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ABSTRACT
Background: Statistical concepts and techniques are o�en applied
incorrectly, even in mature disciplines such as medicine or psychol-
ogy. Surprisingly, there are very few works that study statistical
problems in so�ware engineering (SE). Aim: Assess the existence
of statistical errors in SE experiments. Method: Compile the most
common statistical errors in experimental disciplines. Survey ex-
periments published in ICSE to assess whether errors occur in high
quality SE publications. Results: �e same errors identi�ed in oth-
ers disciplines were found in ICSE experiments, exhibiting rather
large prevalences, over 30% of the reviewed papers in several types
of errors such as: a) Missing statistical hypotheses, b) missing sam-
ple size calculation, c) failure to assess statistical tests assumptions,
and d) uncorrected multiple testing. When experiments restrict to
the validation section of a larger research paper, the prevalence
of errors increases. �e origin of the errors can be traced back
to: a) Researchers’ inadequate statistical training, and, b) abun-
dance of exploratory research. Conclusions: �is paper provides
preliminary evidence that SE research su�ers the same statistical
problems than other experimental disciplines. However, SE com-
munity does not seem to be aware of the existence of shortcomings
in their experiments, whereas other disciplines work hard to avoid
them. Further research is necessary to �nd the underlying causes
and set corrective measures, but at the outset some actions could
be e�ective: a) Improve the statistical training of SE researchers,
and b) enforce quality assessment and reporting guidelines in SE
publications.

CCS CONCEPTS
•General and reference →Surveys and overviews;

KEYWORDS
Literature review, Survey, Prevalence, Statistical errors

1 INTRODUCTION
Experimentation makes extensive use of statistics. Several studies
warn about the existence of scienti�c articles with inappropriate
statistical procedures [5, 32, 62]. �is happens even in mature
disciplines, such as the health sciences [6].

In turn, there are very few works studying statistical errors in
so�ware engineering (SE) articles. �ere are works in SE discussing
statistical power [23], heterogeneity in meta-analysis [52], and
the relative strengths and weaknesses of cross-over designs [41,
81]. �is stands in contrast with the other disciplines where it is
relatively easy to �nd works warning about problems in simple

statistical concepts such as the de�nition of hypotheses [16, 58],
interpretation of p-values [62], sample size calculation [2, 25] and
signi�cance levels [58], to cite a few.

We aim to assess the prevalence of these problems in the SE
literature. We have compiled the most common statistical errors in
experimental disciplines and surveyed empirical papers published
in ICSE between 2006 and 2015, checking whether these papers
make or not the compiled errors. Our results point out to SE ex-
periments have the same weaknesses than in other sciences. SE
researchers do not use correctly relatively simple concepts such as:
hypotheses posing, sample size estimation, inference, and post-hoc
testing. �ese problems seem to be related to inadequate statistical
training, and the conduction of exploratory research.

Our contributions are the con�rmation of shortcomings in SE
experimental research, and the identi�cation of their origin. In
our opinion, SE community should improve researchers’ statistical
training and, more importantly, establish mechanisms (e.g., quality
assessment tools, reporting guidelines) to identify and �x statistical
problems in SE experiments before they proceed to publication.

�e structure of this paper is as follows: Section 2 provides a
background to the topic of statistical errors in the sciences and
SE. Section 3 presents a short literature review in which several
statistical errors are identi�ed. A subset of those errors is screened
in experiment articles in Section 4. �e origin of those errors is
evaluated in Section 5. A critical appraisal of this review is presented
in Section 6. Finally, the conclusions are reported in Section 7.

2 BACKGROUND
2.1 Statistical Errors in Experimental

Disciplines
Researchers in the sciences and engineering apply statistical tech-
niques to analyze and interpret many of their research results.
Hence, statistical techniques have experienced an increase in use,
particularly in medicine [2, 63, 83], psychology [5], education [21],
and social sciences [25, 58].

�ere is a relatively large set of publications that provide infor-
mation about the existence of statistical problems in virtually all
disciplines. Not all publications are recent; they have been available
since the widespread adoption of experimental research in their
respective areas. �e reported problems have a broad scope [51],
including: the de�nition of statistical hypotheses [16, 58], interpre-
tation of p-values [62], sample size calculation [2, 25], signi�cance
levels [58], and con�dence intervals [16], others.

Papers about statistical shortcomings in other disciplines have
derived their results from some type of literature review of primary



studies from one or more specialized journals. �eir conclusions
are surprising and perturbing since they report high error rates:

• Welch [83] studied 145 articles from one of the most renowned
medical journals, the American Journal of Obstetrics and
Gynecology, and found that 52.6% of the articles contained
inadequate or incomplete statistical descriptions.

• Bakker [5] evaluated 218 articles from high and low im-
pact psychology journals. �e author reported that low
impact journals exhibit statistical inconsistencies more fre-
quently than high impact journals. Bakker determined that
about 15% of all the papers from both high and low impact
journals have at least one incorrect statistical conclusion.

• Ercan et al. [25] evaluated 164 and 145 articules in Psychi-
atry and Obstetrics, respectively. 40% of the psychiatric,
and 19% of the obstetrics publications, contained mistakes
regarging: Sampling, sample size calculation, and contra-
dictory interpretations of inferential tests.

• Kilkenny et al. [39] assessed the experimental design of 271
papers published in Medline and EMBASE between 2003
- 2005. More than 60% of the paper exhibit biases during
the assembly of the study cohort, weak statistical analysis,
missing information, etc.

�e origin of the statistical errors can be traced back to several
causes:

• According to Castro et al. [75], the analysis and interpreta-
tion of empirical results in any scienti�c discipline depend
primarily on how well researchers understand inferential
statistics. �e authors suggested that researchers in the ed-
ucation community, especially PhD students, are prone to
misconceptions, particularly when they are using abstract
statistical concepts, such as con�dence intervals, sampling
distributions with small numbers, sampling variability, dif-
ferent types of distributions, and hypotheses tests.

• Cohen et al. [19] conducted an empirical study with degree
students. �ey found that students lack statistical knowl-
edge, which leads to misinterpret statistical concepts, and
bias judgements.

• Brewer [12] evaluated 18 statistical handbooks from renowned
publishers, e.g., Academic Press, Addison-Wesley, McGraw-
Hill, Prentice-Hall, John Wiley, etc. �ese books contained
imprecise statements in topics such as sampling distribu-
tions, hypothesis testing, and con�dence levels.

2.2 Statistical Errors in SE
�e SE community apparently has limited awareness of the ex-
istence and impact of statistical shortcomings in its publications.
When we searched for SE papers related to statistical problems,
we only found the following results: Dybå et al.’s paper regarding
statistical power [23], Miller’s paper on meta-analysis [52], and two
papers by Kitchenham [41] and Vegas et al. [81] that focused on
within-subject designs.

Several other papers discuss speci�c statistical issues. For in-
stance, Kitchenham’s paper introduced robust statistical methods
[42], while Arcuri and Briand’s paper discussed statistical tests for
the assessment of randomized algorithms [4]. �ese works do not

assess the weaknesses in current research. �ey suggest opportuni-
ties for improvement in the toolset that SE researchers currently
use.

�e di�erence between SE and other experimental disciplines
regarding statistical errors is manifest. In medicine and other sci-
ences, statistical problems are routinely identi�ed in publications;
this aspect is almost completely overlooked in SE.

�e assessment of statistical defects and methodological prob-
lems have been addressed in a relatively late period in other dis-
ciplines. For instance, while the �rst formal randomized clinical
trial in medicine was conducted in the 1940s [8], the �rst publica-
tion about statistical defects in medicine that we are aware of was
published in the 1970s [30]. Given that SE is still in the adoption
phase regarding experimental methods and the associated statistical
techniques, the li�le a�ention paid to the assessment of statistical
issues should come as no surprise.

�is paper reports an exploratory study aimed to answer the
following research questions:

RQ1: What are the most common problems associ-
ated with the use of experimental procedures in exper-
imental disciplines?

RQ2: What is the prevalence of statistical errors in
SE research?

3 STATISTICAL ERRORS IN EXPERIMENTAL
DISCIPLINES

3.1 Review Strategy
To answer RQ1, we reviewed several specialized books published
on the topic, such as Good et al. [29], Vickers [82], and Huck [34].
�ese books provide a good starting point for our exploratory study
because they are not related to any speci�c discipline (although
there is some bias toward the health sciences) and they focus on
serious errors o�en inspired in real research.

3.2 Collected Data
Two researchers (R. P. Reyes and O. Dieste) reviewed the three
aforementioned books. �ey found that 93 text sections clearly
pointing out to some type of error that can be frequently found
in the literature. Discrepancies were solved by consensus. �e
complete listing of paragraphs is available at h�ps://goo.gl/8zb9LU,
including links to the reference books and related literature.

3.3 Analysis Method
We applied thematic synthesis to classify the statistical errors. We
applied the guidelines by Creswell [21] and Cruzes et al. [22] to
avoid biases and achieve methodological rigor in the synthesis and
interpretation of results [11]. �e analysis consisted of two stages:
coding and theme de�nition. It was conducted by the same two
researchers that collected the data.

During the coding stage, both researchers independently as-
signed low-level codes to each text section, which were later re-
viewed and harmonized. We created 93 di�erent codes. During
the theme de�nition stage, codes were grouped together by means
of higher-level codes. �is procedure aligned with our purposes
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since the high-level themes represent error-prone areas. Both re-
searchers worked collaboratively. �ey organized the low-level
concepts into high-level themes following a directed graph, shown
in Fig. 1. �emes and connections between themes and concepts
are available at h�ps://goo.gl/8zb9LU.

Nodes represent categories of statistical errors. Categories be-
come progressively more abstract when we traverse the tree from
right to le�. For instance, the node study design (bo�om side of
Fig. 1) is connected to the nodes assignment and sampling. �is
means that the high-level category study design contains two types
of errors: assignment and sampling errors. Likewise, assignment
splits into further lower-level error types, such as matching, ran-
domization, etc. Notice that Fig. 1 show only a subset of the error
types that we have identi�ed to keep the graph within page limits.
�e graph is available at h�ps://goo.gl/qovXQw.

Codes and high-level themes, as well as the high-level themes
themselves, may be connected multiples times because they are
mentioned in several books, or multiple times in the same book in
di�erent contexts. For instance, randomization is discussed twice
in terms of the representativeness of the random samples:

(item #40) Misconception: If a truly random process
is used to select a sample from a population, the
resulting sample will turn out to be just like the
population, but smaller. [34, pp. 123]
(item #41) Misconception: A sample of individuals
drawn from a larger, �nite group of people deserves
to be called a random sample so long as (1) everyone
in the larger group has an equal chance of receiving
an invitation to participate in the study and (2) ran-
dom replacements are found for any of the initial
invitees who decline to be involved. [34, pp. 127]

and once more with regard to the equivalence of experimental
groups obtained by random assignment:

(item #90)�e idea behind randomization is to make
the groups as similar as possible […]. Baseline dif-
ferences at the beginning of the trial, such as in age
o gender, are due to chance. […] giving a p-value
for baseline di�erence between groups created by
randomization is testing a null hypothesis that we
know to be true. [82, pp. 100]

�ese repeated associations are an indication of relevance, and
thus the arcs connecting the corresponding nodes have been made
proportionally wider. �e number next to the arc indicates the
number of times the connection appears in the raw data. Do�ed
lines represent connections that appear just once.

3.4 Review Results
Statistical errors can be classi�ed in three groups: a) Experimenta-
tion, b) meta-analysis, and c) prediction. Most errors are related to
experimentation. Nevertheless, it is noticeable that meta-analysis
appears three times in connection with subgroup analysis and the
combination of studies with di�erent designs. Prediction appears
just once, in relation with linear modeling. In what follows, we will
focus in problems associated exclusively with experiments.

Analysis is the experimentation facet most o�en mentioned in
connection with statistical errors. In the three reviewed books,

analysis errors appear 63 times. �ere are two main sources of
problems with analysis: the application of inferential techniques
and the interpretation of results:

• �e inferential techniques most o�en used during exper-
imental data analysis are classical tests, such as t-tests,
and their related concepts, such as p-values and tails. Re-
searchers o�en make wrong assumptions about the tests
(e.g., robustness of t-test), and they select tests in circum-
stances in which they cannot be applied (e.g., ordered al-
ternative hypotheses) or are sub-optimal (e.g., low powered
tests). All common tests, including t-tests, correlations,
and ANOVA, are mentioned in this context.

• Another frequently mentioned inferential technique is lin-
ear modeling; multiple linear regression is the best known
example of linear modeling. �e most frequently men-
tioned problem is the rationale behind the de�nition of the
linear model. Other issues, such as the violation of assump-
tions and usage beyond limits (e.g., outside the linear phase)
are also reported.

• Many supposedly basic concepts, such as con�dence in-
tervals, statistical signi�cance, or p-values are frequently
misinterpreted.

Study design is second to analysis. Under this theme, we have
included methodological issues connected to the management of
experimental units, such as sampling and assignment. In both cases,
the origin of the problems comes from inappropriate or missing
randomization and sample size calculation.

Reporting is another problematic aspect, which is mentioned the
same number of times (ten) than study design. �e origin of report-
ing defects is manifold (e.g., overlooking experimental incidents or
multiple testing), although the absence of descriptive statistics (e.g.,
means) is emphasized (tree times) in the reviewed books.

�e last prominent theme is goal de�nition. Researchers fre-
quently do not pose statistical hypotheses. Failure to explicitly
de�ne null hypotheses appears three di�erent times in Fig. 1.

4 STATISTICAL ERRORS IN ICSE
EXPERIMENTS

�e aim of RQ2 is to �nd out the prevalence of statistical errors
and methodological problems in SE research. To answer RQ2, we
evaluated the experiments published in 10 editions (2006-2015) of
ICSE. ICSE is the �agship conference on SE. We expect that our
evaluation yields the prevalence of common statistical errors in the
best SE research; lower quality SE research is probably experiencing
a worse situation.

4.1 Evaluation Instrument
�e complete list of statistical errors that we have compiled contains
almost 100 items. Since statistical errors are ubiquitous in the
general research literature, it is highly likely that several of those ∼
100 problem types would appear in virtually any SE paper as well.
�erefore, an exhaustive review of SE experiments would draw a
too pessimistic picture of our �eld.

We have focused on recurrent types of errors (the ones pointed
by wide arrows in Fig. 1. For instance, ”null hypothesis” -related
problems are referenced multiple times in Fig. 1, as well as test
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Figure 1: Classi�cation of statistical errors in experimental research papers
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”assumptions” or ”central measures”. We have selected the most
error-prone statistical concepts, developed appropriate questions,
and created the 10-question checklist shown in Table 1. All these
questions can be easily traced back to Fig. 1 (or the online version
at h�ps://goo.gl/qovXQw). Some clari�cations are appropriate at
this point:

• Q1.1 and Q1.2 may look outdated due to the increasing
criticisms to the ”Null-Hypothesis and Signi�cance Testing”
(NHST), and the recommendations to adopt other statistical
approaches such as con�dence intervals and e�ect size
indices [10, 71, 77]. However, SE research still falls behind
those recommendations. For instance, only 4 out of 21
experiments published in ICSE between 2006-2015 report
some measure of e�ect size, and 2 out of 21 con�dence
intervals. Nowadays, NHST is still the main statistical
approach used in SE.

• Q4 (Have subjects been randomly assigned to treatments?)
may not be applicable to some types of experiments, e.g.,
when two defect prediction algorithms are applied to the
same code, that is, matched pairs or similar designs. In
cases like this, the question is answered as ”N/A”. Similar
action is taken when any question does not make sense for
a given experiment, e.g., Q5 (Have the test assumptions (i.e.,
normality and heteroskedasticity) been checked or, at least,
discussed?) when an experiment does not use statistical
tests.

• Test assumptions vary from test to test. In many cases,
reference books present incomplete or even questionable
assumptions. �us, in Q5 (Have the test assumptions (i.e.,
normality and heteroskedasticity) been checked or, at least,
discussed?), we will pay a�ention only to the most usual
conditions (normality and heteroskedasticity) that have to
be examined before applying virtually any parametric test.

• Q7 (Have the analysis results been interpreted by making
reference to relevant statistical concepts, such as p-values,
con�dence intervals, and power?) looks a rather relevant
question. Fig. 1 shows that the node ”interpretation” is
connected by wide arcs with nodes representing relatively
simple statistical concepts, such as ”power”, ”con�dence
interval” and ”p-value”, among others. However, we doubt
that we can answer this question objectively. While au-
thors typically discuss their results at length, during the
discussion they may simplify or omit some statistical is-
sues to clearly transmit their message to readers. �us, we
face the risk of making mistakes, e.g., evaluate Q7 nega-
tively due to incomplete reporting. We decided to skip this
question (so it is crossed out in Table 1).

• Multiple testing does not appear to be a relevant issue in
Fig. 1. However, it was cited three times as a source of
problems during both analysis and reporting; note that
there are three incoming arcs to this node in Fig. 1. �is
justi�es Q9 (Is multiple testing reported and accounted for,
e.g., Bonferroni?).

• Q10 (Are descriptive statistics, such as means and counts,
reported?) is relevant for both analysis and reporting. We

will consider it in the context of reporting only, to avoid
in�ating the number of defects found.

Table 1: Evaluation checklist
# �estion
Q1.1 Are hypotheses null explicitly de�ned?
Q1.2 Are hypotheses alternate explicitly de�ned?
Q2 Has the required sample size been calculated?
Q3 Have subjects been randomly selected?
Q4 Have subjects been randomly assigned to treatments?
Q5 Have the test assumptions (i.e., normality and heteroskedastic-

ity) been checked or, at least, discussed?
Q6 In cases where linear models are applied, has the model de�ni-

tion been discussed?
Q7 Have the analysis results been interpreted by making reference

to relevant statistical concepts, such as p-values, con�dence
intervals, and power?

Q8 Do researchers avoid calculating and discussing power post
hoc?

Q9 Is multiple testing reported and accounted for, e.g., Bonferroni?
Q10 Are descriptive statistics, such as means and counts, reported?

4.2 Target studies
At the outset, our intention was to survey only experimental papers
in the 2006-2015 ICSE editions. However, the decision proved soon
to be questionable. We conducted a pilot study using the 2012
ICSE edition to check the feasibility of our study. We immediately
realized that the number of full-�edged experiments was quite
low; we found only four experiments. In turn, we found many
small-scale experiments aimed at evaluating the properties of new
techniques or methods, typically reported in ”Evaluation” Sections
within the same research paper. More concretely, we identi�ed 16
”experiments as evaluations” (18.4% of the total number of papers).

�e question was wether the survey should be extended to ”ex-
periments as evaluations”, or restricted to ”standalone experiments”.
”Experiments as evaluations” o�en apply an experimental method-
ology, but they have short length, typically 1-3 pages long. �e
compressed reporting format may lead to writing practices that
may be wrongly understood as statistical errors by reviewers. On
the other hand, ”experiments as evaluations” represent a large share
of empirical research; overlooking them implies that this survey’s
results would be just partial.

We decided to separately evaluate both type of studies. In a
�rst stage, we searched for all ”standalone experiments” published
in ICSE between 2006-2015. We found 21 papers in total. In a
second stage, we collected a similar number1 of ”experiments as
evaluations” to avoid over-representation.

4.3 Study selection
Two researchers (O. Dieste and R. P. Reyes) worked separately
to screen the tables of contents of the ICSE Technical Track for
the 2006-2015 editions. �ey reviewed the title and abstracts to
search for indications that an experiment was reported. In case
of doubt, they examined the full text, seeking further evidence of
1We rounded up from 21 to 30, i.e., 3 papers per edition × 10 ICSE editions = 30
papers.
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the existence of at least two treatments and the execution of some
comparison between treatments (in other words: the minimum
conditions that any experiment shall satisfy).

�e total number of papers and the papers pre-selected a�er
screening are shown in Table 2. �e pre-selection agreement was
calculated using Fleiss’ κ, as recommended by K. L. Gwet [31, pp.
52]. κ = 0.45, typically considered as moderate [27]. �is implies
that we may have failed to identify some experiments. Notice that
identifying experiments using metadada, such as titles and abstracts,
is not straightforward due to missing methodological descriptors.

�ree researchers (O. Dieste, E. R. Fonseca, and R. P. Reyes)
individually reviewed the pre-selected papers and classi�ed them
into the experiment and non-experiment categories. Disagreement
was solved by consensus. 21 papers were classi�ed as ”standalone
experiments”, which represents 2.7% of the total papers published
in ICSE. �e agreement level for this step of the selection process
was Fleiss’ κ = 0.52, typically considered as moderate [27, 31].
As it will be reported below, this low agreement is due to the
existence of missing information (e.g., hypotheses or randomization
procedures) in the manuscripts. Further details are available at
h�ps://goo.gl/jHWpq3.

Table 2: Summary of the selection process. ”Experiments as
evaluations” between parentheses

Year Total papers
(TP)

A�er
screening

Selected %

2006 72 8 2 (3) 2.8% (4.1%)
2007 64 7 2 (3) 3.1% (4.7%)
2008 85 8 1 (3) 1.2% (3.5%)
2009 70 7 0 (3) 0.0% (4.3%)
2010 62 5 1 (3) 1.6% (4.9%)
2011 62 5 1 (3) 1.6% (4.9%)
2012 87 31 4 (3) 4.6% (3.5%)
2013 85 8 1 (3) 1.2% (3.5%)
2014 99 11 5 (3) 5.0% (3.1%)
2015 84 11 4 (3) 4.8% (3.5%)
Total 770 101 21 (30) 2.7% (3.9%)

Finally, R. P. Reyes randomly selected three ”experiments as
evaluations” per ICSE edition from the tables of contents of the ICSE
Technical Track. �e three researchers independently reviewed
these papers, and discrepancies were solved by consensus. �e
process was repeated until three ”experiments as evaluations” were
identi�ed for each ICSE 2006-2015 edition.

4.4 Execution
�e three researchers individually evaluated all papers and gave a
yes/no/not applicable answer to each checklist question (see Table 7).
�e level of agreement was substantial to almost perfect in many
cases, which increases the con�dence of our results. Details of the
evaluation are available at h�ps://goo.gl/3iy9eL (”standalone exper-
iments”) and h�ps://goo.gl/qCboSX (”experiments as evaluations”).

4.5 Survey Results
Table 4 sumarizes the survey results. Percentages are calculated
as {Yes |No |N /A}

9 . �e column ”No” represents the percentage of
papers in the sample that are a�ected by the error indicated by the

Table 3: Agreement levels per question
Standalone

Exp.
Exp. as Eval.

Sec.
Stage κ Agree κ Agree

Goal de�nition Q1.1 0.839 Almost perfect 0.643 Substantial
Q1.2 0.746 Substantial 0.788 Substantial

Study design
Q2 1,000 Perfect 1.000 Perfect
Q3 0.092 Slight 0.389 Fair
Q4 0.541 Moderate 0.585 Moderate

Analysis
Q5 0.752 Substantial 0.662 Substantial
Q6 1.000 Perfect 0.558 Moderate
Q8 0.894 Almost perfect 0.803 Almost perfect

Reporting Q9 0.592 Moderate 0.659 Substantial
Q10 1.000 Perfect 0.480 Moderate

corresponding question, i.e., the prevalence of the statistical error.
Q1 was split into two parts to di�erentiate the problems related to
the null (Q1.1) and the alternate (Q1.2) hypotheses.

Table 4: Percentages of defects
Standalone
Experiments

Experiments
as Evaluation

Sections
Stage Yes No N/A Yes No N/A

Goal de�nition Q1.1 66.7% 33.3% 0.0% 13.3% 83.3% 3.3%
Q1.2 57.1% 42.9% 0.0% 6.7% 90.0% 3.3%

Study design
Q2 0.0% 100.0% 0.0% 3.3% 96.7% 0.0%
Q3 28.6% 71.4% 0.0% 13.3% 86.7% 0.0%
Q4 66.7% 28.6% 4.76% 20.0% 0.0% 80.0%

Analysis
Q5 61.9% 33.3% 4.76% 13.3% 20.0% 66.7%
Q6 4.8% 0.0% 95.24% 3.3% 0.0% 96.7%
Q8 85.7% 9.5% 4.76% 36.7% 0.0% 63.3%

Reporting Q9 9.5% 71.4% 19.07% 3.3% 26.7% 70.0%
Q10 95.2% 0.0% 4.76% 76.7% 13.3% 10.0%

We found clear evidence of the existence of statistical errors in
ICSE papers. �e prevalence of the di�erent errors vary, but it is
substantial in many cases, e.g., Q1, Q2, Q3 and Q5 (hypothesis de�-
nition, sample size calculation, random selection and assumption
checking, respectively). �e results are somewhat di�erent for stan-
dalone experiments and ”experiments as evaluations”. In the later
case, the number of ”N/A” responses is much higher. Apparently,
the reasons are twofold:

(1) Most of the ”experiments as evaluations” apply a matched
pairs design. Random assignment (Q4) is typically not
applicable in this case, e.g., two di�erent bug prediction
algorithms are applied to the same code [78, 85].

(2) A large number of studies, e.g., [46, 90] conduct the analysis
using descriptive statistics only. Descriptive statistics do
not have assumptions to check (Q5). When inferential
statistics are not used, Q6-9 (linear modelling, power, and
post-hoc testing) are not applicable either.

We ran a classi�cation CHAID tree2 to con�rm the above ob-
servations. A value ”N/A” in Q4 generates a subset containing 80%
2�e response variable was the study type (”standalone experiments” and ”experiments
as evaluations”) and the predictors the questions Q1-10. We used the default CHAID
parameters in SPSS, with the exception of the parent and child nodes, that were set to
10 and 5 cases respectively due to the small number of cases.
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of all the ”experiments as evaluations” studies (χ2 = 29.7,d f =
2,p−value < 0.001). �e classi�cation tree con�rms that the lack of
random assignment due to matching is a di�erential characteristic
of the ”experiments as evaluations”.

Focusing on the prevalence of errors, we found that both stan-
dalone experiments and ”experiments as evaluations” display simi-
lar values3 when examined using�estion× Study type contingency
tables, with the exception of Q1.1 (χ2 = 15.4,d f = 1,p −value <
0.001) and Q1.2 (χ2 = 20.7,d f = 1,p − value < 0.001). In both
cases, standalone experiments de�ne null hypotheses (Q1.1) �ve
times more frequently than ”experiments as evaluations” (66.7% vs.
13.3%), and alternate hypotheses (Q1.2) eight times (57.1% vs. 6.7%).

Both types of studies do not show statistically signi�cant dif-
ferences for the remaining questions, although some may be false
negatives. �e large number of ”N/A” in several questions decrease
the amount of usable data, thus lowering the power of the tests.
However, the low p-values in both the χ2 and the Fisher’s Exact
Test suggest that Q3, Q4, Q5, Q10 could achieve statistical signif-
icance with larger samples. In all cases, standalone experiments
perform random selection (Q34, random assignment (Q4), assump-
tion checking (Q5) and reporting of descriptive statistics (Q10) more
frequently than ”experiments as evaluations”. Di�erences are not
so large as in the case of Q1.1 and Q1.2, but still substantial, e.g.,
61.9% vs. 13.3% for Q5.

We can also read from Table 4 that:
• �e required sample size (Q2) has been calculated in just

one study. �e de�nition of the linear model (Q6) has been
considered in just two cases.

• Multiple testing (Q9) is a pervasive problem in SE research.
Most studies fail to report or correct for multiple testing
using adequate, e.g., Bonferroni, methods.

• Random selection (Q3) exhibits high prevalences. Nev-
ertheless, this problem is not easy to solve in human ex-
periments due to the trouble of assembling cohorts. In
turn, random selection could be e�ectively applied in non-
human research, e.g., when data is extracted from code
repositories.

�is survey shows that common statistical errors that are oc-
curring in other sciences happen in SE as well. We have been able
to survey a very limited amount of experimental papers in one SE
conference. However, both the type and number of problems found
suggest that SE is facing the same challenges than other sciences.

5 DISCUSSION
�e most likely explanation for the occurrence of the statistical
errors associated to Q1-10 is the recent adoption of experimental
methods in SE. Many researchers have not taken formal courses
on experimental methodology and inferential statistics as part of
their Master/PhD training. Self-education tends to bring about

3Notice that the ”N/A” values may suggest misleading relations. For instance, Q9
gives Yes/No values 9.5% and 71.4% for standalone experiments, and 3.3% and 26.7% for
”experiments as evaluations”. Values di�er greatly, but the odds 71.4

9.5 = 7.5 ∼ 26.7
3.3 =

8.1 are rather similar.
4Notice that Q3 yields κ = 0.09 and κ = 0.39 for standalone experiments and
”experiments as evaluations”, respectively. Random sampling is a controversial issue
in SE. Q3 results should be taken with caution.

wide di�erences among individuals. In this scenario, two situations
could be expected:

(1) �e studies conducted by skilled researchers will be higher
quality (understanding ”quality” as the absence of errors,
e.g., ”Yes” answers

All answers ) than those conducted by less skilled re-
searchers. We could thus expect that the ”quality” values
spread from 0% to 100%. As errors are independent, the
distribution of ”quality” will follow a normal distribution5.

(2) �ose statistical concepts closely related to practice, e.g.,
random assignment (Q4), assumption checking (Q5), and
reporting (Q10) shall exhibit lower error probability than
”theoretical” ones, e.g., hypotheses de�nition (Q1), sample
size calculation (Q2), random selection (Q3), linear mod-
eling (Q6), post-hoc power calculation (Q8), and post-hoc
testing (Q9).

In order to check the situation 1 above, Fig. 2 shows the his-
tograms for both types of studies. In the case of standalone ex-
periments (Fig. 2a), the histogram matches the assumption: the
”quality” scores �ll the 0% - 100% interval and the distribution is
normal (Shapiro−Wilk = .947,d f = 21,p−value = .300). ”Experi-
ments as evaluations” (Fig. 2b) display a rather di�erent picture. �e
distribution is skewed to the le� (skewness = 1.02), indicating that
papers’ ”quality” gather in the low scores. �e distribution is clearly
non-normal (Shapiro −Wilk = .863,d f = 30,p −value = .001).

�e previous analysis suggests a di�erent origin, depending on
the type of study, for the statistical errors. In the case of standalone
experiments, inadequate statistical training may explain the the
observed errors.

In the case of ”experiments as evaluations”, training alone can-
not explain the data. In our opinion, the low scores point to the
secondary role of statistics and experimental methodology in these
works. Not only ”experiments as evaluations” take a relatively
short space in manuscripts (giving a justi�cation for summarizing
”unnecessary stu�”), but also statistical rigor is probably second
to the authors’ objectives (they are probably more interested in
providing a convincing case for their proposals).

To check the situation 2 above, Table 5 contains the odds of
making an error. �e odds are the same concept introduced in
footnote 3; they represent the probability that an event happen
(answering negatively the Qi question, i.e., an statistical error is
present in a paper) rather than another (answering Qi positively,
i.e., there is not such an error).

In the case of ”experiments as evaluations”, the data matches
our assumption6 exactly. All ”theoretical” concepts have large odds
ratios (≥ 5.0), whereas ”practical” ones have small ones (≤ 1.4).
For standalone experiments, the situation is almost the same. For
the ”theoretical” concepts, odds ratios are smaller than in the case
of ”experiments as evaluations”, with the only exception of Q9.
�is is coherent with the higher error rate of the ”experiments as
evaluations” studies. However, Q1.1 and Q1.2 odds ratios are much
5Statistical errors are probably dependent. When a researcher learns a statistical topic,
e.g., sample size calculation, such knowledge may probably lead to avoid other errors,
e.g., post-hoc power calculation. However, the errors underlying Q1-10 are rather
diverse as to appear strongly clustered in papers.
6We are crossing out Q6 and Q8 because: a) Q6 was applicable only in 2 out of 51
studies, and b) post-hoc power analysis (Q8) is a commission, not omission, error;
authors may perform correctly simply by not conducting a power analysis. �eir
inclusion would not have challenged our conclusions.
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(a) Standalone experiments (b) ”Experiments as evaluations”

Figure 2: Histograms

Table 5: Odds of making the error indicated in Q1-10
Odds (No ÷ Yes )

Concept type Q Standalone
experiments

Experiments
as evaluations

Practical concepts
Q4 0.4 0.0
Q5 0.5 1.4
Q10 0.0 0.2

�eoretical concepts

Q1.1 0.5 5.0
Q1.2 0.8 10.0
Q2 +Inf +Inf
Q3 2.5 5.0
Q6 0.0 0.0
Q8 0.1 0.0
Q9 10.0 10.0

smaller (0.5 and 0.8, respectively) and comparable to the odds ratios
that appear in the group of ”practical” concepts.

�e previous analysis con�rms that inadequate training is the
most likely explanation for the presence of statistical errors in
experiments. In the case of ”experiments as evaluations” studies, a
more casual usage of statistics increases the error rate, but the �nal
outcome is the same.

One anomaly in Table 5 is the large odds ratio that Q9 exhibits
for standalone experiments. It has the same value than in ”experi-
ments as evaluations”. Such value is even less plausible given the
small odds ratios for Q1.1 and Q1.2: any researcher with a good
knowledge of statistical hypotheses should be aware of the impact
of multiple testing on α levels. �e most likely reason is that, in ad-
dition to testing the statistical hypotheses, standalone experiments
also perform exploratory research (manifested in a large number
of uncorrected post-hoc tests). Exploratory research can be easily
found in many SE experiments, e.g., [7, 86].

Post-hoc testing is associated to p-hacking, that is, the accep-
tance of outcomes that �t expectations [55]. p-hacking leads to
publication bias. Jørgensen et al. [38] evaluated the existence of
publication bias in SE publications following Ioannidis’ critical

perspective for medicine [35]. Both papers came to a similar con-
clusion: the likelihood of publication bias is rather high. More
importantly for our purposes, both papers report that the under-
lying reasons for publication bias are statistical: many inference
tests and predilection for statistically signi�cant results, among
others. Our data supports Jørgensen et al.’s observations: post-hoc
testing increases the number of tests, and the lack of correction
for multiple testing probably in�ates the number of false positives,
thus leading to publication bias.

6 THREATS TO VALIDITY
�is study applied two research protocols: a literature review and a
paper survey. Both protocols have a great degree of similarity. �ey
shall meet some criteria regarding the relevance of the primary
studies to answer the research questions, as well as the agreement
among studies. Table 6 shows an evaluation7 according to �omp-
son et al. [80]. Evaluation was positive overall. We can say with
relative con�dence that the literature review and the results from
the survey are trustable. However, they are not complete due to
the limited number of the primary sources used; three well-known
books about statistical errors and experimental papers from one
SE conference were used in the study. �e external validity of
this research is thus limited. Additionally, the literature review
followed a simpli�ed, but well-de�ned protocol. We preserved the
page numbers of the books from which we extracted information
about statistical errors. We disclosed the entire thematic analysis,
including codes and high-level themes. All decisions have been
made by at least two researchers. �ese precautions increased the
validity of the literature review.

With regards to the paper survey, we have taken reasonable
precautions to avoid biases. �ree researchers participated in the
paper selection and evaluation. All decisions have been recorded
and made public for review. Agreement levels (using Fleiss’ κ) have
been calculated and disclosed.

7�ere are many appraisal procedures; we have chosen [80] because it is rather simple
and domain-independent.
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Table 6: Appraisal criteria used for review

Appraisal criteria RQ1 assessment RQ2 assessment
Comprehensive literature search? No No
Appropriate criteria used to select articles
for inclusion?

Partially: �e selected books were appropriate, but they
have a general orientation. �e books may have skipped
the discussion of speci�c statistical errors that probably
appear in other sources, such as research papers.

Partially: ICSE is the �agship conference in SE.
Other conferences may publish lower quality
experiments.

Included studies that were su�ciently
valid for the type of question asked?

Yes: �e three books speci�cally addressed the topic of
statistical errors.

Yes: Experiments published in ICSE represent
the best practice in ESE.

Were the results similar from study to
study?

Yes: �ere was a great degree of coincidence. Several errors
were identi�ed by two or three books simultaneously. �e
same high-level themes were synthetized from the di�erent
books.

Yes: Statistical problems repeated across experi-
ments.

However, the precautions taken did not mean that we performed
a correct assessment in all cases. �e selection process produced
low Fleiss κ, which suggests that we may have skipped some ex-
periments and, thus, potentially biased the results. Even if this is
the case, it looks clear that statistical errors are present in SE; only
the prevalences, or percentages of appearance, could be a�ected.

We do not claim that the reported prevalences are representative
of all types of SE research. Actually, the prevalences reported in
this paper probably represent the best practice in SE research, with
the possible exceptions of the ESEM and EASE conferences, and
maybe some journals, such as Empirical So�ware Engineering. As
we move away from outlets of repute, the number and severity of
statistical errors likely increases.

Finally, we wish to point out that the results obtained in the
Discussion Section are somewhat speculative. We cannot rule out
that there are alternative explanations for the distribution of qual-
ity scores and the odds ratios. As usual, further research will be
necessary to con�rm our deductions.

7 CONCLUSIONS
�e results of this preliminary review point out to the existence
in SE of the same type of statistical errors that are found in other
scienti�c disciplines. �ese problems are not of a complicated or
sophisticated nature. �ey are surprisingly simple and include unde-
�ned hypotheses, missing sample size calculations, randomization,
and multiple testing, among others. �e lack of information about
the existence of such problems in SE is rather surprising. �e SE
methodological literature has not widely addressed this topic; only
some works [23, 41, 52, 81] have scratched the surface. Researchers
may not be aware of the existence of statistical errors, much less
their prevalence and potential impact.

�ere are two reasons that seem to explain the presence of sta-
tistical errors in SE research: a) �e recent widespread adoption
of experimentation in SE, and b) the frequent conduction of ex-
ploratory research. In our opinion, the sudden exigence to apply
experimental methods in SE research has led researchers to self-
training in statistics. Additionally, it is rather unlikely that SE
research teams contain or may count on statistical consultants.
In this situation, it is relatively easy that errors slip into designs
and ultimately published papers. �is situation matches other sci-
ences that have a long experimental tradition, such as medicine

and ecology, which only recently have paid a�ention to statistical
errors.

As empirical research in SE approaches a mature stage, there
will be a greater awareness about statistical errors and the need to
avoid them. However, it does not look wise that the SE community
passively wait to reach such state. Besides the establishment of
formal training courses in universities and professional societies
(something that is happening nowadays), the SE community shall
enforce good practices, such as reporting guidelines and quality
standards, that have demonstrated useful in other sciences, e.g.,
medicine [72], psychology [74] and education [28], among others.
Furthermore, these good practices can be easily enforced by journal
Editors and conference PC Chairs with relatively li�le cost and
e�ort.

Exploratory research is another source of problems. From the
viewpoint of this research, exploratory research manifests as the
absence of statistical hypotheses, and the conduction of multiple
uncorrected tests. However, these errors lead to publication bias,
already detected in SE [38]. Experiment pre-registration is probably
the best way to �ght against publication bias [15], but it is not easy
to set up and enforce. To the best of our knowledge, pre-registration
has not been discussed so far in SE. Further research is needed
to �nd out e�ective ways to ba�le publication bias in SE. In the
meantime, the establishment of reporting guidelines and quality
standards may improve the situation.
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Table 7: Problems found in standaline experiments and ”experiments as evaluations” published in ICSE between 2006-2015
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