
EasyChair Preprint
№ 7965

Partial Swarm SLAM for Intelligent Navigation

Jawad Yasin, Huma Mahboob, Suvi Jokinen,
Mohammadhashem Haghbayan, Muhammad Mehboob Yasin and
Juha Plosila

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 21, 2022



Partial Swarm SLAM for Intelligent Navigation⋆

Jawad N. Yasin1[0000−0002−2663−9019], Huma Mahboob1[0000−0003−4507−1403],
Suvi Jokinen1[0000−0003−4507−1403], Hashem Haghbayan1[0000−0001−6583−4418],

Muhammad Mehboob Yasin2[0000−0003−0013−743X], and Juha
Plosila1[0000−0003−4018−5495]

1 Autonomous Systems Laboratory, Department of Future Technologies, University
of Turku, Vesilinnantie 5, 20500 Turku, Finland

{janaya, ssjoki, mohhag, juplos}@utu.fi, m.huma.mahboob@gmail.com
2 Department of Computer Networks, College of Computer Sciences & Information

Technology, King Faisal University, Hofuf, Saudi Arabia
mmyasin@kfu.edu.sa

Abstract. The focus of this work is to present a novel methodology
utilizing the classical SLAM technique and integrating with the swarm
agents for localizing, guiding, and retrieving the agents towards the opti-
mal path while using only necessary tracker-based information between
the agents. While navigating in an unknown environment with no-prior
map information, upon encountering large obstacles (out of the field
of view detection range of the onboard sensors, the swarm is divided
into sub-swarms. This is done while dropping tracking points at ev-
ery turn. Similarly, the time stamps for every turn taken and the gap
width available between obstacles are recorded. Once an agent from any
sub-swarm category reaches the destination, the agent broadcasts these
tracker points to the rest of the swarm agents. Utilizing this broadcasted
key information, the rest of the agents are able to navigate toward the
destination without having to find the path. With the help of simulation
examples, it is shown that the proposed technique is efficient over other
similar randomized turn-based techniques.

Keywords: Swarm robotics · Distributed systems · Exploration schemes
· SLAM

1 Introduction

Swarm robotics can be defined as the study of how a large group of agents or
robots can be controlled in a such a way to achieve an overall desired behavior
or shape to perform a set of tasks. This overall emergence of the behavior is
due to the interactions of the agents with other agents within the swarm as well
as the objects in the environment [1]. A swarm of robots can be utilized for
a wide range of tasks ranging from search and rescue to mapping to military

⋆ This work has been supported by the Academy of Finland-funded research projects
(AURORA: 330493, ADAFI 335512).



2 J. N. Yasin et al.

purposes [2,3]. That is due to the ability of the agents within the swarm to self
localize, self-organize, communicate with other agents, as well as the flexibility
and scalibility of the overall swarm making the utilization of swarm of robots
ideal for such unknown environments [4]. Similarly, for a swarm to navigate
autonomously, in any environment introduces several research challenges, such as
keeping or maintaining the formation, collision avoidance, localizing, inter-agent
communication, path finding [5]. Among other approaches for localizing, the
agents in the swarm can utilize simultaneous localization and mapping (SLAM)
to autonomously self localize and navigate in unknown environments with no
prior map information [6]. SLAM is a known and fundamental technique in
the navigation of autonomous robots. However, the focus of the studies and
development in SLAM has been mostly from the perspective of individual robots
and which leaves a gap for the development of SLAM with multiple robots or a
swarm as a whole [7].

The existing multi-robot SLAM techniques focus on either collective produc-
tion of maps or centralized map merging (due to limited onboard computational
resources). Recently, an approach was introduced where the robots produce in-
dividual maps by utilizing different exploration methodologies and these maps
were later integrated on a remote platform [8,9]. Moreover, SLAM, from compu-
tational perspective, is intensive and similarly for transferring the data between
robots will also require large amount of data to be transferred and processed [10].
However, none of the existing methodologies address the issue of utilizing the
SLAM technique to facilitate the agents of the swarm to collaborate by ex-
changing minimum information required to direct the other agents towards a
common goal. In order to develop an effective and efficient SLAM technique for
swarm, there are several questions that need to be addressed, ranging from the
inter-agent communication of the swarm to exploration of the environment to
utilization of the acquired data and sharing of the necessary information between
the agents.

In this article, we propose an algorithm in which only the necessary informa-
tion is shared between the agents, i.e., reducing the overhead for communication,
and subsequently is computationally light for the agents. Agents note the coor-
dinates of the position where they disperse and the main swarm is divided into
sub-swarms. This point of separation is noted by respective agent as it navigates
in a different direction. Upon approaching an available gap between the obsta-
cles, the agent note the coordinates of this point as well, the time it took to
travel from the first point, the velocity with which the agent navigated, and the
shape/width of the gap found between the obstacles. This process is continued
until one of the agents of the sub-swarm finds a clear route to the destination.
At this point, that agent broadcasts the recorded information to rest of the
sub-swarms for them to follow the tracker points and reach the destination.

The novelty of the proposed algorithm is as follows:
1. while navigating towards the destination, upon encountering obstacle(s) large

enough to have their edges out of bounds from the sensor’s range, the agents
are dispersed in different directions and individual agents keep a record of
their movement



Partial Swarm SLAM for Intelligent Navigation 3

2. only the necessary information is shared between the agents rather than shar-
ing the whole acquired maps with other agents, i.e., reducing the overhead
of the communication between the agents

3. when the agents disperse to find a route for reaching the destination, an
agent upon finding an opening towards the destination only keeps a track of
certain features and shares only that information with other agents for them
to perform targeted pathfinding and navigate towards the destination in an
efficient manner

The rest of the paper is organized as follows. Motivation is provided in Section
2. Section 3 describes the proposed approach. Simulation results are provided in
Section 4. Finally, the concluding remarks, discussion and some future work in
given in Section 5.

(a) Initial Setup, Obstacle in range (b) Swarm divided into sub-swarms

(c) Swarm further divided into sub-
swarms. Sub-swarm 1 finds path to des-
tination

(d) All sub-swarms start tracking back
utilizing the Tracker points

Fig. 1: Illustration of the Partial Swarm SLAM technique. (a) shows the swarm
approaching a large obstacle with edges not visible in the ranging sensor’s range.
(b) Swarm gets divided into sub-swarms, and sub-swarm 1 and 2, start navigat-
ing in different directions to find the route. (c) All the sub-swarms have place
pheromone trackers (coordinates) while navigating through the maze of unknown
environment. (d) Sub-swarm 1, upon finding path to destination, broadcasts its
placed pheromone trackers to the rest of the swarm agents.



4 J. N. Yasin et al.

2 Motivation

While navigating in an unknown environment, with no prior map information,
the autonomous agents have to perform avoidance maneuvers by analyzing the
information at hand, i.e., by utilizing the onboard sensors for observing the
surroundings, evaluating the situation, and choosing the continuation trajectory
as necessary [11]. However, in situations, where the encountered obstacle(s) are
large and while utilizing the onboard ranging sensors, the agents cannot detect
either edge of the obstacle, arguably the best course of action is to make a
calculated guess (by keeping the direction of the destination under consideration)
and turn or deviate accordingly [cite our paper]. In such a scenario, since the
final destination is known, the agent draws a tangent from its own coordinates
towards the destination and chooses the direction to turn accordingly. In such a
manner, based on the information at hand, without any knowledge of the map,
the agent takes the best/optimal decision. However, such an approach can also
lead to a much larger deviation leading to longer mission time, battery drainage,
or even local minima.

In order to tackle such a situation, we propose a new technique of agent dis-
persion, inspired by the ant pheromone technique, where the ants leave pheromones
to direct and guide other ants in the group to follow the path to take [12]. It
is achieved by dividing the swarm in half, in either direction for routing finding
purposes. They keep a track of the markers and turns they take accordingly.
Every time, a similar situation is encountered, the sub-swarm gets divided fur-
ther and starts exploring. Once, an agent finds the route to the goal/destination,
it broadcasts the required tracker-based information to the rest of the swarm.
Based on this information, the agents start backtracking to where they chose a
different path from that specific agent and simply follow the trackers provided
to them to reach their goal for mission completion, as shown in Figure 1.

3 Proposed Approach

For simulating the agents, the kinematics model of a differential drive robot
is used. The differential drive robot works on the principle of the difference
between the velocity of the left and the right wheels. This difference determines
the heading of the robot. Kinematic model of a differential drive robot:

ẋ = vcosθ,

ẏ = vsinθ,

θ̇ =
v∆
W

(1)

where ẋ and ẏ are the x and y positions of the robot, v is the velocity, θ̇ is
the heading angle of the robot.

To calculate the turning curve of the robot, the following equation is used:



Partial Swarm SLAM for Intelligent Navigation 5

∆V =
vr − vl
W

(2)

where ∆V is the difference between the left and the right wheel speed, vr
and vl are the right and the left speeds respectively, and W is the width of the
robot.

Algorithm 1 Global Routine

procedure Navigation & Detection
2: BFormation ← False;

Destination ← False;
4: if Self.ID == 1 then

α← Self ;
6: αAlive← False;

else
8: α← Leader(Self);

αAlive← True;
10: end if

while True do
12: D = Scan();

if D < ReactionRange then
14: Do, Ao ← Calculate obstacle distance and angles at which the edges lie;

if Do < γ && Ao < Γ then
16: Collision Avoidance(Do, Ao);

if Destination == L.o.S. then
18: Self.Destionation ← True

Broadcast Tracker points;
20: end if

end if
22: if BFormation && Destination then

Traceback(PoB, t,Gw, TD);
24: else

Navigate();
26: end if

end if
28: end while

end procedure

The top-level pseudo code of the agents is given Algorithm 1. In the initial
setup the agents are assigned their respective IDs. Every agent in the swarm
executes this top-level algorithmic routine locally. In the beginning, the Boolean
variables BFormation and Destination are initialized, whose roles are to notify
the global routine if the swarm has been divided into sub-swarms and if the
agent has reached the destination respectively (Lines 2-3). Then the algorithm
checks if the global leader has been declared and if the leader-follower connection
has been set up. If not, then the global leader is declared (α) and the followers
are connected to their respective and immediate leaders accordingly. As the
global leader does not have any leader, therefore, αAlive (My leader is Alive)
is set to False. And for the followers, this flag is set to True (Lines 4-9). After
this, the agents start scanning their surroundings while navigating toward the
destination (lines 11-12). As soon as an object is detected, it is checked if the
distance to the object (D) is less than the defined ReactionRange (line 13). If
the detected obstacle lies within the ReactionRange, the distance (Do) along



6 J. N. Yasin et al.

with the angles at which edge(s) of the detected obstacle(s) lie are calculated
(Line 14). If the calculated distance lies within the defined deviation range (γ)
and the angles at which the edge(s) have been detected also lie within the defined
ranges, indicating that continuing the current trajectory will lead to a potential
collision, the control is transferred to Collision Avoidance algorithm (Lines 15-
16). Every agent checks if the destination is in its line of sight (L.o.S.), if this is
true, the agent then sets the destination flag to True for itself and broadcasts the
tracker points to the rest of the agents (Lines 17-19). The algorithm then checks
if the swarm was divided into sub-swarms (BFormation Flag indicates the break
of formation) during any phase of the mission or while performing avoidance
maneuvers and if the agent has reached the destination (implying that the route
to the destination is now complete). In this case, the Traceback() function is
called to provide the pheromone tracker points to other agents to allow them to
simply follow and navigate towards the destination (Line 22-23). Otherwise, the
agents continue the navigation process until the goal is achieved.

3.1 Collision Avoidance

Algorithm 2 Collision Avoidance

procedure CollisionAvoidance(Do, Ao)
2: if Ao != NULL then ▷ Obstacle edge(s) detected

β = detect edges(Do);
4: if β > 2 then

ζ ← calculated gap between obstacles;
6: if ζ > Rc then

Align agent to pass through;
8: if BFormation then

TD[][] = Turn direction and number of turn;
10: Gw = Gap width;

end if
12: else ▷ out of bounds Obstacle

BFormation = True;
14: Break Formation();

end if
16: end if

else ▷ No edges detected
18: Break Formation();

BFormation = True;
20: end if

end procedure

In the collision avoidance phase in our proposed algorithm, it is first checked if
there were any edges detected of the detected obstacle(s). If Ao (angles at which
the edges have been detected) has real values, then it means that the edges have
been detected and the obstacle is not large enough to be out of bounds from the
ranging sensor’s view (Line 2). Then the number of edges are detected (β) in
order to check how many obstacles have been detected that can cause a potential
collision if the current trajectory is continued (Line 3). If the detected edges are
more than 2, it indicates multiple obstacles detected, and then the algorithm



Partial Swarm SLAM for Intelligent Navigation 7

calculates the gap (ζ) that is available between detected obstacles (Lines 4-5).
After calculating the available gap between the detected obstacles, it is checked
if the gap is sufficient enough for the agents to pass through, i.e., the gap bigger
than Rc. Rc is calculated based on the dimensions of the agent plus a defined
safe distance that is to be allowed on either side of the agent, Eq. 1:

Rc = δ + τ (3)

where R[c is the collision radius, and δ, and τ are the width and the minimum
safe distance allowed from either side of the agent respectively.

Then agent(s) is aligned to pass through the available gap (Lines 6-7). Fur-
ther, it is checked if the swarm has already broken down the initial formation
to create sub-swarms for route finding, then the direction of the turn the agent
is taking and the width the of the gap which the agent is navigating through
are noted as part of pheromone tracker pointers (Lines 8-10). These pheromone
tracker pointers are later used to direct other agents to find the route. Whereas,
if the available gaps are not wide enough for the agent to pass through or if there
were no edges detected (Line 2), then in both cases, it is treated as a single ob-
stacle out of bounds case, the BFormation flag is set to True, and the control is
transferred to BreakFormation() algorithm (Lines 12-19).

3.2 Formation Breaking and Path Finding Mode

Algorithm 3 Break Formation

procedure BreakFormation
2: TangentLine = Calculate tangent to destination;

PoB = current coordinates;
4: t = time;

TD[][] = turn directions and number of turns;
6: Gw = Gap width;

G1i, G2j = Create sub-swarms();
8: G1i,G2j ← Temporary sub-swarm leaders;

Short term path planning(TangentLine);
10: end procedure

Algorithm 3, Break Formation, starts by drawing a tangent line from the
agents’ coordinates to the destination for directional purposes (Line 2). Then the
PoB (point of break) is noted, i.e., the current position (Line 3). The time stamps
are noted starting from PoB onwards, a stamp for every turn taken (Line 4).
This helps as a cross-check for tracing back the route for every agent, by allowing
the agent to verify if at approximately the same amount of time it has arrived at
the similar position. This is further cross-checked with the gap width (Gw) (Line
6), also noted in Algorithm 2. The agent then notes the direction in which it is
turning and further notes the number of the turns it has taken (Line 5). Then
the swarm is divided into sub-swarms, by pooling the agents alternatingly into
G1i and G2j (Line 7). The sub-swarms are assigned their respective temporary



8 J. N. Yasin et al.

or sub-swarm leaders for continuing the mission and leading the rest of the
follower agents (Line 8). After this, short term path planning is done by the
sub-swarm leader by utilizing the calculated TangentLine to resume navigating
in the direction of the destination after bypassing the current obstacle (Line 9).

3.3 Trace Back Utilizing Tracker Points

Algorithm 4 Trace Back

procedure Traceback(PoB, t,Gw, TD)
2: if Self.Destination != True then

Rcv(Tracker points(PoB));
4: Set (speed);

if Tracker[i] then
6: cross-check t, Gw, TD;

Navigate;
8: end if

Algorithm 4 shows the pseudo-code for the Traceback function. the algo-
rithm starts by checking if the agent performing the check has already reached
the destination (Line 2). If the Destination flag is False, the agent receives
the tracker points, and sets its speed accordingly by reading the speed of the
broadcasting agent (Lines 3-4). Upon reaching a tracker point (Traker[i]), the
agent cross-checks the provided data by checking the time it took for navigating
between Tracker[i] and Tracker[i−1], the shape/width of the gap at the current
position (Gw), and takes the respective turn to continue navigation towards the
destination (Lines 5-7).

4 Simulation Results

The initial conditions defined for our work are as follows:

1. all agents obtain their position vectors utilizing their onboard localization
techniques

2. the communication channel is lossless
3. the agents can communicate and broadcast their tracker-based information

to other members of the swarm

For the simulation environment, we used python graphics. For the ranging
sensor, we simulated the output of the LiDAR sensor in a 2-dimensional scale.
The scaling of the environment closer to the real-world movement is performed
by converting the distance traveled and the speed with which the agents are
navigating from meters and meters per second to pixels and pixels per second.

Figure 2(a) shows the floor map of the environment used for testing the
proposed methodology. The destination mark is shown by the hollow square in



Partial Swarm SLAM for Intelligent Navigation 9

(a) The floor map of the environment used
for verification

(b) Swarm comes across a large obstacle,
i.e., out of bounds

(c) With no-prior map information, the
swarm utilizes the priority-based turning
and turns left

(d) Swarm is turning back after reaching a
dead end, here the congestion is also faced

(e) Swarm keeps navigating in the other
direction

(f) Swarm once again faces the issue of
reaching a dead end, rerouting the whole
swarm, congestion and wastage of energy
resources

Fig. 2: Simulation Results: Priority-based turn



10 J. N. Yasin et al.

the right corner. Figure 2(b) the agent encountering the large obstacle and taking
a priority-based left turn. The rest of the swarm follows in a similar manner.
As shown in Figure 2(c), the swarm reaches a dead end. In this situation, the
agents have to turn back and go to the point from where the swarm took the
left turn. This not only drains more energy resources but is also time taking and
results in congestion (Figure 2(d)). After the swarm reroutes back to the initial
position, from where it turned left, the agents navigate in the other direction,
where the swarm faces a similar situation again, Figure 2(e). Figure 2(f) shows
the swarm facing another dead end. Upon tracking back, the swarm will finally
find the path to the destination, in the considered simulation setup.

(a) Scene 1, swarm starts navigating and
encounters a larger obstacle

(b) Scene 2, swarm is divided into sub-
swarms and simultaneously navigating the
environment to find the path

(c) Scene 3, one agent finds the des-
tination, and other agents in the sub-
swarms have started navigating towards
that point

(d) Scene 4, all the agents of the sub-
swarms have successfully reached the de-
sired coordinates

Fig. 3: Simulation Results: Partial Swarm SLAM

The proposed technique is tested in the same simulation setup. As shown
in Figure 3(a), the agents start navigating while exploring the unknown envi-
ronment simultaneously. Upon encountering an obstacle, the swarm divides into
two sub-swarms and keeps on navigating in the pursuit of finding the path to
the destination, as shown in Figure 3(b). Figure 3(c), shows the swarm divided
into further sub-swarms. Here, it can be seen that an agent of the sub-swarm
found the unobstructed path to the destination. And the other agents in the sub-



Partial Swarm SLAM for Intelligent Navigation 11

swarms have started navigating back by backtracking the tracker points. Figure
2(d) shows the final scene, where the agents (sub-swarms) have to regroup into
the initial swarm setup and reached the destination.

As it is evident from the comparative simulation results, utilizing the pro-
posed approach the time to mission completion can be significantly reduced in
environments with no-prior map information available. In the considered setup,
utilizing the priority-based turn technique, the longest distance any agent had
to travel was approximately 1.5 times the longest distance any agent traveled
utilizing the proposed Partial Swarm SLAM technique. The distances covered
by individual agents are provided in Table 1. If only the traveled distance is con-
sidered, while employing the traditional method, the overall distance covered by
the swarm was approx. 1.6 times more as compared to the distance covered by
the swarm using the Partial Swarm SLAM method.

Table 1: Total distance (in meters) travelled by agents, comparison between
Partial Swarm SLAM and traditional method

Agent No. PS-SLAM Traditional
1 310m 660m
2 310m 660m
3 490m 660m
4 480m 660m
5 480m 660m

5 Conclusion

In this paper, we developed an algorithm for utilizing the SLAM technique par-
tially in order to guide dispersed agents of the swarm towards the destination.
The agents in the sub-swarms, keep a track of the vital information about their
movements, such as tracker points (the coordinates) at which the swarm/sub-
swarm gets divided into further sub-swarms, the timestamps between two adja-
cent tracker points, the velocity at which the agent traveled between the tracker
points, the which direction the agent turned towards, the shape or the gap avail-
able between the obstacles/objects. This key information is then shared by the
agent that finds a clear route to the destination. The agents in the rest of the
swarm then utilized this information to quickly localize themselves while nav-
igating and tracing back towards the tracker points left by the broadcasting
agent. The simulation results provide sufficient proof that the proposed method-
ology works reliably in the simulated environments. The results evidently show
that this technique helps navigating the swarm in an unknown environment with
no-prior map information and without any communication with central servers
for path-finding purposes. The chances for the swarm agents to reach a local
minimum by utilizing this technique are minimized considerably in comparison
to priority-based or randomized turning methods.

In the future, we plan to include detailed comparative and analytical results
with other techniques, to show the efficiency of the proposed technique. Fur-
thermore, the proposed approach will be further developed by injecting noise
in the setup by including the IMU drift and limited range communication be-
tween the agents to analyze the efficiency of the proposed approach in-depth.



12 J. N. Yasin et al.

The chain linked limited range communication between the agents will restrict
the extent to which the agents can disperse. It will also be interesting to an-
alyze, which tracking back utilizing the broadcasted trackers, if an agent or a
sub-swarm has to deviate, for instance, due to any newly added obstacle, and
how computationally expensive the re-localization process will be.

References

1. Yasin, J.N., Mohamed, S.A.S., Haghbayan, M.H., Heikkonen, J., Tenhunen,
H., Yasin, M.M., Plosila, J.: Energy-efficient formation morphing for colli-
sion avoidance in a swarm of drones. IEEE Access 8, 170681–170695 (2020).
https://doi.org/10.1109/ACCESS.2020.3024953

2. Shakhatreh, H., Sawalmeh, A.H., Al-Fuqaha, A., Dou, Z., Almaita, E., Khalil, I.,
Othman, N.S., Khreishah, A., Guizani, M.: Unmanned aerial vehicles (uavs): A
survey on civil applications and key research challenges. IEEE Access 7, 48572–
48634 (2019). https://doi.org/10.1109/ACCESS.2019.2909530

3. Ladd, G., Bland, G.: Non-Military Applications for
Small UAS Platforms. https://doi.org/10.2514/6.2009-2046,
https://arc.aiaa.org/doi/abs/10.2514/6.2009-2046

4. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intelligence 7(1), 1–41 (2013)

5. Yasin, J.N., Haghbayan, M.H., Yasin, M.M., Plosila, J.: Swarm formation morphing
for congestion-aware collision avoidance. Heliyon 7(8), e07840 (2021)

6. Mart́ınez, D., Pallejà, T., Moreno, J., Tresanchez, M., Teixidó, M., Font, D., Pardo,
A., Marco, S., Palaćın, J.: A mobile robot agent for gas leak source detection. In:
Bajo Perez, J., Corchado Rodŕıguez, J.M., Mathieu, P., Campbell, A., Ortega,
A., Adam, E., Navarro, E.M., Ahrndt, S., Moreno, M.N., Julián, V. (eds.) Trends
in Practical Applications of Heterogeneous Multi-Agent Systems. The PAAMS
Collection. pp. 19–25. Springer International Publishing, Cham (2014)

7. Kegeleirs, M., Grisetti, G., Birattari, M.: Swarm slam:
Challenges and perspectives. Frontiers in Robotics and
AI 8, 23 (2021). https://doi.org/10.3389/frobt.2021.618268,
https://www.frontiersin.org/article/10.3389/frobt.2021.618268

8. Park, S., Kim, H.: Dagmap: Multi-drone slam via a dag-based distributed ledger.
Drones 6(2) (2022). https://doi.org/10.3390/drones6020034

9. Kegeleirs, M., Garzón Ramos, D., Birattari, M.: Random walk exploration for
swarm mapping. In: Althoefer, K., Konstantinova, J., Zhang, K. (eds.) Towards Au-
tonomous Robotic Systems. pp. 211–222. Springer International Publishing, Cham
(2019)

10. Mattar, E.A.: Mobile robot feature-based slam behavior learning, and navigation
in complex spaces. In: Hurtado, E.G. (ed.) Applications of Mobile Robots, chap. 4.
IntechOpen, Rijeka (2018). https://doi.org/10.5772/intechopen.81195

11. Yasin, J.N., Mohamed, S.A.S., Haghbayan, M.H., Heikkonen, J., Tenhunen, H.,
Plosila, J.: Navigation of autonomous swarm of drones using translational coordi-
nates. In: Demazeau, Y., Holvoet, T., Corchado, J.M., Costantini, S. (eds.) Ad-
vances in Practical Applications of Agents, Multi-Agent Systems, and Trustwor-
thiness. The PAAMS Collection. pp. 353–362. Springer International Publishing,
Cham (2020)

12. Sumpter, D.J., Beekman, M.: From nonlinearity to optimality: pheromone trail
foraging by ants. Animal behaviour 66(2), 273–280 (2003)


