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Abstract. This paper describes a comparative study of the performance
of Generative Adversarial Networks (GANs) through the quality of the
generated images by using a few samples. In the deep learning-based
systems, the amount and quality of data are important. However, in
industrial sites, data acquisition is difficult or limited for some reasons
such as security and industrial specificity, etc. Therefore, it is necessary
to increase small-scale data to large-scale data for the training model.
GANs is one of the representative image generation models using deep
learning. Three GANs such as DCGAN, BEGAN, and SinGAN are used
to compare the quality of the generated image samples. The comparison
is carried out based on the score with different measuring methods.

Keywords: Generative Adversarial Networks � Sealer � Vision Inspec-
tion Systems

1 Introduction

The machine vision acquires images using cameras, optical systems, lights, etc.
to inspect products and detect defects during manufacturing processes [3]. The
automated machine vision system surpasses human abilities and realizes high
optical resolution, consistency, and high accuracy. However, traditional machine
vision systems show limitations to various environmental conditions at industrial
sites. Especially, they are very sensitive to illumination variation and di�cult to
adapt to di�erent inspected items. Also, they have possibilities of image distor-
tion from changes of the angle and the positions. It is very ine�cient to modify
the systems due to each of the environmental changes for maintaining successful
inspection systems. A deep learning model combines the self-learning ability of
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where �k is a learning rate for k.
The BEGAN has an advantage of its simpler architecture relative to for-

mer GANs. It avoids conventional GAN tricks such as batch normalization or
trans-pose convolution. Also, we do not have to train D and G alternately. Fur-
thermore, it converges fast and stably using its convergence measure:

Mglobal = L(x) + |L(x)− L(G(zG))| (5)

SinGAN This method is to learn an unconditional generative model that cap-
tures the internal statistics of a single training image. To do this, it captures
global properties such as the arrangement and shape of objects in the image, as
well as �ne details and texture information.

Fig. 3: SinGAN’s multi-scale pipeline. Architecture consists of a pyramid of
GANs, where both training and inference are done in a coarse-to-�ne fashion.

As shown in Fig. 3, this model has a pyramid structure, where x0 is a training
image, down-sampling by a factor rn(r > 1) as step by step. At each scale, the
generator combines noise and the resulting image from the previous step, and
the discriminator at the current step is trained to distinguish the down-sampled
GT from the real image. The generator sequentially constructs images from the
coarsest scale to the �nest scale and the noise is added at every scale. At the
coarsest scale, the generation is purely generative, i.e. GN maps spatial white
Gaussian noise zN to an image sample ~xN ,

~xN = GN (zN ): (6)
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Each of the generators Gn at �ner scales ()n < N) adds details that are
not generated by the previous scales. Thus, in addition to spatial noise zn, each
generator Gn accepts an upsampled version of an image from the coarser scale,
i.e.,

~xn = Gn(zn; (~xn+1) ↑r); n < N: (7)

Learning is similar to learn traditional GANs. Training loss for nth GAN
consists of adversarial term and a reconstruction term,

min
Gn

max
Dn

Ladv(Gn; Dn) + �Lrec(Gn): (8)

The WGAN-GP loss [10] for adversarial loss Ladv is used. The adversarial loss
penalized for the distance between the distribution of patches in xn and the
distribution of patches in generated samples ~xn. Reconstruction loss Lrec aims to
reduce the pixels di�erence between the generated image and the down-sampled
(GT) image at each scale by using the squared loss.

2.2 Evaluation

Inception Score It is one of the most widely used methods to assess the quality
of generated images. The desirable outcome of generation is sampled containing
meaningful objects from diverse class labels. Salimans et al. [28] proposed an
approach to combine this requirement. They used a pre-trained Inception Net-
work [30] on the ImageNet [5] to the generated samples to obtain the conditional
label distribution p(y|x). If it has low entropy, the generated images contain
meaningful objects. Next, they calculate the marginal distribution p(y) from all
sample images. When various images are generated, the marginal label distri-
bution has high entropy. Finally, the score is the expectation of KL-divergence
between p(y|x) and p(y).

IS = exp(Ex�pq
DKL(p(y|x)||p(y))) (9)

Fr�echet Inception Distance The disadvantage of the Inception score (IS) is
that the statistics of real generated samples are not used, and compared with
the statistics of synthetic samples. The Fr�echet Inception Distance (FID) [13]
proposed to improve on the IS. It is a metric for evaluating GAN measures the
deviation between deep features of the generated images and that of the real
samples. The FID score is then calculated using the following equation:

FID2 = ||�r − �g||2 + Tr(�r + �g − 2(�r�g)1=2); (10)

where �r and �g refer to the feature-wise mean of the real and generated images.
The �r and �g are the covariance matrix for the real and generated feature vec-
tors. Xr ∼ N (�r;�r) and Xg ∼ N (�g;�g) are the 2048-dimensional activation
of the Inception Network pool3 layer for real and generated samples respectively.
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Table 1: Fr�echet Inception Distance (FID). Smaller is better.
Methods Epoch/Iteration Noise Best FID Image Size

DCGAN 300 (epoch) Gaussian 52.27 658� 490

BEGAN 100,000 (iter) Uniform 169.97 128� 128

The SinGAN is a network that generates images using the internal distribu-
tion of the input images. With its pyramid structure, the inputs in each level
are a�ected by the previous level. Inference at N scale means generation from
noise, and inference at N − 1 scale means down-sampling of the input image
and putting it as the input of the N − 1 generator. An image with a shape and
array similar to the input image is created at scale N . Consequently, the larger
scale leads to the better quality of the images. As shown in Table 2, the average
SIFID is lower for generation from scale N − 1 than for generation from scale
N . It means the image quality of N − 1 is better than that of N , although the
di�erence is small.

Table 2: Single Image FID (SIFID) for SinGAN.
Scale SIFID

N 0.1750302

N-1 0.1750298

Fig. 7: Samples of the generated images using SinGAN.
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