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Abstract

State-of-the-art automated theorem provers explore large search spaces
with carefully-engineered routines, but do not learn from past experience
as human mathematicians can. Unfortunately, machine-learned heuris-
tics for theorem proving are typically either fast or accurate, not both.
Therefore, systems must make a tradeoff between the quality of heuristic
guidance and the reduction in inference rate required to use it. We present
a system that is completely insulated from heuristic overhead, allowing
the use of even deep neural networks with no measurable reduction in in-
ference rate. Given 10 seconds to find proofs in a corpus of mathematics,
the system improves from 64% to 70% when trained on its own proofs.

1 Introduction

The great majority of automatic theorem provers use some kind of heuris-
tic search. This could be simple, such as the use of iterative deepening
on a certain property to achieve completeness [21]; complex, as in hand-
engineered schemes [6]; or even learned in some way [36]. Such heuristics
are critical for system performance: an excellent heuristic could find a
proof in linear time, while a poor heuristic increases search time expo-
nentially. Historically these routines have been engineered, rather than
learned, resulting in fast yet disproportionately-effective heuristics like the
age/weight schemes [30] used in systems like Vampire [13].

Learning a good heuristic from previous proof attempts has become
more popular recently, and can achieve good results [3]. Techniques from
machine learning can approximate complex functions that are difficult
to discover or write down, but this comes at computational cost. This
cost can result in an unfortunate outcome where a learned heuristic that
appears promising during testing actually degrades performance when in-
cluded in a concrete system, due to reduced inference throughput.

Even assuming a heuristic is both fast and accurate, it is not always
clear how to gainfully include predictions into existing target systems,
particularly as a single wrong prediction can sometimes have disastrous
results. Approaches are either ad-hoc or adapt existing techniques from
other domains which are not necessarily well-suited to theorem proving.
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2 Contributions

We construct a system from scratch specifically designed to avoid these
issues. lazyCoP is an automatic theorem prover for first-order logic with
equality in the connection tableaux family (Section 4). The system may
use a policy learned end-to-end from previous proofs (Section 6) to bias
a special-purpose backtracking search (Section 5.1) toward areas the pol-
icy considers promising. Performance penalties are eliminated by asyn-
chronously evaluating the policy network on a coprocessor, such as com-
modity GPU hardware (Section 5.2).

The result is a system in which learned guidance has no measurable
impact on inference rate (Section 7.1), that learns in a feedback loop
from previous proofs on a set of training problems (Section 7.2), and even
generalises to some extent when applied to completely unseen problems
(Section 7.3). No manual features are used for learning, and the only
manual heuristic used is “tableaux with fewer subgoals are more likely to
lead to a proof”. The system augmented with the final learned policy
improves from 64% to 70% in real time under identical conditions.

3 Related Work

The rlCoP system introduced in “Reinforcement Learning of Theorem
Proving” [12] is the inspiration for this work and is most similar in spirit.
A connection tableaux system is guided by Monte-Carlo Tree Search
(MCTS henceforth, as in work on two-player games [32]), learning both
policy and value guidance with gradient-boosted trees from hand-engineered
features. Learning from previous proofs or failures is a common approach
for many different applications of machine learning to theorem proving,
avoiding the need to generate data manually. For instance, all learned
premise-selection systems we are aware of are trained using premises used
by automated systems in existing proofs [37, 10]. rlCoP sets up a feed-
back loop in which new information automatically found by the system
is added to the training set in order to guide future iterations, as we do
here.

Connection tableaux and classical first-order logic are popular settings
for other internal guidance experiments — notably monteCoP [5], rlCoP,
MaLeCoP [36], FEMaLeCoP [11], and FLoP [38] — but internal guidance
for other domains exist, including first-order saturation systems [3], SAT
and QBF solvers [31, 14], and systems for higher-order logics [1, 4].

Performance is a recurring problem for systems with learned internal
guidance. The authors of rlCoP exclude some kinds of learned models
for performance reasons, and results are reported based on an inference,
rather than time, limit. “Deep Network Guided Proof Search” [16] reports
that the main bottleneck in the guided saturation-style system E [29] is
the evaluation of inferences, and suggest a two-phase guided/unguided
approach to theorem proving with learned guidance. Asynchronous eval-
uation was suggested in earlier work on the same problem [24].
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Figure 1: Adding ¬P (s̄)∨L̄ to a tableau where P (t̄) is the current goal. The left
tableau shows conventional “strict” extension, the right LPCT “lazy” extension.

4 Unguided System

If an unguided system is completely hopeless, little progress can be made:
very few positive training data can be generated from successful proofs,
and the learned guidance must be better still in order to achieve reasonable
performance. However, it is not as simple as selecting a state-of-the-art
theorem prover, as some are more amenable to guidance than others. In-
stead, there is a spectrum of different possible research directions, from
attempting to guide weaker-yet-amenable systems up to meet stronger un-
guided systems, to integrating learning into already-strong systems which
are not so easily improved by guidance.

The guidance scheme suggested here is designed for backtracking search,
such as that found in systems based on connection calculi. It is not
clear how this could be adapted to a modern saturation theorem prover
such as Vampire or E, which employ proof-confluent search with a time-
sensitive choice point at the selection of a given clause. The basic system
must therefore be as strong as possible while still allowing backtracking
policy-guided search, and lazyCoP is purpose-built for this. A prototype
version [26] entered the most recent CASC competition [34], and sub-
sequent developments including a dedicated clausification routine have
significantly improved performance.

4.1 Connection Tableaux

lazyCoP belongs to the connection-tableaux/model-elimination family [15]
of theorem provers, which includes systems such as leanCoP and SETHEO.
Such systems aim to refute a proposition by building a closed tableau: a
tree of case-splits such that every path through the tree ends in a con-
tradiction. Connection tableaux reduce the search space by constraining
tableaux such that each addition to any given tableau must be connected
in some way to the current leaf, as shown on the left-hand side of Figure 1
where P (t̄) connects to ¬P (s̄). To prove a conjecture, it suffices to begin
with the negated conjecture and build a closed tableau refuting it.

Since there is often more than one possible next step in building a
tableau, not all of which lead to a proof, it is necessary to backtrack if
a misstep is made. Typical connection systems often use some kind of
iterative deepening to maintain completeness, but any fair scheme works:
rlCoP uses MCTS for this purpose.
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4.2 Lazy Paramodulation

Reasoning with equality has traditionally been a weak point of connec-
tion systems. The most widespread method for efficiently reasoning with
equality, paramodulation [18], is incomplete in the obvious formulation
for connection tableaux due to insufficient flexibility in the order of infer-
ences. There have been various attempts to remedy this deficit, but as
yet there is no conclusive solution.

lazyCoP uses the “lazy paramodulation” proof calculus LPCT [23],
which relaxes some of the classical connection-tableaux rules in exchange
for a paramodulation-like rule and some extra refinements. The basic idea
is delaying unification to allow rewriting terms in the resulting disequa-
tions. For example, in the right-hand side of Figure 1, it is not required
that P (t̄) unify with P (s̄) immediately as in the classical calculus, instead
deducing that at least one of the terms must not be equal. Terms may
still be unified with a reflexivity rule dispatching goals of the form t 6= s.

This implementation detail of lazyCoP is not the main focus of this
work: the vital feature of the proof calculus is backtracking proof search.

4.3 Calculus Refinements

To improve performance against the pure calculus, lazyCoP implements
a number of well-known refinements of the classical predicate calculus
(which are lifted to equalities where appropriate), including tautology
deletion, various regularity conditions, and folding up, a way of re-using
proofs of literals. Additionally, it is frequently the case that a unification
is “lazy” when it could have been “strict” — such as in the case with
no equality. lazyCoP therefore implements “lazy” and “strict” versions
of every relevant inference rule, which shortens some proofs considerably.
The resulting duplication is eliminated by not permitting “lazy” rules to
simulate their “strict” counterparts.

It is not clear whether some refinements help or hinder the learned-
guidance scenario. Some are definite improvements: folding up and strict
rules decrease proof lengths and therefore increase the potential benefit of
learned guidance. However, others, such as the regularity condition or the
term ordering constraints in LPCT, are not as clear-cut. In some cases
such refinements lengthen proofs significantly, outweighing the pruning
effect, and previous work shows that guidance can partially replace these
pruning mechanisms [7]. We leave all refinements switched on for this
approach, but allowing the learned policy a greater amount of freedom is
an interesting future direction.

Some techniques such as restricted backtracking [22] sacrifice complete-
ness for performance. lazyCoP does not implement any approach known
to be incomplete: all problems attempted can be solved in principle.

5 Proof Search

Given a learned policy, we aim to use it to improve proof search outcomes.
The policy π (a | n) is a function from a tableau n and possible inferences
a to a probability distribution. We work with an explicit search tree, each
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node of the tree representing an open tableau, although tableaux are not
actually kept in memory for efficiency reasons. From each open tableau,
there is a positive non-zero number of possible inferences (or actions in
the reinforcement learning literature) which may be applied to generate a
new child tableau. Nodes with zero possible inferences cannot be closed
and are pruned from the tree. The root of the tree is an empty tableau,
from which possible inferences are the start clauses, in this case clauses
derived from the conjecture.

5.1 Policy-Guided Search

There are many possible tree search algorithms which can include some
kind of learned heuristic. We experimented with the classical A∗ informed-
search procedure, although we found that it was difficult to learn a good
heuristic function that was neither too conservative nor too aggressive.
Other approaches might include the aforementioned MCTS, single-player
adaptations of MCTS [28] single-agent approaches like that of LevinTS
or LubyTS [20], or simply following a stochastic policy with restarts if
no proof is found at some depth. While these approaches are no doubt
interesting and provide theoretical guarantees, we did not find them to be
necessary for our case.

Instead, we could simply employ best-first search, expanding the leaf
node that the policy considers most likely first. If a leaf node n was
obtained by taking actions ai from parent nodes ni, select

argmax
n

∏
i

π (ai | ni)

Unfortunately, this simple scheme is not likely to recover if π makes a
confident misprediction, and is even incomplete if any node has an infinite
chain of single children beneath, where π (aj | nj) = 1 by definition. To
correct this issue we take inspiration from rlCoP’s initial value heuristic,
where tableaux are exponentially less likely to be closed the more open
branches they have. We model this idea as an exponential distribution

p(n) = λe−λg(n)

where λ is a tunable parameter (set to 1 in our experiments here) and
g(n) is “number of open branches plus length of the active path”. Includ-
ing “length of the active path” in g(n) makes little practical difference
and makes the search procedure complete again. The two estimates are
combined with a geometric mean so that nodes are selected by

argmax
n

√
p(n)

∏
i

π (ai | ni)

In practice this expression is numerically difficult to evaluate, but in loga-
rithmic space it is better-behaved, producing the final expansion criterion

argmax
n

[(∑
i

lnπ (ai | ni)

)
− λg(n)

]
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5.2 Asynchronous Policy Evaluation

The proof search routine above assumes that the policy is evaluated syn-
chronously for each expanded node. As discussed in the introductory
sections, this has a significant impact on performance, particularly so for
computationally-expensive policies. Instead, evaluation is deferred and a
separate CPU thread continuously arranges for nodes to be processed on
a GPU, selecting the first non-evaluated node on the path to the current
best leaf node. π (a | n) is set to 1 for nodes not yet evaluated: applying
a uniform distribution does not work well in practice.

It does not appear to be particularly important that all nodes are
evaluated for a learned policy to improve search, perhaps because guidance
at the top of the search tree has a disproportionate effect. Asynchronous
policy evaluation allows use of policies that are orders of magnitude slower
than expansion steps without reduction in inference rate.

6 Learned Policy

Section 5.1 describes biasing proof search with a learned policy, direct-
ing node expansions toward areas the policy considers useful. lazyCoP’s
policy is trained from its own proofs: at each non-trivial step in proofs
the tableau, all available actions and the action that lead to a proof is
recorded. This procedure produces a training set of tableaux and actions
which we use to train a neural-network based policy to predict the correct
action. Learning from existing system proofs in this way has advantages
and disadvantages: each example’s label is guaranteed to lead to a proof,
but it is not necessarily the shortest proof, nor can the training data
express preference amongst other actions.

We train and evaluate using the same set of problems from the MPTP
translation [35] of the Mizar Mathematical Library [8] into first-order logic
with equality. There are 32,524 problems in total in the M40k set; we use
the M2k subset of 2003 problems in order to iterate quickly. All problems
have a labelled conjecture which lazyCoP is able to exploit so that search
proceeds backward from the conjecture. Problems from the M2k set come
from related articles in Mizar, suggesting a degree of similarity which may
be exploited by learning.

6.1 Representing Tableaux with Actions

There are many possible ways to represent first-order logical data in neural
networks. We selected directed graphs paired with residual graph convo-
lutions, as introduced for other tasks on logical data [25]. This approach
has significant advantages for a first-order tableau system such as lazyCoP
as it allows reconstructing an equivalent tableau (up to renaming) from a
compact, pre-parsed representation invariant up to e.g. variable names.

Construction of directed graphs from tableaux is mostly typical for
first-order representations [37], with a few problem-specific modifications.
First, while occurrences of identical symbols and variables share nodes in
the graph, identical compound terms do not: this is because they may be
rewritten by equalities separately in LPCT. Additionally, variable binding
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Figure 2: Residual block used in the network. Note disjoint parameters for
incoming and outgoing edges, both linear and normalisation layers.
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Figure 3: Network diagram. As there is no pooling of any kind, data is processed
at the node level until action nodes marked (*) are projected out.

is non-destructive in LPCT to implement a form of basic paramodulation.
Bound variables therefore remain in place but have an outgoing edge at-
tached to their binding.

Encoding actions is then straightforward. lazyCoP implements a small
number of different types of inference, such as reductions, extensions,
reflexivity and so on. Each inference is attached to some terms or literals
in the tableau to form a concrete action: rewriting t = s in L[p], for
example, is represented as a node connected to the graph with an incoming
edge from t and outgoing edge from p, uniquely identifying the inference.

6.2 Network Architecture

We use a residual version of the directed graph networks introduced in
previous work [25] which allow the network to distinguish incoming and
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Table 1: Network and training hyper-parameters.

Parameter Value Parameter Value

node dimension 64 initial learning rate 0.01
residual layers 24 cycle batches 2000

batch size 64
momentum 0.9
weight decay 0.0001

outgoing edges. The core of the network is the residual block shown in
Figure 2: this allows one round of message-passing from neighbouring
nodes in the graph, treating incoming and outgoing edges separately be-
fore combining the results for the next layer. Batch normalisation [9] is
inserted before the linear part of the convolution. The theoretical merits
of this are unclear but it works well in practice. The complete network
(Figure 3) is, in order:

Embedding. An embedding layer projects integer node labels into a real
vector of the same size used in the convolutional layers.

Convolution layers. Several residual blocks combine and transform fea-
ture maps from neighbouring nodes, producing in particular a real
vector for each action node.

Action projection. The vector for each action node is projected out,
all other nodes are discarded at this point.

Output layer. Computes a single output value for each action.

Rectified linear units are used as non-linearities throughout.

6.3 Training

Training such a network on limited training examples from early iterations
is challenging due to its tendency to memorise the training set if sufficient
parameters are available and underfit drastically if they are not. This
is perhaps a good argument for feature-based learning rather than the
end-to-end approach we take here. However, the network can be made to
train somewhat effectively by cosine annealing a high initial learning rate
to 0 with “warm restarts” [17], repeating after a certain number of mini-
batches. This has two benefits: the regularising effect of high learning
rates somewhat reduces overfitting, and the network also trains faster.

6.4 Integration and Optimisation

After the network is trained, network weights are compiled into lazyCoP.
The forward pass is re-implemented from scratch in CUDA [19], allowing
a number of optimisations such as known array sizes, re-use of allocated
buffers and the ability to profile for the specific workload. Addition-
ally, batch normalisation layers’ forward operation can be fused into the
subsequent layer in this case, decreasing implementation complexity and
increasing performance.
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Table 2: Results from iterative training of lazyCoP’s policy on M2k .

# Proved Cumulative Steps

0 1,289 1,289 16,880
1 1,390 1,406 19,394
2 1,402 1,419 19,700
3 1,403 1,426 19,881

7 Experimental Results

We investigate three areas of practical interest: the effect of learned pol-
icy evaluations on inference rate; whether this learning translates into
improved performance on a training set of problems; and finally whether
the learned policy generalises to completely fresh problems. Systems are
only allowed 10 seconds of real time: this is relatively short, but a good
approximation to real-world settings in which users of automatic “ham-
mers” included in interactive theorem proving systems are unwilling to
wait much longer than 30 seconds [2].

7.1 Inference Rates

There is no measurable decrease in inference rate when learned guidance
is switched on. Occasionally the rate of inference even improves, perhaps
due to guidance producing areas which are less productive or otherwise
easier to explore. Running on TOP001-1, a non-theorem mid-sized topol-
ogy problem from TPTP [33], unguided lazyCoP achieves around 62,000
expansions per second for 10 seconds at the time of writing on desktop
hardware. Guided, the system evaluates around 200 policies per second
and reaches inference speeds in excess of 70,000 expansions per second.

7.2 Effect of Guidance

We train lazyCoP iteratively on M2k as described in Section 6, training
each iteration on the proofs produced by all previous iterations. Iteration
0 does not have access to a learned policy, iteration 1’s policy is trained on
iteration 0’s proofs, iteration 2 on proofs from both iteration 0 and 1, etc.
If there are two proofs for the same problem, the shorter proof is retained.
The system is given 10 seconds of real time per problem, measured from
program startup to the point of discovering a proof (but before output
begins), and an unlimited amount of memory. Table 2 shows the number
of problems solved by that iteration, the number of problems proved by
all previous iterations, and the total number of proof steps for training
available after the iteration finishes.

7.3 Generalisation of Policy

To demonstrate generalisation beyond the training set, we randomly sam-
ple 2000 problems from the remaining problems of M40k and run lazyCoP

9



both without a policy and with the final policy from Section 7.2, again
with a 10 second real-time limit. Unguided lazyCoP proves 1289 problems,
while the policy-guided system proves 1403 problems.

8 Remarks

8.1 Future Work

There are several future directions we will consider pursuing:

Scaling network and problem sets. It is very possible that a larger/deeper
policy network would allow learning even better policies. This re-
quires either more careful tuning or a larger set of problems such as
M40k to avoid overfitting excessively.

Parallelism. Implementing both parallel search and parallel evaluation
on today’s multicore machines would have a beneficial impact on
performance. Parallel search allows exploiting remaining cores to
search faster and is a clear win, the explicit search tree of lazyCoP
allowing for several easy schemes to inject parallelism. Parallel eval-
uation does not inherently improve performance, but does ensure
that the coprocessor is always kept busy: at present there are short
pauses while the evaluation thread propagates the previous evalua-
tion and prepares another input. Using multiple host threads also
allows hiding latency from e.g. coprocessor cache misses, increasing
overall throughput at the expense of the speed of single evaluation.

Incomplete modes. A system does not necessarily have to be complete
to be useful. leanCoP includes a powerful but incomplete restricted-
backtracking mode, for example. As well as e.g. restricted back-
tracking, lazyCoP could implement a strategy in which parts of the
search tree are progressively discarded as resource limits draw nearer,
in a similar way to Vampire’s limited resource strategy [27]. We ex-
pect this to help with finding extremely long proofs.
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