
EasyChair Preprint
№ 8938

Dynamic Modelling and Control of
Differential-Drive Mobile Robot

Run Mao and Huafeng Dai

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 3, 2022



This work was partially supported by Open Research Fund of Technology and Equipment of Rail Transit Operation and Maintenance Key Laboratory of 
Sichuan Province (2021YW003) 
*Corresponding author 

Dynamic modelling and control of differential-drive 
mobile robot  

1st Run Mao 
Schhol of Electronic Information and Electrical Enginnering  

Chengdu University  
Chengdu, China 

maorun@cdu.edu.cn 

2nd Huafeng Dai* 
School fo Mechanical Enginnering  

Chengdu University  
Chegndu, China 

ann@my.swjtu.edu.cn

Abstract—This paper addresses the dynamics and trajectory 
tracking control of the differential-drive mobile robot (DDMR). 
The center of mass point and the mid-point on the axis between 
the driving wheels, as two reference points of generalized 
coordinate which leads definitely different results, are usually 
selected to model the dynamics of the DDMR. This paper 
establishes the kinematic and dynamic models simultaneously 
on the foundation of the center of mass point of DDMR. Firstly, 
a formulation for DDMR dynamics is developed based on 
Lagrangian mechanics, where the Lagrange multipliers are 
introduced to solve the problem of nonholonomic constraints. 
Next, a controller combining velocity and torque control is 
proposed based on backstepping method to solve the trajectory 
tracking problem, and its asymptotic stability is proven by 
Lyapunov theory. Finally, the numerical simulation results 
demonstrate its effectiveness and efficiency.  

Keywords—nonholonomic constraint, backstepping control, 
dynamic modelling, trajectory tracking 

I. INTRODUCTION  
Wheeled mobile robots (WMR) have received booming 

interests from the research communities and the general public 
alike, thanks to their capacity to extend the workspace into 
unstructured environments where a high degree of autonomy 
is required [1]. For the engineers and researchers in the field 
of control engineering, a lot of literatures dealing with WMR 
control are available. These articles mainly aim at solving the 
problem of motion under nonholonomic constrains using the 
kinematic model, while a few refer to the problem integrating 
the kinematics and the dynamics of the mobile robot.  

Differential drive mobile robot (DDMR) is one of the most 
widely used WMR and the relative kinematic models are 
proposed by many researchers. Kinematic models of DDMR 
are simple and valid when mobile robot is travelling with low 
velocity, low acceleration and light load [2]. However, for the 
lack of dynamic constraints, the mobile robot cannot 
immediately change its velocity to the desired value, which 
leads to delay between navigation computer and robot 
controller. Therefore, the dynamics of DDMR are necessary 
to deal with the navigation problem on high-speed scenes. Un- 
fortunately, few literatures investigate thoroughly the 
dynamic modelling approach which take into consideration 
the nonholonomic constraints step by step. The construction 
of nonlinear dynamical model of DDMR subjected to 
nonholonomic constraints is difficult for the control engineers 
who are not concerned with it. Therefore, a detailed procedure 
of DDMR dynamic modelling needs to be developed.  

In addition, few researchers concentrated on the fact that 
the dynamic models are definitely different when the 
reference point of generalized coordinate is changed. More 
specifically, as shown in Fig. 1, the dynamic model based on 
the center of mass point A is distinguished from the one based 

on the mid-point on the axis of the driving wheels 𝐶. However, 
a common phenomenon happened in the material that the 
generalized coordinate of kinematic model based on the center 
of mass while the dynamic model based on the mid-point on 
the axis between the driving wheels. Additionally, some 
papers gave different results for the same DDMR used, which 
add the confusion to dynamic modelling [3].  

There are two main methodologies to DDMR dynamic 
formation including Lagrangian approach [2, 4] and Newton-
Euler approach [5, 6]. And both two methods will lead to the 
same result finally. In terms of Newton-Euler method, active 
forces, created by actuators, and constraint forces generated 
by the interaction between mobile robot wheels and ground 
have to be taken into account. In fact, Newton-Euler approach 
exist a few difficulties for calculating these forces. In- stead of 
forces, Lagrangian mechanics only consider the energies in 
the system, i.e., the kinetic energy and the potential energy [7].  

It is noteworthy that the Lagrangian approach usually 
formulates the dynamic model of holonomic systems. In terms 
of nonholonomic systems, the normal practice is to introduce 
nonholonomic constraints into dynamic equation using 
Lagrange multipliers [3, 8]. Then, the Lagrange multipliers 
will be eliminated by some additional simplification 
operations to reduce the system complexity.  

A good dynamic model of DDMR is the base of trajectory 
tracking problem, which is the main component of navigation 
problem. Many nonlinear feed- back controllers have been 
proposed in literature [9-14]. The common idea of these 
control algorithms is to design velocity control inputs 
considering only the kinematic model which may lead to 
unexpected errors caused by the impractical perfect velocity 
tracking assumption. Consequently, it is more realistic to 
define torque control inputs for the DDMR. Backstepping 
control approach offers a useful method for converting the 
velocity control into torque control. In [15], an adaptive 
backstepping control scheme based on the virtual 
decomposition control was presented to solve the non- 
holonomic mobile manipulator robot tracking control problem. 
[16] dealt with the problem of balancing and trajectory 
tracking of Two Wheeled Balancing Mobile Robots with 
backstepping Sliding Mode Controller. In [17], a 
backstepping controller was proposed to settle down the 
trajectory tracking problem of a four-wheel drive differential 
steering system.  

A further kind of approaches have been proposed in [18] 
and [19]. These approaches take the actuators dynamic into 
consideration which guarantees that the nonholonomic mobile 
robot tracks a given trajectory. The complicated controller 
structure may cause heavy computing burden when applied to 
high order nonholonomic systems including high order 
derivative given signal.  



In this paper, a new backstepping control rule for 
determining mobile robot wheels torques is given. It provides 
a methodology to convert kinematic model control into 
dynamic model control. This system is composed of two sub-
system: velocity control and torque control subsystem. The 
first designs a feedback velocity control input for the 
kinematic steering system with the goal of stabilizing the pose 
error. The other subsystem computes the torque applied to the 
dynamics to make the mobile robot converge to the velocity 
delivered by the first subsystem. The 1 − cos𝜙  [20–22] is 
introduced to find an appropriate Lyapunov function to prove 
the stability of the control rule.  

The remainder is organized as follows. Section 2 
introduces the theoretical background of the DDMR, and 
establishes the kinematic model subject to nonholonomic 
constraint. Different from [3] and [23], our kinematic equation 
develops according to the center of mass point. In Section 3 
Lagrange formulation is presented and the kinematic steering 
system presented in Section 2 is used to eliminate Lagrange 
multiplies. Backstepping controller that takes dynamics into 
consideration to change velocity control input into torque 
control input for the actual mobile robot is developed in 
Section 4. Meanwhile, the stability of the feedback control 
system is proven by Lyapunov theory. Section 5 conducts a 
computer simulation for the proposed backstepping controller 
and the conclusion is given in Section 6.  

II. KINEMATIC MODELLING OF DDMR 
In this section, the theoretical background of 

nonholonomic constraint is discussed and the kinematic 
equations of DDMR are presented. In terms of kinematic 
model, there are two options of the reference point of 
generalized coordinate: one is point 𝐴, the center of mass, and 
the other is point 𝐶, the mid-point on the axis between the 
driving wheels as shown in Fig. 1. In this paper, we choose 
point 𝐴 and the other can be extended as the same way.  

A. Coordinatie Transformation  
A schematic of a typical DDMR is depicted in Fig. 1. It 

consists of a chassis, two driving wheels mounted on the same 
axis, and a front free wheel. The motion and orientation are 
achieved by two independent actuators.  

As illustrated in Fig. 1, two different coordinate frames 
have been defined for the purpose of describing the position 
of the DDMR in the environment. The origin of the robot 
coordinate frame {𝑋! , 𝐶, 𝑌!} is defined to be mid-point 𝐶 on 
the axis between the wheels. The center of mass point 𝐴 of the 
robot is assumed to be on the axis of symmetry, at a distance 
𝑑 from the point 𝐶. Moreover, the inertial coordinate frame is 
a global frame which is fixed in the environment and denoted 
as {𝑋" , 𝑂, 𝑌"}.  

The position of the robot in the inertial frame can be 
specified by the vector "𝒒 = [𝑥#, 𝑦#, 𝜙]T, where 𝑥#, 𝑦# denote 
the coordinates of point A, and φ is the orientation of the frame  
{𝑋! , 𝐶, 𝑌!} with respect to the {𝑋" , 𝑂, 𝑌"}.  

Due to the fact that the trajectory of the vehicle is 
constrained to the horizontal plane, the position of any point 
on the robot can be defined as "𝑿 = ["𝑥, 𝑦" , 0]T  and "𝑹 =
[!𝑥, 𝑦! , 0]T in the inertial frame and robot frame.  

B. Nonholonomic Constraints 
Wheeled vehicles are generally subjected to nonholo- 

nomic constraints. A nonholonomic system is subjected to at 
least one non-integrable constraint which limits the local 
mobility of the system [24]. The DDMR has two assumptions: 
no lateral slip constraint and pure rolling constraint. 

 we can derive  

9
𝐼%̇!" = 𝐼%̇# − 𝑑�̇�𝑠𝑖𝑛𝜙 + 𝐿�̇�𝑐𝑜𝑠𝜙

𝐼'̇!" = 𝐼'̇# − 𝑑�̇�𝑐𝑜𝑠𝜙 + 𝐿�̇�𝑠𝑖𝑛𝜙
                        (1)	 

We can obtain the differential coordinates of left wheel in 
the same way  

					9
𝐼%̇!$ = 𝐼%̇# + 𝑑�̇�𝑠𝑖𝑛𝜙 − 𝐿�̇�𝑐𝑜𝑠𝜙

𝐼'̇!$ = 𝐼'̇# − 𝑑�̇�𝑐𝑜𝑠𝜙 − 𝐿�̇�𝑠𝑖𝑛𝜙
                          (2)		

Then the contraints can be written in matrix form:  

Λ(𝑞)�̇� = 0               (3) 
where  

									𝚲(𝒒) = I
−𝑠𝑖𝑛𝜙 𝑐𝑜𝑠 𝜙 −𝑑 0 0
𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛𝜙 𝐿 −𝑅 0
𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛𝜙 −𝐿 0 −𝑅

K        (4) 

and �̇� = L𝑥#̇, 𝑦#̇, ϕ̇, θ!̇ , θ(̇O
T
 

C. Forward Kinematic 
The forward kinematic of mobile robot can be written in 

this form  

𝐼�̇� = P
𝐼%̇#
𝐼'̇#
�̇�
Q = 𝑺(𝒒)𝒗                         (5)	 

where 

𝑺(𝒒) = I
𝑐𝑜𝑠 𝜙 −𝑑𝑠𝑖𝑛𝜙
𝑠𝑖𝑛𝜙 𝑑 𝑐𝑜𝑠 𝜙
0 1

K , 𝒗 = T𝜈𝜔W	                         (6)	 

and |𝑣| ≤ 𝑉*#% , |ω| ≤ 𝑊*#%  and 𝑊*#% represent the 
maximum linear and angular velocities of the mobile robot 
respectively. System (5) is also named the steering system.  

III. DYNAMIC MODELLING OF DDMR  
Actually, the inputs of kinematic model are velocity 

commands while the inputs of a real mobile robot are forces 
or torques. In other words, the dynamics of a system are 
ignored while dealing with the control problem of DDMR. 
Naturally, It is important to derive the dynamic model and 
explore its characteristics for control purpose.  

A mobile robot subjected to 𝑚 constraints, which has a	𝑛-
dimensional configuration space 𝒞  with generalized 
coordinates (𝑞+, 𝑞,, ⋯ , 𝑞-), can be described by [25, 26]  

𝑀(𝑞)�̈� + 𝑉(𝑞, �̇�)�̇� + 𝐹(�̇�) + 𝐺(𝑞) + τ. = 

																					𝑩(𝒒)𝝉 + 𝚲T(𝒒)𝝀    (7) 
where 𝑀(𝑞) ∈ ℜ-×-  is a symmetric, positive definite 

inertia matrix, 𝑉(𝑞, �̇�) ∈ ℜ-×- is the centripetal and	coriolis	
matrix, 𝐹(�̇�) ∈ ℜ-×+  denotes the surface friction, 𝐺(𝑞) ∈
ℜ-×+  is the gravitational vector, τ.  denotes bounded 
unknown disturbances including un-structured unmodeled 
dynamics, 𝐵(𝑞) ∈ ℜ-×0 is the input transformation matrix, 
𝝉 ∈ ℜ-×+  is the input vector, Λ ∈ ℜ*×- is the matrix 
associated with the constraints, and λ ∈ ℜ*×+ is the vector of 
constraint forces.  



For systems with holonomic constraints, all constraints are 
integrable into geometrical constraints. If the constraints are 
nonholonomic, this approach does not work. There is no 
general method to handle the nonholonomic problems. The 
dependent equations can be eliminated by the method of 
Lagrange multipliers only for those special nonholonomic 
constraints given in differential form [27]. For constraints in 
the form of equalities, the Lagrange equation of the first kind 
can be written in the following form:  

																				 .
.1
m 23
24%̇
n − 23

24%
= 𝑄5 + ∑ 𝜆6𝑎657

68+                (8) 
for 𝑣	 = 	1,2,···	, 𝑛.  Where 𝑛  denotes the dimension of 
coordinates, s represents the number of constraints, 𝑇  is 
kinetic energies of the DDMR, 𝑄5  equals the generalized 
force in the direction of 𝑞5, λ means the Lagrange multipliers 
vector, and 𝑎65  denotes the coefficient of corresponding 
constraint equation.  

The motion equations of the DDMR are given by 

⎩
⎪
⎨

⎪
⎧		𝑚𝑥#̈ + 2𝑚9𝑑�̈� sin𝜙 + 2𝑚9𝑑𝜙,̇ cos𝜙 = 𝚲:(𝟏)𝝀				
𝑚𝑦#̈ − 2𝑚9𝑑�̈� cos𝜙 + 2𝑚9𝑑𝜙,̇ sin𝜙 = 𝚲:(𝟐)𝝀	
𝐼�̈� + 2𝑚9𝑑�̈�# sin𝜙 − 2𝑚9𝑑�̈�# cos𝜙 = 𝚲:(𝟑)𝝀

𝐼9𝜃!̈ = 𝜏! + 𝚲:(𝟒)𝝀
𝐼9𝜃(̈ = 𝜏( + 𝚲:(5)𝝀
               (9) 

where 𝚲:(𝒊)	means the 𝑖th row of 𝚲:	introduced in (4).  

Thus, the obtained (9) can be represented in the general 
form given by (7) as  

M�(q)v̇ + V�(q, q̇)v = B�(q)τ          (10) 

where 𝑀"(𝑞) = 𝑀'(𝑞)𝑇,	𝑉+(𝑞, �̇�) = 𝑉.(𝑞, �̇�)𝑇,		
𝐵�(𝑞) = 𝐵�(𝑞),	𝒗 = [𝑣,ω]T = 𝑇β, 𝑇 = T+

!
, (
!
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!
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!
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IV. TRAJECTORY TRACKING CONTROL BASED ON 
BACKSTEPPING METHOD 

Most controllers consider only the kinematic model (6), 
ignoring the actual vehicle dynamics (10). In this article we 
design a controller to deal with the kinematic model and 
dynamic model simultaneously.  

Now, the (10) can be rewritten as  

τ = 𝑩�=+[𝑀�(𝑞)𝑢 + 𝑉�(𝑞, �̇�)𝑣]          (11) 
where 𝒖  is an auxiliary input. Then the dynamic control 
problem can be transformed into the kinematic control 
problem  

��̇� = 𝑺(𝒒)𝒗
�̇� = 𝒖

                          (12)		

which represents the state-space of the nonholonomic mobile 
robot in the type of chain of integrator. 

A. Tracking Trajectory 
The velocity control will take no account of the parameters 

of the actual mobile robot. In this section, such a velocity 
control 𝒗(𝑡) is converted into a torque control τ(𝑡).  

The Fig. 2 presents the general structure of the trajectory 
tracking control system based on the system (6) and (10). The 
purpose of this control system is to derive a suitable control 
input  obtained by virtual control input 𝑣.(𝑡). Then the (2) is 
used to compute 𝝉(𝑡) given 𝒖(𝑡).  

For the purpose of tracking a reference trajectory, two 
poses are used: the reference pose 𝒒𝒓 = (𝑥0 , 𝑦0 , 𝜙0)T and the 
current pose 𝒒𝒄 = (𝑥@ , 𝑦@ , 𝜙@)T. Now, a reference trajectory 
can be posed as 𝑥0̇ = 𝑣0 cos𝜙0 , 𝑦0̇ = 𝑣0 sin𝜙0 , 𝜙0̇ = 𝜔0. 

The trajectory tracking problem is to find a velocity 
control 𝒗𝒅(𝑡) such that lim

1→∞
(𝑞0 − 𝑞@) = 0. Then the torque 

input 𝝉(𝑡) is computed such that 𝒗 → 𝒗𝒅 as 𝑡	 →∞.  

Using the backstepping approach [28], one can synthesize 
the control law forcing system (12) to follow the desired 
trajectories. Under guide of the backstep- ping control 
approach, we build the control law by the following two steps: 

Step 1: For the first step, we consider the kinematic 
steering system:  

�̇� = 𝑺�(𝒒)𝒗                                    (13) 
An error pose 𝒒𝒆  is introduced, which represents the 

difference between 𝒒𝒓  and 𝒒𝒄 . The goal of this step is to 
design a velocity control input to stabilize the pose error.  

For the convenience of control, the error pose 𝒒𝒆 should 
be denoted in the robot coordinate frame [29].  

𝒒𝒆 = I
𝑥D
𝑦D
𝜙D
K = 𝑹=𝟏(𝜙@)(𝒒𝒓 − 𝒒𝒄) =

I
cos𝜙@ sin𝜙@ 0
−sin𝜙@ cos𝜙@ 0

0 0 1
K I
𝑥0 − 𝑥@
𝑦0 − 𝑦@
𝜙0 − 𝜙@

K          (14) 

By using (22), the derivative of  (14) is 

�̇�𝒆 = P
�̇�D
�̇�D
�̇�D
Q = I

𝜔@𝑦D − 𝑣@ + 𝑣0 cos𝜙D
−𝑥D𝜔@ + 𝑣0 sin𝜙D

𝜔0 −𝜔@
K          (15) 

Then the first scalar function 𝑉+ is proposed as a Lyapunov 
function 

𝑽𝟏 =
𝟏
𝟐
𝒙𝒆𝟐 +

𝟏
𝟐
𝒚𝒆𝟐 + (𝟏 − 𝐜𝐨 𝐬𝝓𝒆)          (16) 

where 𝑉+ ≥ 0, and 𝑉+= 0 only if 𝒒𝒆 = 𝟎. Furthermore, by 
using (15), we can derive  

𝑉+̇ = 𝑥D𝑥Ḋ + 𝑦D𝑦Ḋ + 𝜙D sın𝜙Ḋ = 𝑥D(−𝑣@ + 𝑣0 cos𝜙D) +
𝑦D𝑣0 sin𝜙D + sin𝜙D (𝜔0 −𝜔@) = 𝑥D(−𝑣@ + 𝑣0 cos𝜙D) +

sin𝜙D (𝜔0 −𝜔@ + 𝑦D𝑣0)          (17) 
The stabilization of 𝒒𝒆 can be obtained by introducing a 

first virtual control input 𝒗𝒅:  

𝒗𝒅 = T
𝑣.
𝑤.W = ¢ 𝑘+𝑥D + 𝑣0 cos𝜙D

𝑘, sin𝜙D +𝜔0 + 𝑦D𝑣0
¤          (18) 

where 𝑘+ and 𝑘, are positive constant controller gains.   



 
Fig. 1. Trajectory tracking control structure.

The (17) is then 𝑉+̇ = −𝑘+𝑥D, − 𝑘, sin,ϕD ≤ 0,  and 𝑉+̇ =
0 only if 𝒒𝒆 = 𝟎. That means the control input 𝒗𝒅 will make 
the pose error converge to zero.  

Step 2: For the second step we consider the following 
virtual system  

�̇� = 𝒖 = T
𝑢+
𝑢,W                             (19) 

Let the second tracking error be   

𝒗𝒆 = 𝒗𝒅 − 𝒗𝒄 = T
𝑒;
𝑒GW =

		¢ 𝑘+𝑥D + 𝑣0 cos𝜙D − 𝑣@
𝑘, sin𝜙D +𝜔0 + 𝑦D𝑣0 −𝜔@

¤            (20) 

and its time derivative is  

𝒗Ḋ = ¢𝑒;̇𝑒Ġ
¤ =

¦ 𝑘+𝑥Ḋ + 𝑣0 cos𝜙D
̇ − 𝑣0𝜙D sın𝜙Ḋ − 𝑣@̇

𝑘,𝜙D cos𝜙Ḋ + 𝜔0̇ + 𝑦Ḋ𝑣0 + 𝑦D𝑣0̇ −𝜔@̇
§          (21) 

Furthermore, it is easy to be concluded from (20) 

𝒗𝒄 = T
𝑣@
𝜔@W = ¢ 𝑘+𝑥D + 𝑣0 cos𝜙D − 𝑒;

𝑘, sinϕD +ω0 + 𝑦D𝑣0 − 𝑒G
¤          (22) 

and then substituting this result in (17), we can obtain 

𝑽�̇� = 𝒙𝒆(−𝒌𝟏𝒙𝒆 + 𝒆𝟒) + 𝐬𝐢𝐧𝛟𝒆 (−𝒌𝟐 𝐬𝐢𝐧𝛟𝒆 +
𝒆𝟓)          (23) 

Consider the following second Lyapunov function 
candidate:  

𝑽𝟐 = 𝑽𝟏 +
𝟏
𝟐
𝒆𝟒𝟐 +

𝟏
𝟐
𝒆𝟓𝟐                 (24) 

Clearly 𝑉, ≥ 0and 𝑉, = 0only if  𝒒𝒆 = 𝟎  and 𝑣D = 0 . 
Furthermore, the differential of 𝑉, can be derived from (19), 
(21) and (23)   

𝑉,̇ = 𝑉+̇ + 𝑒;𝑒;̇ + 𝑒G𝑒Ġ = 𝑥D(−𝑘+𝑥D + 𝑒;) +
sin𝜙D (−𝑘, sin𝜙D + 𝑒G) + 𝑒;®𝑘+𝑥Ḋ + 𝑣0 cos𝜙Ḋ −

𝑣0𝜙D sın𝜙Ḋ − 𝑢+¯ + 𝑒G®𝑘,𝜙D cos𝜙Ḋ + 𝜔0̇ + 𝑦Ḋ𝑣0 + 𝑦D𝑣0̇ −
𝑢,¯ = −𝑘+𝑥D, − 𝑘, sin, 𝜙D + 𝑒;®𝑥D + 𝑘+𝑥Ḋ + 𝑣0 cos𝜙Ḋ −

𝑣0𝜙D sın𝜙Ḋ − 𝑢+¯ + 𝑒G®sin𝜙D + 𝑘,𝜙D cos𝜙Ḋ + 𝜔0̇ +
𝑦Ḋ𝑣0 + 𝑦D𝑣0̇ − 𝑢,¯         (25) 

Nonlinear feedback acceleration control input is proposed 
as   

𝒖 =

¦ 𝑥D + 𝑘+𝑥Ḋ + 𝑣0 cos𝜙Ḋ − 𝑣0𝜙D sın𝜙Ḋ + 𝑘J𝑒;
sin𝜙D + 𝑘,𝜙D cos𝜙Ḋ + 𝜔0̇ + 𝑦Ḋ𝑣0 + 𝑦D𝑣0̇ + 𝑘;𝑒G

§      (26) 

where 𝑘J and 𝑘; are positive constant control gains. Using the 
(15), we can obtain 

⎩
⎪
⎨

⎪
⎧𝑢+ = 𝑥D + 𝑘+(𝜔@𝑦D − 𝑣@ + 𝑣0 cos𝜙D) + 𝑣0 cos𝜙Ḋ

−𝑣0(𝜔0 −𝜔@) sin𝜙D + 𝑘J𝑒;
𝑢, = sin𝜙D + 𝑘,(𝜔0 −𝜔@) cos𝜙D +𝜔0̇																			
															+(−𝑥D𝜔@ + 𝑣0 sin𝜙D)𝑣0 + 𝑦D𝑣0̇ + 𝑘;𝑒G						

            

     (27) 
Then substitute (27) in (25)  

𝑉,̇ = −𝑘+𝑥D, − 𝑘, sin, ϕD − 𝑘J𝑒;
, − 𝑘;𝑒G,                 (28) 

Obviously 𝑉,̇ ≤ 0 and 𝑉,̇ = 0 only if 𝒒𝒆 = 𝟎 and 𝑣D = 0. 
Therefore, the equilibrium point 𝑒 = 0 is uniformly 
asymptotically stable, where 𝑒 = [𝑞D , 𝑣D]T.  

Therefore, by using (18) and (27), the whole system (12) 
is asymptotically stable according to the following control law: 

TABLE I.  SYSTEM PARAMETER 

Parameter Value Unit 

Mass of DDMR(𝑚) 11 𝑘𝑔 

Mass of base (𝑚!) 10 𝑘𝑔 

Mass of driving wheel (𝑚") 0.5 𝑘𝑔 

Auxiliary moment of inertial  0.4136 𝑘𝑔𝑚# 
Moment of inertial of each 
driving wheel with an actuator 
about the wheel diameter (𝐼$) 

0.001 𝑘𝑔𝑚# 

Moment of inertial of each 
driving wheel with a motor 
about the wheel axis (𝐼") 

0.001 𝑘𝑔𝑚# 

Moment of inertia of the DDMR 
(without wheels and actuators) 
about the vertical axis through 
point 𝐴 (𝐼!) 

0.4 𝑘𝑔𝑚# 

Half length of axis between the 
driving wheels (𝐿) 0.1 𝑚 

Distance from 𝐴 to 𝐶	(𝑑) 0.04 𝑚 

Radius of the driving wheels (𝑅) 0.025 𝑚 

Velocity controller gain (𝐾%) 5 Non 

Velocity controller gain (𝐾#) 10 Non 

Torque controller gain (𝐾&) 10 Non 

Torque controller gain (𝐾') 10 Non 
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⎩
⎪⎪
⎨

⎪⎪
⎧
𝑣. = 𝑘+𝑥D + 𝑣0 cos𝜙D																																																																					
𝜔. = 𝑘, sin𝜙D +𝜔0 + 𝑦D𝑣0																																																										
𝑢+ = 𝑥D + 𝑘+(𝜔@𝑦D − 𝑣@ + 𝑣0 cos𝜙D) + 𝑣0 cos𝜙Ḋ 																		

−𝑣0(𝜔0 −𝜔@) sin𝜙D + 𝑘J𝑒;																																
𝑢, = sin𝜙D + 𝑘,(𝜔0 −𝜔@) cos𝜙D +𝜔0̇																																				

+(−𝑥D𝜔@ + 𝑣0 sin𝜙D)𝑣0 + 𝑦D𝑣0̇ + 𝑘;𝑒G																		
                 (29) 

V. SIMULATION RESULTS 
In order to verify the effectiveness and efficiency of the 

proposed backstepping control law, a computer simulation is 
conducted in MATLAB R2016b/Simulink on a personal 
computer equipped with an Inter Core i5 processor (3.30 GHz 
CPU and 8GB RAM) in the environment of Windows 7 OS 
with the dynamic model of DDMR. Before that, the relevant 
physical and design parameters are shown in Table 1.  

The proposed control law (22) involves the knowledge of 
𝑣Ḋ . In order to reduce the computing time originated from 
analytical derivation difficulties, we estimate them by using 
the finite difference time approximation 𝑣Ḋ =

∆5(
∆1
,	where	∆𝒗𝒆	

represents	the	change	in	velocity	error	and	∆𝑡	shows	the	
change	in	time	since	the	previous	time	step. 

This article takes no account of trajectory planning and the 
reference trajectory satisfies the nonholonomic constraints is 
given by 𝑣0 = 2 , ω0 = 2 + sin 𝑡 , 𝑥0̇ = 𝑣0 cosϕ0 , 𝑦0̇ =
𝑣0 sinϕ0,ϕ0̇ = ω0, and the initial pose [𝑥L, 𝑦L, ϕL] = [0,0,0].  

Such a situation is depicted in Fig. 3, the curves of 
reference trajectory and tracking trajectory indicate that the 
proposed backstepping control law achieves a competitive 
result. Focus on Fig. 4, one can observe that the position 
(𝑥, 𝑦) and orientation ( 𝜙 ) of mobile robot will be in 
accordance with the reference position (𝑥0 , 𝑦0) and orientation 
(𝜙0) in 1.8 seconds.  

 
Fig. 2. Mobile robot reference and actual trajectories. 

The responses of linear velocity and angular velocity are 
given in Fig. 5 and 6 respectively, with a good tracking 
performance of the desired linear and angular velocity. More 
specifically, the velocities present short regulating period, 
small overshoot and slight oscillation. As for Fig. 7, one can 
notice that the obtained control input 𝑢 decreases from a high 
level to an acceptable and physically realizable level for an 
instant. And Fig. 8 indicates the torques applied to the left and 
right wheels. The torque of the right wheel rises from 0 to 
2.116 𝑁𝑚 in 0.1s and then recovers rapidly to a normal level 

while the torque of the left encounters a sharp reduction from 
6.726 𝑁𝑚 to a reasonable level at the beginning.  

 

Fig. 3. Mobile robot reference and actual coordinates. 

 

Fig. 4. Reference and actual linear velocities. 

 

Fig. 5. Reference and actual angular velocities. 

Fig. 9 demonstrates that the maximum tracking error of the 
position(𝑥, 𝑦) and orientation 𝜙 are (-0.097, -0.278) 𝑚	and 1 
𝑟𝑎𝑑 respectively. However, the tracking errors will converge  

 

Fig. 6. Acceleration control inputs. 

 

Fig. 7. Applied torque: right and left wheels. 

 

Fig. 8. Trajectory tracking errors. 
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to zero after just 2 seconds. Overall, these outcomes verify the 
validity of backstepping controller evidently and indicate that 
the backstepping control method is appropriate for the DDMR.  

VI. CONCLUSION 
The primary objective of this work is to develop a 

framework of dynamic modelling of the DDMR, in which we 
establish the dynamics equation using Lagrange method. The 
phenomenon with few concentrations that two reference 
points, i.e. the center of mass point and mid-point on the axis 
between the driving wheels, will lead to different dynamic 
results, has been discussed. This framework offers an effective 
tool to the researchers or students in the field of control who 
focus on designing controller rather than dynamic modelling.  

A secondary objective is to propose a new control 
algorithm of trajectory tracking problem, where the back- 
stepping control method is used to convert the dynamic 
control problem into the kinematic control problem. At same 
time, a numerical simulation is conducted to check the 
stability of the proposed control algorithm while a 
nonholonomic mobile robot tracks a reference trajectory.  

In this paper, the complete knowledge of the dynamics of 
the DDMR is assumed. In other words, the disturbances and 
unmodeled dynamics are not concerned. To cope with these 
issues, the robust and adaptive control algorithms can be 
introduced based on some iterative learning methods. In the 
future work, we plan to implement these ideas. We also want 
to introduce neural networks or support vector machine to 
handle with unmodeled disturbances and/or dynamics.  
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