
EasyChair Preprint
№ 6916

Classification of UML Diagrams to Support
Software Engineering Education

José Fernando Tavares, Yandre M.G. Costa and
Thelma Elita Colanzi

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 22, 2021



Classification of UML Diagrams to Support
Software Engineering Education
José Fernando Tavares∗, Yandre M. G. Costa∗, Thelma Elita Colanzi∗

∗State University of Maringá, Maringá, Brazil.
fernando@booknando.com.br,{yandre, thelma}@din.uem.br

Abstract—There is a huge necessity for tools that implement
accessibility in Software Engineering (SE) education. The use
of diagrams to teach software development is a very common
practice, and there are a lot of UML diagrams represented as
images in didactic materials that need an accessible version for
visually impaired or blind students. Machine learning techniques,
such as deep learning, can be used to automate this task. The
practical application of deep learning in many classification
problems in the context of SE is problematic due to the large
volumes of labeled data required for training. Transfer learning
techniques can help in this type of task by taking advantage
of pre-trained models based on Convolutional Neural Networks
(CNN), so that better results may be achieved even with few
images. In this work, we applied transfer learning and data
augmentation for UML diagrams classification on a dataset
specially created for the development of this work, containing six
types of UML diagrams. The dataset was also made available as a
contribution of this work. We experimented three widely-known
CNN architectures: VGG16, RestNet50, and InceptionV3. The
results demonstrated that the use of transfer learning contributes
for achieving good results even using scarce data. However,
there is still a room for improvement regarding the successful
classification of the UML diagrams addressed in this work.

Index Terms—Software Engineering Education, UML dia-
grams, Deep Learning, Transfer Learning, Assistive Technologies

I. INTRODUCTION

Science, Technology, Engineering and Maths (STEM) un-
dergraduate courses have often been cited as difficult to learn
for people who have some form of visual impairment or
blindness [1]. Several aspects of reading are easily accessible
for students with vision impairments because screen reading
technologies are able to manage the text. However, the prob-
lems arise when equations, graphs and diagrams are used.

Diagrams are very common in Software Engineering edu-
cation. Particularly, the use of UML (Unified Modeling Lan-
guage) [2] diagrams is of vital importance for teaching object-
oriented techniques or more advanced concepts [3]. UML
is a visual language designed to model large object-oriented
software systems using a diagram notation. Furthermore, this
language is the standard modeling language adopted by the
Software Engineering industry [4]–[6].

Currently, UML diagrams use to be described and stored
in the form of digital images. In addition, we know that
the current educational context imposes increasing attention
to the aspects of accessibility. So, it would be opportune to
describe these diagrams in an alternative language (text, sound
or physical devices) which facilitates access to information for
blind or low vision people.

The task of image description for accessibility has been
carried out with great effort by various content producers, pro-
ducing high-quality tools that assist in the image description.
To the best of our knowledge, the work of Bine et al. [7] is one
of the few studies whose objective is to create a model that
can be used in the construction of assistive tools for visually
impaired students. However, their work only focus on the
classification of diagrams related to Theory of Computation,
not including UML diagrams.

A systematic literature review [8] summarizes studies whose
goal is to turn diagrams accessible for blind or visually
impaired from courses in the STEM field. Only a few studies
(three among 26) address the UML diagrams, not considering
the classification in the context of assistive technologies.

The few studies that automatically classify the images as
UML diagrams perform a binary classification to determine
if the image is a UML class diagram or a non-UML class
diagram [9]–[12]. Despite UML class diagrams are the most
used ones, there are other frequently used UML diagrams [4],
[5]. So, there is a lack of studies about the classification of
a comprehensive set of UML diagrams aiming at providing
more specific solutions for the extraction of information from
UML diagrams represented in the image format. We infer
that the reason for this lack of studies happens because the
practical application of modern machine learning techniques,
such as deep learning, requires a large volume of labeled data
for training [13]. This is a limitation for many classification
problems in the context of Software Engineering, including
the UML diagrams classification. Transfer learning techniques
apply pre-trained models to improve the classification results.
Thus, transfer learning can be explored together with machine
learning techniques in order to achieve satisfactory results even
when there are not so many images available for training.

Our project goal is to support the creation and manipulation
of didactic materials and books, which contain UML diagrams,
aiming to make them accessible to visually impaired students.
Thus, in this work we performed the first step of the project,
which consists of an exploratory study to apply Convolutional
Neural Networks (CNN) in the task of UML diagrams clas-
sification. In addition to CNN, we employed transfer learning
and data augmentation aiming to take advantage from pre-
trained models. These ML techniques proved to be effective
in circumventing issues provoked by the scarcity of data.

Firstly, we create a dataset containing several images of
the six most commonly used UML diagrams, namely class



diagram, use case diagram, sequence diagram, component
diagram, activity diagram and deployment diagram [4]. Then,
we apply transfer learning and data augmentation for UML
diagrams classification on this dataset. We experimented three
widely-known CNN architectures: VGG16, RestNet50, and
InceptionV3. The results demonstrated that the use of transfer
learning allows achieving good results even using scarce data.
However, the obtained results pointed out that the UML
diagram classification is a complex problem that needs further
studies for improving the classification accuracy, especially
considering class diagrams.

The main contributions of our work are twofold: (i) the
dataset that encompasses images of six different types of UML
diagrams created for the development of this work, which
will be made available upon the paper acceptance; and, (ii)
the preliminary results of our work and the lessons learned,
which shed light on the automatic classification of a more
comprehensive set of UML diagrams.

This paper is organized as follows: Section II briefly de-
scribes some concepts from machine learning used in this
work; Section III addresses related works; Section IV presents
the study design; Section V discusses the results obtained;
Section VI presents the lessons learned; and finally, Section
VII brings some concluding remarks.

II. MACHINE LEARNING TECHNIQUES

In this section we briefly describe the main machine learning
techniques used in this work.

A. Convolutional Neural Networks (CNN)

CNN is a specific type of neural network, and currently it
is one of the most famous deep models used by the machine
learning research community to address image classification
tasks. This model is based on ideas originally proposed by
LeCun [14], and it is designed such a way that it can naturally
deal with data in the form of a matrix. This is one reason
why the model is quite suitable for image classification. CNN
is composed of several layers which correspond to different
levels of representation, and the number of layers determines
the depth of the model. The model starts with the raw image to
feed the input layer, and after the transformations performed
on the following layers, through a backpropagation algorithm,
representations for more abstract concepts are obtained. One
of the key aspects in this method is that these layers are
automatically learned. This is why the term “feature learning”
was coined to refer to this process.

Different CNN architectures have been proposed on the last
decade aiming to provide models each time better to perform
image classification. In this work we selected three of these
models, widely-used in the recent literature to address image
classification tasks in a wide range of applications: VGG16,
Inception V3, and ResNet50.

The VGGNet architecture [15] presents good results on
image classification tasks. It is a very deep model based on
very small convolution filters (3×3) with a pool layer added
after every two or three convolutional layers. The two most

used models derived from the original VGG are VGG16 and
VGG19, with 16 and 19 weight layers respectively.

Inception V3 [16] is the third version of GoogleLeNet (also
known as Inception V1), the winner of the detection challenge
on the ILSVRC 2014 contest. In the second and third versions
of the architecture, the creators introduced some small changes
in the way how the model performs convolutional operations,
among others, such a way the computational time decreased
and the accuracy of the model increased.

ResNet-50 [17] is a 50 layers depth network derived from
the original ResNet, proposed in 2015, which can have up
to 152 layers in total. The model is able to learn residual
representation functions, not directly learning the signal rep-
resentation itself. ResNet also introduced the concept of skip
connections (i.e. shortcuts to jump over some layers). This
model was the winner of the ILSVRC 2015 contest in image
classification, detection and localization modality, and it was
also the winner of MS COCO 2015 on image detection and
segmentation tasks.

B. Transfer Learning

Transfer learning is a method widely-used in computer vi-
sion that allows building accurate models in a time saving way
[18]. With transfer learning, instead of starting the learning
process from scratch, we can start from patterns that have
been learned when solving a different problem. This way we
leverage previous learnings and avoid starting from scratch.

In computer vision, transfer learning is expressed through
the use of pre-trained models. A pre-trained model is a model
usually trained on a large benchmark dataset to solve a prob-
lem similar to the one we want to solve. Accordingly, due to
the computational cost of training such models, it is a common
practice to import and use models from published literature
(e.g. using already established models: VGG, Inception and
ResNet), most of the times created from quite huge image
datasets. This way, transfer learning can also be seen as a
strategy to deal with the lack of data samples, as we can
take benefit from knowledge learned from huge datasets. A
comprehensive review of pre-trained models’ performance on
computer vision problems using data from the ImageNet [19]
is presented by Canziani et al. [20].

Marcelino et al. [21] define three strategies to replace the
original classifier from the CNN architecture by a pre-trained
model. They are defined below and illustrated in Figure 1.

- Strategy 1: Train the entire model. In this situation, it is
possible to use the architecture of the pre-trained model and
train it according to the dataset. It is recommended for large
datasets.

- Strategy 2: Train some layers and leave the others frozen.
In a CNN architecture, lower layers refer to general features
(problem independent), while higher layers refer to specific
features (problem dependent). In this case, we have to adjust
the weights of the network. This option is useful when we
have a small dataset and a large number of parameters, we
need to leave more layers frozen to avoid overfitting. On the
other hand, if the dataset is large and the number of parameters



Fig. 1. Strategies for transfer learning [21].

is small, it is possible to improve the model by training more
layers to the new task.

- Strategy 3: Freeze the convolutional base. In this situ-
ation, we have an extreme case of the train/freeze trade-off.
The rationale behind it is to keep the original form of the
convolutional base to use as input for the classifier. By this
way, the pre-trained model plays the role of a feature extractor.
It can be interesting for small datasets or if the problem solved
by the pre-trained model is similar to the one we are working
on.

III. RELATED WORK

Torres and Barwaldt [8] published a systematic literature
review that brings a landscape of the primary studies which
aim to turn diagrams accessible for blind people. In this
research the authors gather the studies that work with a
wide concept of diagram, especially for courses in STEM
fields. Only a few studies address the UML diagrams and
without approaching the issue of classification in context of
assistive technologies. That paper reinforces that there is a lack
of studies about UML diagram classification or studies that
approach an accessible solution for images of UML diagrams.

Karasneh and Chaudron [22] presented one of the first
studies on this subject. The authors proposed a system for
extracting information from class diagrams. The proposed
system extracts the contents of the class diagram from a
given image and transforms it to XMI format. The same
authors created a repository composed of class diagram images
and XMI representations [23]. The authors also described a
protocol to extract information from class diagram using OCR
[10]. In another paper, they explore the extraction of UML
information from images using the Img2UML software [24].

Hjaltason and Samuelsson [10] performed a binary classifi-
cation of UML class diagrams using handcrafted features and
SVM algorithm. In that work, the authors aimed to facilitate
the construction of a dataset composed of UML class diagrams
for researchers. Thus, they focused only in class diagrams.
Similarly, Moreno et al. [11] created a tool aiming to identify
whether an image is a class diagram or not, by means of a
binary classifier fed by handcrafted features.

Lastly, transfer learning with VGG16 were employed for
class diagram and sequence diagram classification in [12]. This
work shows that transfer learning is equally effective to custom
deep architectures when a large amount of training data is not

Fig. 2. The method used in this work.

available. The experiments were applied only in two types of
UML diagram, using only one type of CNN architecture.

Bine et al. [7] presented another interesting work, not
directly related to UML diagrams, but also in the context
of learning support. The authors explored CNN for automata
images classification, aiming at supporting visually impaired
people in Theory of Computation learning tasks. The exper-
imental protocol included three types of CNN architectures,
but transfer learning was not used.

In summary, even though we can find several works apply-
ing transfer learning in image classification tasks using CNN
architectures, few of them were devoted to UML diagrams
classification. Also, differently from [12], it is needed to test
other CNN architectures in order to evaluate the CNN accuracy
for the referred context. Finally, as aforementioned, different
types of UML diagrams are used in practice [4], [5], leading
to the need of providing support for a more comprehensive set
of UML diagrams than only class diagrams, as done in related
works described here.

IV. STUDY DESIGN AND EXECUTION

In this study we performed an exploratory study involving
the integration of transfer learning and CNN architectures to
classify six types of UML diagrams. In this study, we are
interested in answering the following research questions:

RQ1 - Is there a suitable combination of transfer
learning strategy and CNN architecture for UML diagram
classification? To answer this RQ we executed two different
scenarios which integrated different transfer learning strategies
using some of the most known models of CNN (see Section II).

RQ2 - Can different types of UML diagrams be pre-
dicted by a single classifier? To answer this RQ we executed
an experiment with the best performing classifier to predict
the UML diagram type on a test dataset, composed by images
different from those used to train the model.

Figure 2 shows the steps performed in this study. The first
step was the UML Dataset Creation, which is described in Sec-
tion IV-A. In Experiments 1 and 2, we experimented different



transfer learning strategies, datasets and CNN architectures to
train the models. Finally, we executed Experiment 3 to test
the prediction of the best performing trained model. Results
of Experiments 1 and 2 were used to answer RQ1, whereas
results of Experiment 3 is related to RQ2. These steps are
detailed in the next subsections.

A. UML Dataset Creation

The basic stuff for the development of a UML diagram
classification model is a UML dataset which encompasses
images of different types of UML diagrams. The number of
public examples of UML diagrams is low. Among the rare
datasets available in this context, we can mention the “Online
Img2UML Repository”, a dataset composed of approximately
800 diagrams [23] which contains only class diagrams.

One of the largest datasets available nowadays is The
Lindholmen Dataset [25]. This repository is public and it is
composed of links that lead directly to different projects on
Github. Authors themselves warn that it has the advantage
of having been taken from real projects, but it may contain
projects made by students who are still learning the concepts;
hence, it may contain repeated and unrepresentative images.
In addition, GitHub is dynamic and many of the links may
be broken. As reported on the dataset website, many of the
diagrams are not in the form of images and are not cataloged.

Aiming at circumventing the scarcity of data available for
the development of this work, our choice was to create a
repository containing images of six types of UML diagrams.
For doing this, we collected images available on the internet
using web scrapping scripts on google.com and bing.com.
Following, we completed the dataset using images from The
Lindholmen Dataset.

Our dataset is composed of six categories of UML diagrams,
containing images for training, validation, and testing. We
chose the most commonly used UML diagrams to compose our
dataset, namely class, use case, sequence, component, activity
and deployment diagrams [4].

To train and validate the CNN models we used a dataset
composed of 200 images for each category, hereafter referred
as small dataset. To test the CNN models we used another
dataset composed of 50 images for each category, hereafter
called as test dataset. It is important to remark that the images
of the test dataset are different from those ones included in
the small dataset.

Next, we describe the adjustments performed on the datasets
aiming to make them ready to be used considering the CNN
architectures requirements and the purposes of this work.

Images Pre-processing. The images were resized to 900 ×
900 pixels and converted from RGB to grayscale, aiming to
make them suitable to be submitted to the CNN architectures
used to perform the classification in this work. When resizing,
the proportion of the images was maintained, using zero
padding when necessary.

Images Labeling. All the images collected were manually
labeled by the first author according to its type of UML
diagram. Such information is required during the CNN training

for the supervised learning. Despite this is an objective task,
the image classification was checked by another author to
avoid any labeling error.

Data Augmentation. Aiming to evaluate the impact of
transfer learning without a critical level of data scarcity, we
performed data augmentation on the small dataset. By means
of data augmentation, we created a bigger version of the
dataset (called augmented dataset). We generate four more
variations for each image of the small dataset. Hence, the
augmented dataset encompasses 6000 images, being 1000
images for each type of UML diagram. The transformations
applied to obtain the image variations were horizontal and
vertical flip, and rotation of 90 degrees and minus 90 degrees.
Other variations were taken into account, but did not provide
an effective return for our problem. Both versions of the
dataset are publicly available in https://bit.ly/3fTMI6f.

B. Experimental protocol

We propose two different scenarios aiming to evaluate the
impacts of using the dataset with and without performing
data augmentation. Thus, in the first scenario, we use the
small dataset, and in the second one, we use the augmented
dataset. In both scenarios we used cross validation to prevent
overfitting. Cross validation splits the dataset into different
folds (splits of data) to train/test the model.

As shown in Figure 2, Experiment 1 was performed on
the small dataset, while Experiment 2 was performed on the
augmented dataset. In Experiment 1, five-fold cross validation
was used, as the number of images of the dataset is small. For
Experiment 2 we used ten-fold cross validation.

Transfer learning was used in both experiments. To use a
pre-trained model, we remove the original classifier from the
CNN architecture. Then, we add a new classifier that fits our
purposes, and perform a fine-tuning on the model following
one of three strategies defined in Section II. In Experiment 1
we applied the Strategy 3, while in Experiment 2 we applied
the Strategy 2.

As described in Section II, VGG16, Inception V3 and
ResNet50 are the CNN architectures chosen to the accom-
plishment of the classification of the images in this work.
The implementation was carried out using the Tensorflow and
Keras framework within the Google Colab environment. This
environment offered a more robust GPU and consequently the
possibility to perform more tests in less time. The datasets
were uploaded to Google Drive allowing easy access through
the Google Colab notebook API. All codes used were made
publicly available in https://bityli.com/sc9o5.

For every CNN architecture we follow the next steps:
• Creation of K-fold for cross-validation, with K = 5 for

small dataset and K = 10 for augmented dataset;
• Load of model with weights pre-trained on ImageNet

removing the classification layer;
• Freeze/unfreeze n layers in original architecture. For

Strategy 3 all layers were frozen, using the CNN archi-
tecture as feature extracting. For Strategy 2 we exper-
imented different amount of unfrozen layers for every



TABLE I
ACCURACY AND STANDARD DEVIATION (STD. DEV.) FOR CNN MODELS.

Experiment CNN Architecture Accuracy (%) and Std. Dev.
Experiment 1 VGG 16 80.6±2.6

Inception V3 87.8±1.4
ResNet 50 84.8±2.1

Experiment 2 VGG 16 96.9±0.8
Inception V3 98.7±1.0
ResNet 50 98.2±0.6

CNN architecture. The best results were obtained using
175 unfrozen layers for InceptionV3, 143 for ResNet50
and 11 for VGG16;

• Add a GlobalAveragePooling2D layer;
• Add a Dense layer (6) with softmax activation;
• Compile the model using Adam Optimizer and accuracy

metrics;
• Fit the model for 10 epochs. Different amounts of epochs

were tested, but the model did not improve its results with
more than 10 epochs;

• Use of callbacks: reduce learning rate and model check-
point to save the best model;

• Saving accuracy and loss;
• Plot results by folds.
After discovering the best configuration to create the UML

diagram classifier, we performed the Experiment 3 with the
test dataset in order to answer RQ2. Details of the results for
the three experimental protocols are presented next.

V. RESULTS AND DISCUSSION

In this section we present the results obtained using the
three different CNN architectures evaluated in this work. The
results for Experiments 1 and 2 are presented in Table I.

As previously described, for Experiment 1 we used the small
dataset and trained the 3 CNN models using the Strategy
3 (described in the Section II) for transfer learning, with
five-fold cross-validation, the results were collected in terms
of accuracy and standard deviation between the folds. Thus,
the accuracy percentage presented in Table I is the average
obtained between the folds. As we can see, Inception V3
performed better than ResNet 50, which, in turn, performed
better than VGG 16 for Experiment 1.

Experiment 2 was carried out using the augmented dataset,
with ten-fold cross-validation and using the Strategy 2 for
transfer learning. As we can see, VGG16 underperformed
again when compared to the other two models.

At a first glance, we can see that the Experiment 2, using
the augmented dataset, presents better results in all the CNN
architectures, confirming that it is interesting to provide more
examples for every architecture evaluated, even when transfer
learning is used. Besides that, we also can observe that
Inception V3 achieved better results in both experiments.

Results obtained are quite encouraging, especially those
obtained using the Inception V3 architecture. Regarding RQ1,
the experimental results showed that Inception V3 using the
augmented dataset and the Strategy 2 for transfer learning
achieved the best results in terms of accuracy.

Fig. 3. Confusion Matrix of the Experiment 3.

Taking into account the superior results obtained by In-
ception V3, we performed Experiment 3 using the model
trained in Experiment 2 using Inception V3. Figure 3 show
the confusion matrix of the Experiment 3. In a nutshell, the
confusion matrix discriminates how the samples of each class
were classified towards all the classes of the problem.

As observed in Figure 3, InceptionV3 has achieved at least
98% of accuracy for activity, component, deployment and use
case diagrams and 90% for sequence diagrams. On the other
hand, it had the worst performance for class diagrams (72%).
The biggest number of confusion occurrences happened when
class diagrams were classified as deployment diagrams. This
kind of misclassification can be explained, in part, because the
wrongly classified images contain elements that can resemble
those present in the deployment diagrams. Furthermore, the
reading of some associations of class diagrams may have been
impacted by any of the data augmentation strategies adopted.
In fact, the class diagram is more complex to classify (i)
due to the diversity of association types, and (ii) because the
visual representation of some associations of class diagrams
are changed according to the position of the classes.

Furthermore, the images of our datasets have different
abstraction levels. The biggest range in the level of abstraction
occurs on class diagram, contributing to the low accuracy of
the classifier for this type of diagram. Approximately 20%
of the images correspond to complex class diagrams, which
contain attributes and their types, methods and their parameters
and return types, classes inside packages, stereotyped classes,
a high diversity of associations, and so on. On the other
hand, most images (≈80%) represent simple class diagrams,
composed only of classes, their attributes and methods (with-
out details), and the most common associations. This lack
of uniformity tends to drop the hit rates, but the classifier
developed in this way is supposed to perform better in more
realistic scenarios. Hence, these results showed that a more
in-depth study needs to be done to improve the accuracy,
especially for class diagram.

Regarding RQ2, the accuracy of the generated classifier
using the test dataset varied according to the type of UML dia-
gram. InceptionV3 achieved quite encouraging results for most
UML diagrams, however it had low accuracy in class diagram.



Hence, the experimental results provided initial evidence that a
single classifier can efficiently predict different types of UML
diagrams, but there is still a room for improvement regarding
the classification of class diagrams in particular.

VI. LESSONS LEARNED

From the experimental results we learned some lessons
about the UML diagram classification problem that can be
useful to guide further works. These lessons are:

- Data augmentation is beneficial for the problem. However,
the horizontal and vertical flips applied to obtain the image
variations might damage the prediction of some UML dia-
grams. The transformations to be applied need to be carefully
planned and applied according to specific characteristics of
each type of diagram.

- Transfer learning is a good practice for the problem, as
results show that transfer learning contributed to achieve a
better accuracy.

- The UML diagram classification is not a so simple
problem. We conjecture that this fact can happen due to:
(i) complex and different diagrams, even within the same
category, and (ii) low number of images. There is a need
to deepen the concepts of backpropagation and automated
extraction of features in the context of UML diagrams in order
to seek for improvements on the classifier’s accuracy.

- A huge dataset of UML diagram images is need to
perform further studies. Related work [9]–[12] used datasets
that contain around 1000 images of class diagrams. In our
study, we used only 200 images per type of diagram due to the
lack of images available for some types of diagrams. Then, we
applied data augmentation techniques to obtain 1000 images
per category.

VII. CONCLUDING REMARKS

In this study, we explored the application of CNN using
transfer learning and data augmentation techniques to predict
the type of UML diagram aiming to provide information that
enables the creation of didactic material and book for visual
impaired people. The results suggest that the UML classifi-
cation is a complex problem that needs classifiers carefully
created considering specific types of UML diagrams.

In future work, there is a need for improving the trans-
formations applied in the data augmentation, and also for
understanding how the CNN reacts to each of the different
diagrams, in order to improve the classification model. The
goal is to create a specific CNN model that takes into account
the specific characteristics of each type of diagram and that
improves the results achieved with transfer learning. For doing
so, it is important to work on object recognition within the
diagrams, to make possible to extract the object’s information
and transform it into accessible information.

ACKNOWLEDGMENT

This work is supported by the Brazilian National Council
for Scientific and Technological Development (CNPq).

REFERENCES

[1] B. Beck-Winchatz and M. A. Riccobono, “Advancing participation of
blind students in science, technology, engineering, and math,” Advances
in Space Research, vol. 42, no. 11, pp. 1855–1858, 2008.

[2] OMG, “UML: Infrastructure specification,” 2017,
https://www.omg.org/spec/UML/2.5.1/PDF.

[3] G. Engels, J. H. Hausmann, M. Lohmann, and S. Sauer, “Teaching uml
is teaching software engineering is teaching abstraction,” in Satellite
Events at the MoDELS 2005 Conference, 2006, pp. 306–319.

[4] A. M. Fernández-Sáez, M. Genero, D. Caivano, and M. R. V. Chaudron,
“On the use of uml documentation in software maintenance: Results
from a survey in industry,” in 18th MoDELS ’15, 2015, p. 292–301.

[5] G. Scanniello, C. Gravino, and G. Tortora, “Investigating the role of
uml in the software modeling and maintenance - a preliminary industrial
survey.” in ICEIS 2010, vol. 3, 01 2010, pp. 141–148.

[6] J. Choma Neto, L. H. T. C. Bento, E. OliveiraJr, and S. R. S. Souza,
“Are we teaching UML according to what IT companies need? A survey
on the São Carlos - SP region,” in EduComp, 2021, pp. 34–43.

[7] L. M. S. Bine, Y. M. G. Costa, and L. B. R. Aylon, “Automata
classification with convolutional neural networks for use in assistive
technologies for the visually impaired,” in 11th Pervasive Technologies
Related to Assistive Environments Conference, 2018, p. 157–164.

[8] M. J. R. Torres and R. Barwaldt, “Approaches for diagrams accessibility
for blind people: a systematic review,” in 2019 IEEE Frontiers in
Education Conference (FIE), 2019, pp. 1–7.

[9] G. Bethany, S. Chowdhuri, J. Singh, M. Gupta, and A. Mishra, “Auto-
matic classification of uml class diagrams using deep learning technique:
Convolutional neural network,” Applied Sciences, 05 2021.

[10] T. Ho-Quang, M. Chaudron, I. Samuelsson, J. Hjaltason, B. Karasneh,
and M. H. Osman, “Automatic classification of UML class diagrams
from images,” 12 2014. [Online]. Available: 10.1109/APSEC.2014.65

[11] V. Moreno, G. Génova, M. Alejandres, and A. Fraga, “Automatic
classification of web images as uml diagrams,” in Proceedings of the
4th Spanish Conference on Information Retrieval, ser. CERI ’16, 2016.

[12] N. Best, J. Ott, and E. Linstead, “Exploring the efficacy of transfer
learning in mining image-based software artifacts,” Journal Of Big Data,
vol. 7, 08 2020.

[13] A. Mikołajczyk and M. Grochowski, “Data augmentation for improving
deep learning in image classification problem,” in 2018 International
Interdisciplinary PhD Workshop (IIPhDW), 2018, pp. 117–122.

[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[15] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in 3rd International Conference on
Learning Representations, ICLR 2015, 2015.

[16] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2016, pp. 2818–2826.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 770–778.

[18] W. Rawat and Z. Wang, “Deep convolutional neural networks for image
classification: A comprehensive review,” Neural Computation, vol. 29,
pp. 1–98, 06 2017.

[19] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and F.-F. Li, “Imagenet: a
large-scale hierarchical image database,” IEEE Conference on Computer
Vision and Pattern Recognition, pp. 248–255, 06 2009.

[20] A. Canziani, A. Paszke, and E. Culurciello, “An analysis of deep neural
network models for practical applications,” CoRR, vol. abs/1605.07678.

[21] P. Marcelino, M. de Lurdes Antunes, E. Fortunato, and M. C. Gomes,
“Machine learning approach for pavement performance prediction,” Intl.
Journal of Pavement Engineering, vol. 22, no. 3, pp. 341–354, 2021.

[22] B. Karasneh and M. R. Chaudron, “Img2uml: A system for extracting
uml models from images,” in 2013 39th Euromicro Conference on
Software Engineering and Advanced Applications, 2013, pp. 134–137.

[23] B. Karasneh and M. Chaudron, “Online Img2UML repository: An online
repository for uml models,” in EESSMOD@MoDELS, 2013.

[24] ——, “Extracting UML models from images,” in 5th Intl. Conf. on
Computer Science and Information Technology, 03 2013, pp. 169–178.

[25] G. Robles, T. Ho-Quang, R. Hebig, M. R. V. Chaudron, and M. A.
Fernandez, “An extensive dataset of UML models in github,” in 14th
Intl. Conference on Mining Software Repositories, 2017, p. 519–522.


