that are computed based 

on the time integration of the state-space equation in Eq. (7). In this study, the Runge-

Kutta method is used to perform the time integration. In addition, the Kalman gain 𝑮𝑘+1 

is computed as follows: 

 𝑮𝑘+1 = 𝑷𝑘+1
− 𝑪′{𝑪𝑷𝑘+1

− 𝑪′ + 𝑅}−1 (13) 

where 𝑷𝑘+1
−  indicates the prior estimate of the error covariance matrix that is obtained 

based on the prior state estimate 𝒙𝑘+1
− , the sigma points 𝓧𝑖,𝑘+1

− , and the process noise 

covariance matrix 𝑸𝑘; 𝑹 is the observation noise variances. 

After the UKF procedure, the Rauch-Tung-Striebel (RTS) smoothing [12] is further 

performed to obtain the smoothed state estimate:  

 𝒙𝑘
𝑠𝑚𝑡ℎ = 𝒙𝑘 + 𝑮𝑘

𝑠𝑚𝑡ℎ(𝒙𝑘+1
𝑠𝑚𝑡ℎ − 𝒙𝑘+1

− ) (14) 
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where 𝑮𝑘
𝑠𝑚𝑡ℎ is the Kalman gain in the smoothing. The reader can refer to Särkkä [12] 

for the detailed procedures of the UKF and RTS smoothing. It should be noted that, in 

the following sections, the UKF refers to both the filtering and smoothing procedures, 

and 𝒙𝑘
𝑠𝑚𝑡ℎ (i.e., the first component in 𝒙𝑘

𝑠𝑚𝑡ℎ) is used as the displacement estimate.  

2.3 Process noise and observation noise estimation 

To improve the performance of the UKF, the appropriate settings for process noise and 

observation noise are important. In this study, they are assumed to follow zero mean 

independent Gaussian distributions, and the process noise covariance matrix 𝑸𝑘 and the 

observation noise variance 𝑅 are estimated by the RM algorithm and the MCMC algo-

rithm, respectively. Note that, the process noise covariance matrix is time-variant while 

the observation noise variance is a constant value. 

In the RM algorithm, the process noise covariance matrix is obtained as follows: 

 𝑸𝑘+1 = (1 − 𝛼𝑄)𝑸𝑘 + 𝑑𝑖𝑎𝑔{𝛼𝑄𝑮𝑘+1(𝑦𝑘+1 − �̂�𝑘+1
− )(𝑦𝑘+1 − �̂�𝑘+1

− )′𝑮𝑘+1
′ } (15) 

where 𝑑𝑖𝑎𝑔 denotes the diagonal elements estimator; 𝛼𝑄 is a constant value controlling 

the degree of difference between 𝑸𝑘 and 𝑸𝑘+1. In this study, it is selected from 1/5, 1/20, 

1/50, 1/100, 1/200, and 1/400 to achieve the optimal state estimation. 

In the MCMC algorithm, on the other hand, the UKF process is performed iteratively 

to obtain a chain of 𝑅 with the length of 𝑚, i.e., {𝑹}𝑖=1
𝑚 . The candidate sample 𝑅𝑖+1

−  is 

generated from a Gaussian proposal distribution with the standard deviation σ𝑅: 

 𝑅𝑖+1
− ~𝒩(𝑅𝑖, σ𝑅) (16) 

The likelihood of the candidate sample can be then computed as: 

 log Φ𝑖+1
− = ∑ log 𝜑𝑖+1,𝑘

𝑇
𝑘=1  (17) 

with 

 log 𝜑𝑖+1,𝑘 = −
1

2
log{2𝜋(𝑪𝑷𝑘

−𝑪′ + 𝑅𝑖+1
− )} − (

𝑦𝑘−�̂�𝑘
−

𝑪𝑷𝑘
−𝑪′+𝑅𝑖+1

− )
2

 (18) 

The candidate sample is accepted with probability 𝛼 defined as: 

 𝛼 = min [1,
Φ𝑖+1

−

Φ𝑖
] (19) 

where Φ𝑖 denotes the likelihood of the 𝑖th sample 𝑅𝑖. In practice, a random value 𝑟 is 

generated from a standard uniform distribution (i.e., 𝑟~𝑈[0, 1]). If 𝛼 ≥ 𝑟, the candidate 

sample 𝑅𝑖+1
−  is accepted (i.e., 𝑅𝑖+1 = 𝑅𝑖+1

− ). Otherwise, 𝑅𝑖+1
−  is rejected (i.e., 𝑅𝑖+1 =

𝑅𝑖). Finally, the estimator, �̂�, of the observation noise variance which maximizes the 

likelihood {Φ}𝑖=1
𝑚  is obtained. 
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3 Numerical application 

The proposed framework is demonstrated on a numerical example using the bridge pier 

FE model shown in Fig. 1. This model is originally studied in Ebrahimian et al. [13] 

based on fiber elements, but shell elements with elastic and inelastic materials are used 

here. The material properties are summarized in Tables 1 and 2, in which the nonlinear 

material properties are determined based on Hartloper et al. [14]. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Overview of the bridge pier FE model 

Table 1. Description of the linear material properties. 

Young’s Modulus Poisson’s ratio Mass density Rayleigh damping 

coefficient 𝛼 

Rayleigh damping 

coefficient 𝛽 

2.0 × 1011 N/m2 0.3 7800 kg/m3 0.7392 0.0006 

Table 2. Description of the nonlinear material properties. 

Yield stress at 

zero plastic 

strain 

Kinematic 

hardening 

magnitude 

𝐶1 

Kinematic 

hardening 

magnitude 

𝐶2 

Kinematic 

hardening 

rate 𝛾1 

Kinematic 

hardening 

rate 𝛾2 

Isotropic hard-

ening magni-

tude 𝑄∞ 

Isotropic 

hardening 

rate 

3.39 × 108 Pa 2.62

× 1010 

2.45 × 109 199.04 11.66 1.34 × 108 Pa 14.71 

In this study, five ground motion records, namely Takatori, Northridge, JMA Kobe, 

San Fernando, and Imperial Valley, are employed, which are available from the website 

of Center for Engineering Strong Motion Data (https://www.strongmotioncenter.org/). 

These records are first scaled so that their peak ground accelerations equal 800 gal; then 

they are applied to the FE model in the x-direction to conduct the forward dynamic sim-

ulations. The simulated responses at the point-mass node, i.e., the relative displacements, 

the relative velocities, and the absolute accelerations in the x-direction, are employed as 

training and test data. Specifically, the datasets generated by the first three records 
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consisting of �̇� and 𝚯(𝒙, �̈�𝑔) are used to train the state-space equation in Eq. (7), while 

the absolute accelerations from the latter two records are regarded as the observations 

in the UKF to estimate the displacements at the point-mass node. In particular, to remove 

the high-frequency components in �̇�ℎ due to numerical derivative, a low-pass filter with 

the upper limit of 25 Hz is applied to the datasets. 

The results of sparse regression based on the LASSO algorithm are illustrated for 

Section B in Fig. 2a and for Section C in Fig. 2b, respectively. Similar results as Section 

C are obtained for Section A and hence they are not presented in Fig. 2. The upper two 

figures show the AIC values for the third line in the state-space equation with different 

regularization factor 𝜆. In this study, the maximum order of the polynomial terms in Eq. 

(5) is changed from one to six so as to determine the optimal assembly 𝚯. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                        (b) 

Fig. 2. Sparse regression results: (a) Section B (nonlinear region), (b) Section C (linear region). 

For Section B (i.e., nonlinear region), it is observed that the AIC values decrease 

when higher-order polynomial terms are considered. However, differences in the AIC 

values are marginal for orders 4, 5, and 6. Hence, the assembly 𝚯 up to the four-order 

polynomial terms is employed to avoid overfitting. The optimal regularization factor is 

then selected as the turning point of the AIC curve that is denoted by the red point in 

Fig. 2. The estimated coefficients are detailed in the lower figure, where the horizontal 

axis corresponds to the index of the basis terms. It can be seen that the coefficients of 

several terms in 𝚯 including higher-order terms are non-zero, indicating that complex 

hysteresis behavior is observed. 

For Section C (i.e., linear region), on the other hand, it is observed that differences 

in the AIC values are marginal for all orders. Thus, only the linear basis terms are used 

to approximate the state-space equation. In the derived equation, only three components 

�̇�, 𝑎ℎ, and |�̇�| have non-zero coefficients.  
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The trained state-space equation is then used to perform the UKF procedure. Fig. 3 

shows the estimated displacement responses at the point-mass node and corresponding 

hysteresis loops. The results for the Takatori ground motion record are shown in Fig. 3a 

to demonstrate the approximation accuracy of the proposed approach for training data. 

On the other hand, the results for San Fernando ground motion record are depicted in 

Fig. 3b to demonstrate the prediction accuracy of the proposed approach for test data. 

Furthermore, the results obtained by performing the time integration without applying 

the UKF are also shown in Fig. 3 for comparison purpose. 

From the results without applying the UKF in Fig. 3a, it can be observed that the 

overall approximation accuracy of the trained state-space equation is sufficient includ-

ing the residual displacements. However, the approximation accuracy is still not suffi-

cient for the maximum displacement. This can be also found in Table 3 where the esti-

mation errors are summarized in terms of the maximum relative error and the root mean 

square error (RMSE). For all the training data, the RMSE is less than 10 % but the 

maximum relative error is larger than 15 % for Takatori and Northridge ground motion 

records. Besides, it can be observed from Fig. 3b that the prediction accuracy of the 

trained state-space equation is also not sufficient for the residual displacements of the 

test data. 
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(b) 

Fig. 3. The estimated displacement and hysteresis loop: (a) Takatori, (b) San Fernando. 
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Table 3. Estimation error for different ground motion records. 

 Earthquake rec-

ord 

Maximum relative error (%) RMSE (%) 

Without 

UKF 

With UKF Without 

UKF 

With UKF 

Training data Takatori 15.1 1.4 2.8 0.4 

Northridge 22.6 3.7 9.5 1.5 

JMA Kobe 5.1 1.3 1.6 0.4 

Test data San Fernando 10.1 2.0 3.6 1.2 

Imperial Valley 6.6 3.0 1.0 1.1 

 

Compared to the results without applying the UKF, the estimated displacements by 

the UKF show favorable agreement with the true displacement responses both for the 

training and test data. It can be seen in Table 3 that the maximum relative errors and the 

RMSEs are less than 4 % for all the cases, indicating that the proposed approach enables 

to appropriately infer the seismic displacement of the system including the maximum 

displacement and residual displacement. 

4 Conclusion 

In this paper, a displacement estimation method for systems with complex material non-

linearities under seismic excitations is developed combining the data-driven state-space 

model identification and the UKF. In this method, the state-space equations for the non-

linear system are first constructed using training data that are generated from the numer-

ical model of the target system. The UKF is then applied with the trained state-space 

equation to estimate the displacements when only acceleration observations are availa-

ble. Specifically, the state-space equations are trained for the linear and nonlinear re-

gions separately to enhance the model stability. Furthermore, in the UKF, the process 

noise covariance matrix and the observation noise variance are estimated using the RM 

algorithm and the MCMC algorithm, respectively, to further improve the displacement 

estimation accuracies. A nonlinear FE bridge pier model is used to demonstrate the pro-

posed approach. Compared to the forward time integration of the derived state-space 

model, the proposed approach can appropriately estimate the system displacements by 

the UKF updating with the acceleration observations. 
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