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ABSTRACT 

In this  research  paper,  efficient  algorithms  for  computation  of  equilibrium as  well  as  

transient  probability  distribution  of  arbitrary  finite  state  space  Continuous  Time  Markov  

Chains  are  proposed. The  effective  idea  is  to  solve  a  structured  systems  of  linear  

equations  efficiently.  The  algorithms  potentially  achieve  lower  bound  on  the  

computational  complexity ( of  solving  structured  system   of  linear  equations  arising  in  the  

equilibrium/transient  analysis  of  Continuous  Time  Markov  Chains ).  It  is  realized  that  the  

approach  proposed  in  this  research  paper  generalizes  to  infinite  state  space  Continuous  

Time  Markov  Chains.  The  ideas  of  this  research  paper  could  be  utilized  in  solving  

structured  system  of   linear  equations  that  arise  in  other  applications. 

1.  Introduction: 

                           Markov  chains  provide  interesting  stochastic  models  of  

natural/artificial  phenomena  arising  in  science   and  engineering.  The  existence  of  

equilibrium  behavior  enables  computation  of  equilibrium  performance  measures.  

Thus,  researchers  invested   considerable  effort  in  EFFICIENTLY   computing  the  

equilibrium   probability  distribution  of  Markov  chains  and  thus,  the  equilibrium  

performance  measures. 

                                              Traditionally,  computation  of  transient  probability  

distribution  of  Continuous  Time  Markov  Chains  ( CTMCs ) was  considered  to  be  a  

difficult  open  problem.  It  requires computation  of  MATRIX  EXPONENTIAL  associated  

with  the  generator  matrix  of  CTMC.  Even  in  the  case  of   finite  state  space  

CTMCs,  efficient   computation  of  transient  probability  distribution   was   considered  

to  be  a  difficult  open  problem.  In  [ Rama1 ],  an  interesting  approach  for   recursive  

computation  of  transient  probability  distribution  of  arbitrary  finite  state  space   

CTMCs  was  proposed.  In   the  case  of  infinite  state  space, Quasi-birth-and  Death  

(QBD) processes,  matrix  geometric  recursion  for  transient  probability  distribution  

was  found  in  [ZhC]. 

                                              It  is  well  known  that  computation  of  equilibrium  

distribution of  CTMCs    reduces  to  solution  of  linear  system  of  equations.  The  

approach  proposed  in  [ Rama 2]  reduces  the  computation  of   transient  probability  



distribution  of  finite  state  space  CTMCs  to  solving  linear  system  of  equations  in  

the  transform ( Laplace  Transform ) domain.  Thus,  an  interesting  question  that  

remained  deals  with  efficient  solution  of  such  STRUCTURED  linear  system  of   

equations  in  the  Laplace  transform  domain.  In   fact,  a  more  interesting  problem is  

to  design  an   algorithm which  meets  a  LOWER  BOUND  on  the  computation  of  

solution  of  structured  system  of  linear  equations  arising  in  the  

transient/equilibrium  analysis  of  CTMCs. 

                                              This  research  paper  is  organized  as  follows.  In Section 2,  

algorithm  for  efficient  computation  of  equilibrium  probability  mass  function of   

Continuous   Time   Markov  Chains  (CTMCs )   is  discussed.  In  Section  3,  algorithm  

for  efficient  computation  of  transient  probability  mass  Function of   Continuous   

Time   Markov  Chains  is  discussed.  In  section  4,  we  briefly  discuss  how  the  

proposed  algorithm  potentially  achieves  the  lower  bound  on  computation  of  

equilibrium/transient  Probability  Mass  Function.  The  research  paper  concludes  in  

Section  5. 

 

2.  Efficient  Computation  of  Equilibrium  Probability  Mass  Function of   Continuous   

Time   Markov  Chains: 

                                          It  is  well   known  that  computation  of  equilibrium  probability  

vector  (PMF)  �̅�  of  a  Homogeneous  Continuous  Time  Markov  Chain  ( CTMC )   with  

generator �̅�  reduces  to  the  solution  of  following  linear  system  of   equations  ( i.e.  

computation   of  vector  �̅�  in  the  left  null  space  of  the  generator  matrix  �̅�  )  i.e. 

�̅� 𝑄 ̅ ≡ 0̅ . 

             In   computational  linear  algebra,  there  are  efficient  algorithms  to  solve  linear  system 

             of  equations ,[Gall],  [Sto, [Wil] .  Volker  Strassen   made   fundamental  contributions  to  

             this   problem [Str1], [Str2].   In  fact,  “COMPUTATIONALLY  OPTIMAL ALGORITHMS” 

             are  designed  to  reduce  the  computational  complexity (  in  terms  of  elementary  

            operations  such  as additions,  multiplications  etc. ).  But,  from  the  point  of  view  of 

            computing  �̅� ,  they   donot  take  into  account  the  structure  of  generator  matrix  𝑄 .̅̅̅̅                

            Thus,  the  goal  of  this  research  paper  is  to  design  efficient  algorithm  for  computing 

            �̅�,  taking  into  account the  structure  of  generator  matrix  �̅� .  Some   related   effort 

         

             dealing  with  Laplacian  system  of  equations  is  discussed  in  [DGA]. In  fact,  we  would 

             like  to  design  a COMPUTATIONALLY  OPTIMAL  ALGORITHM   for  computation   

             of         �̅� ( 𝑖𝑛  𝑡𝑒𝑟𝑚𝑠  𝑜𝑓  Computational  Complexity ). 



                                                              We   illustrate   the  essential   idea   with  a  Continuous  Time  

Markov  chain ( CTMC )  with  4  states.  First  consider  the  generator  matrix  of  a  CTMC  with  

4  states  (  i.e.  4 x  4  matrix  )  partitioned  using  blocks  of  size  2  x  2 (  i.e.  there are  4  such  

2 x  2   matrices  in  the   generator ) [RaR1], [RaR2].  Specifically,  we  have 

𝑄 = [ 
𝐴11 𝐴12

𝐴21 𝐴22
 ] , 𝑤ℎ𝑒𝑟𝑒  { 𝐴𝑖𝑗;   𝑖, 𝑗  ∈ {1,2} } 𝑎𝑟𝑒   

2 𝑥 2  𝑠𝑞𝑢𝑎𝑟𝑒  𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠  𝑖𝑛  𝑡ℎ𝑒  4 𝑥 4  𝑏𝑙𝑜𝑐𝑘 𝑚𝑎𝑡𝑟𝑖𝑥  𝑄. 

Claim:   For  a  positive  recurrent  ( recurrent  non-null  )  CTMC  with  generator  matrix  Q, 

               it  is  well  known  that  the  matrices  { 𝐴11, 𝐴22 }   are   non-singular. 

               Hence,   we  have   that  

                                                               𝐴21  =   𝐴22 𝑋    𝑤𝑖𝑡ℎ   𝑋 =  𝐴22
−1 𝐴21. 

Thus,  by  means  of   elementary   column  operations,   the  generator  matrix  Q  can  be  

converted  into   the   following  form   i.e. 

𝑄 ̃  =   [
𝐴11̃ 𝐴12̃

0 𝐴22
]   𝑖. 𝑒.  𝑏𝑙𝑜𝑐𝑘  𝑢𝑝𝑝𝑒𝑟  𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟  𝑚𝑎𝑡𝑟𝑖𝑥. 

In  fact,  let    𝑋 = [ 𝑓1 𝑓2 ].  Hence,  column  operations  to  arrive  at  �̃�  (  from  Q  )   are  

determined  by  the  column  vectors  { 𝑓1 𝑓2  } .   Also,  it  follows   from  linear  algebra,  that  

the  equilibrium  probability  vector �̅�  is  unaffected  by  such  column  operations.  Hence,  with 

�̅�  = [ 𝜋1̅̅ ̅   𝜋2̅̅ ̅  ],  we  have   the  following  system  of  linear  equations  i.e. 

𝜋1̅̅ ̅ 𝐴11̃  =  0 ̅  𝑖. 𝑒.  𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑠𝑦𝑠𝑡𝑒𝑚  𝑜𝑓  𝑡𝑤𝑜  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 

𝜋1̅̅ ̅ 𝐴12̃ + 𝜋2̅̅ ̅ 𝐴22  =  0̅ . 𝑇ℎ𝑢𝑠, 𝑤𝑒  ℎ𝑎𝑣𝑒  𝜋2̅̅ ̅  =  −𝜋1̅̅ ̅ 𝐴12̃ 𝐴22   .
−1  

The  boundary   system  of   linear  equations  leads  to  a  single  linear   equation  in  2  variables  

i.e.   denoting   𝜋1̅̅ ̅  =   [𝜋1
1 𝜋1

2],  we  have  a  linear   equation  of  the  form 

𝜋1
1𝛼 + 𝜋1

2 𝛽 =   0.  𝑇ℎ𝑢𝑠,   𝜋1
2 = −𝜋1   

1
𝛼

𝛽
 . 

Further, since  𝜋2̅̅ ̅   can  be  expressed   in  terms  of  𝜋1̅̅ ̅  ,  we  utilize   the   normalizing  equation 

                               ( 𝜋1̅̅ ̅ + 𝜋2̅̅ ̅) �̅�   = 1, 𝑤ℎ𝑒𝑟𝑒  �̅�  is  a   column  vector  of  ones, 

to  determine 𝜋1
1  and  hence  all  the  other  equilibrium  probabilities. 

Remark 1:  

                    We   realize  that  the  inverse  of  a  2 x  2   matrix   can  be  computed  by  inspection  

and  essentially   only   requires  computation  of  the  determinant.  For  instance,  let  us  consider  



a  2 x  2  matrix  B  i.e.  𝐵 = [
𝑏11 𝑏12

𝑏21 𝑏22
] .   𝐼𝑡  𝑖𝑠  𝑤𝑒𝑙𝑙  𝑘𝑛𝑜𝑤𝑛  𝑡ℎ𝑎𝑡  𝐵−1 =  

1

∆
 [

𝑏22 −𝑏12

−𝑏21 𝑏11
] ,

𝑤ℎ𝑒𝑟𝑒  ∆ = 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡(𝐵) =    ( 𝑏11𝑏22 − 𝑏12𝑏21 ). 

 

COMPUTATIONAL   COMPLEXITY:   Now,  we  determine   the  computational  complexity of  our  

algorithm: 

 The   number  of  arithmetic  operations   required   to   convert   the  generator  matrix  

Q  into  block  upper   triangular  matrix  �̃�  needs  to  be   included  in  calculating   the 

computational  complexity  of  the  algorithm 

 

 𝜋1
2  𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛   𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠   𝑂𝑁𝐸  𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 . 

 

 𝜋2̅̅ ̅  𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛   𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠  𝑖𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛  𝑜𝑓  2 𝑥  2  𝑚𝑎𝑡𝑟𝑖𝑥  𝐴22  𝑎𝑛𝑑 𝑜𝑛𝑒  𝑚𝑎𝑡𝑟𝑖𝑥  𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 

( 𝑜𝑓  2 𝑥 2  𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠  𝐴12̃  𝑎𝑛𝑑  𝐴22 ). 

 

 𝐴𝑙𝑠𝑜, 𝑡ℎ𝑒  𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑖𝑛𝑔   𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛  𝑡𝑜  𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒   𝜋1
1  𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠  3  𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑠   

𝑎𝑛𝑑  𝑂𝑁𝐸  𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛.  

 

 𝐹𝑖𝑛𝑎𝑙𝑙𝑦, 𝑡𝑜  𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒  𝜋1̅̅ ̅ , 𝜋2̅̅ ̅  𝑖𝑛  𝑡𝑒𝑟𝑚𝑠  𝑜𝑓  𝜋1,
1    𝑤𝑒  𝑟𝑒𝑞𝑢𝑖𝑟𝑒   3  𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠. 

                                       Now,  we   generalize   the  above  algorithm  for   the  case,  where  the 

number  of  states, N = 2 m   where   m > 1.   In  such  case,  the  generator  matrix  is  of  the  

following   form: 

𝑄 = [  

𝐴11 𝐴12 𝐴13 … 𝐴1𝑚

𝐴21 𝐴22 𝐴23 … 𝐴2𝑚

⋮
𝐴𝑚1

⋮
𝐴𝑚2

⋮ … ⋮
𝐴𝑚3 … 𝐴𝑚𝑚

  ]    𝑤ℎ𝑒𝑟𝑒  𝐴𝑖𝑗
′ 𝑠 𝑎𝑟𝑒 2 𝑥 2 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠. 

 Lemma 1 :   For  a  positive   recurrent  CTMC,   the  following  sub-matrices  of  generator  i.e.  

{ 𝐴𝑖𝑖:  1 ≤ 𝑖 ≤ 𝑚 }  are  all  non-singular   matrices.  

Proof:  Refer  [Rama1].  The  proof   utilizes  the  fact  that  strictly  diagonally  dominant  matrix  

is  non-singular. 

                                         Hence,  as  in  the  m=1  case,  by  means  of  elementary  column  

operations  on  the  generator  matrix  Q,  we  arrive  at  the  following  block  upper  triangular  

matrix  �̃� . 



�̃� =

[
 
 
 
 
 
𝐴11̃ 𝐴12̃ 𝐴13̃ ⋯ 𝐴1 𝑚−1

̃ 𝐴1�̃�

0 𝐴22̃ 𝐴23̃ ⋯ 𝐴2 𝑚−1
̃ 𝐴2�̃�

⋮
0
0

⋮
0
0
 

⋮                 ⋮   
             0 ⋯ 𝐴𝑚−1  𝑚−1

̃ 𝐴𝑚−1 𝑚
̃

0…. . 0                    𝐴𝑚�̃� ]
 
 
 
 
 

   . 

Thus,  the  equilibrium  probability  vector �̅�  satisfies  the  following  linear  system  of  equations: 

𝜋1̅̅ ̅ 𝐴11̃  ≡   0̅ 

𝜋1̅̅ ̅ 𝐴12̃ +  𝜋2̅̅ ̅ 𝐴22̃  ≡  0̅ 

⋮ 

𝜋1̅̅ ̅ 𝐴1𝑚−1
̃ + 𝜋2̅̅ ̅ 𝐴2 𝑚−1 + ⋯ . 𝜋𝑚−1̅̅ ̅̅ ̅̅ ̅̃   𝐴𝑚−1 𝑚−1

̃ ≡ 0̅ 

𝜋1̅̅ ̅ 𝐴1�̃� + 𝜋2̅̅ ̅ 𝐴2�̃� + ⋯+ 𝜋𝑚̅̅ ̅̅   𝐴𝑚𝑚 ≡ 0̅ . 

The  above  system  of  linear   equations   is   recursively  solved  to  compute  the  equilibrium  

probability   vector  i.e. 

𝜋1̅̅ ̅ 𝐴11̃  ≡   0̅ 

𝜋2̅̅ ̅ =  −𝜋1̅̅ ̅ 𝐴12̃ 𝐴22̃
−1

 . 

⋮ 

𝜋�̅� = −𝜋1̅̅ ̅ 𝐴1�̃� 𝐴𝑗�̃�
−1

 − 𝜋2̅̅ ̅ 𝐴2�̃� 𝐴𝑗�̃�
−1

− ⋯⋯− 𝜋𝑗−1̅̅ ̅̅ ̅̅  𝐴𝑗−1 �̃� 𝐴𝑗�̃�
−1

  𝑓𝑜𝑟  2 ≤ 𝑗 ≤ (𝑚 − 1). 

𝜋𝑚̅̅ ̅̅ =  −𝜋1̅̅ ̅ 𝐴1�̃� 𝐴𝑚�̃�
−1

 − 𝜋2̅̅ ̅ 𝐴2�̃� 𝐴𝑚�̃�
−1

− ⋯⋯− 𝜋𝑚−1̅̅ ̅̅ ̅̅ ̅ 𝐴𝑚−1 𝑚
̃  𝐴𝑚 𝑚

−1   . 

 

Note:   As  in  the  2 x2  case,  using  non-singular  matrices  on  the  diagonal  of  generator  matix, 

Q,  it   can  be  converted  to  a  block  upper-triangular  matrix. Since  inverse  of  2 x 2 matrices  

on   the  diagonal  of  Q  can  be  computed  efficiently,  such  an  algorithm  may  be  more  

efficient  than  the   well   known  algorithms  (  in  numerical  linear  algebra )  to  convert  Q  into  

an  upper  triangular  matrix.  We  choose  the  efficient  algorithm  from  among  those  two  

choices. 

Definition:   Finite  Memory  Recursion   of   order  “L”   for  the  equilibrium  probability  vector  

is of  the  following   form 

 

𝝅 ̅(𝑳 + 𝟏) =  𝜋 ̅(1) 𝑊1 + 𝜋 ̅(2) 𝑊2 + ⋯+ 𝜋 ̅(𝐿) 𝑊𝐿  ,, 𝑤ℎ𝑒𝑟𝑒  𝑊𝑖
′𝑠   𝑎𝑟𝑒   



𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠.   We  call  such  a  recursion  as   “forward  finite  memory  recursion” [RaC].  

Such  a  forward   Finite  Memory  Recursion  holds  true  for  even “ infinite  state  space”  

Continuous Time  Markov  Chains [Rama1], [Rama2], [RaC]. 

 Remark 2: 

                      Since,  𝐴𝑗�̃�
′
𝑠   𝑎𝑟𝑒  𝑎𝑙𝑙  𝑛𝑜𝑛 − 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟  2 𝑥  2  𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠, 𝑡ℎ𝑒𝑖𝑟  𝑖𝑛𝑣𝑒𝑟𝑠𝑒  𝑐𝑎𝑛  𝑏𝑒   

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑙𝑦  𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑.   

                                               We  now  compute  the  “computational  complexity”   of  the  

algorithm to  Determine  equilibrium  probabilities  in  most  general  case. 

 The   number  of  arithmetic  operations   required   to   convert   the  generator  matrix  

Q  into  block  upper   triangular  matrix  �̃�  needs  to  be   included  in  calculating   the 

computational  complexity  of  the  algorithm 

 

(I)  2 x 2  Matrix   inversions:    We   require  (m-1)   inversions  of  2 x 2  matrices.   Each  

2x2   matrix  inversion  requires   (a)  Determinant  computation  i.e.  2  multiplications  

and   one  subtraction  (b)  Division  of  elements  by  determinant  i.e.  4  divisions 

 

(II) 2 x 2  Matrix  Multiplications:  In  the  above  system  of   linear  equations, we  require 

 

1 + 2 + 3 +…..+ ( m-1  )  =  
𝑚 ( 𝑚−1 )

2
  multiplications  of   two   2 x  2  matrices.  Each such 

multiplication  (  of   two  2  x 2  matrices )   requires  atmost  8  multiplications  and  4 

additions. To    reduce   the  complexity,  we  can  utilize  Strassen’s  multiplication  

algorithm.  The  number  of  multiplications  required  to  compute  the    product  of  

2 x 2  matrices  reduces  to  7  (  using   Strassen’s  algorithm ).  But   with  Strassen’s  

algorithm  we   require  18  additions/substractions 

 

(III) Vector  Matrix  Multiplications:   We   require 

                                                                      1 + 2 + 3 +…..+ ( m-1  )  =  
𝑚 ( 𝑚−1 )

2
 

multiplications  of   1 x  2  and  2 x  2  matrices ( i.e.  multiplication  of  row  vector  and 

2 x  2  matrix ).    

 

(IV) Normalization:  It   requires  ( 2 m – 1  )  additions  and  ONE  division  to  

𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒   𝜋1
1. 

    

(V) Finally,  we   require  ( 2 m -1 )  multiplications   to   determine  the  equilibrium  

probabilities   using    𝜋1
1 . 

 

Thus,  in  summary,   we  need   the  following  number  of  arithmetic   operations: 



 

(i)  Additions / substractions :  10𝑚2 − 7 𝑚 − 2 

(ii) Multiplications:  
11 𝑚2−7𝑚−4

2
 

(iii) Divisions:   4 m – 3  ,   

 

where     𝑚 =
 𝑁

2
   𝑤ℎ𝑒𝑟𝑒   𝑡ℎ𝑒  𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟  𝑚𝑎𝑡𝑟𝑖𝑥  𝑄  𝑖𝑠  𝑁 𝑥 𝑁  𝑚𝑎𝑡𝑟𝑖𝑥. 

 

Note:  In  the  case  of  Quasi-Birth-and-  Death  ( QBD )  processes, Latouche  et.al  

utilize   Gaussian  Elimination  method   to   compute  the  equilibrium  probability  

distribution [GJL].  In  fact  they   provide   probabilistic   interpretation  of  the  method. 

 

Remark  3:   

                      Suppose,  the  number  of  states  of  the  CTMC  is  an  ODD  number.  

Then,  we  consider  the  3 x 3   boundary  system  of   linear  equations ( i.e.  the  initial  

probability  vector  is  of  dimension  3 )  and  utilize  the  above  idea  to  compute  the  

equilibrium  probability  vector  efficiently. 

 

Remark  4:   

                     It  should  be  noted  that  using  similar  idea ( as discussed  above ),  by 

means  of  elementary  column  operations,  the  generator  matrix  can  be  converted  

into  a   block  lower  triangular  matrix.  In  this  case,  the  boundary  system of linear 

equations   is  at  the  trailing  boundary.  By  solving  for  the  last  probability  vector, 

we   recursively  compute  the   equilibrium  probabilities.  We  call  such  a  recursion  

as  the  “backward  finite  memory  recursion” [Rama1]. 

 

3. Efficient  Computation  of  Transient  Probability  Mass  Function of   Continuous   Time   

Markov  Chains: 

                                It  is  well  known  that  the  transient  probability  mass  function 

(PMF)  of  a  homogeneous  CTMC  (  generator  matrix  doesnot  depend  on  time  t, 

unlike  non-homogeneous  CTMC )  satisfies  the  following  vector  matrix  differential  

equation  i.e.   

 

                          
𝑑

𝑑𝑡
  𝜋 ̅(𝑡) =  𝜋 ̅(𝑡)  𝑄 . 

             Taking  Laplace-Transform  on  both  sides, we  have  that 

𝑠 𝜋 ̅(𝑠) − 𝜋 ̅(0) =  𝜋 ̅(𝑠)  𝑄 . 

              Equivalently,  we  have  the  following  expression  for  𝜋 ̅(𝑠): 

𝜋 ̅(𝑠)  =  − 𝜋 ̅(0) [ 𝑄 − 𝑠 𝐼 ]−1. 



               These   constitute  a   “structured”  system  of  linear  equations. Our  goal  is  to  

efficiently  solve  such  system  of   equations  for  𝜋 ̅(𝑠)  and   compute  the  inverse  Laplace  

Transform of  𝜋 ̅(𝑠)  to  arrive  at  the  time dependent  (  transient )  PMF  of  CTMC. 

Lemma 2:   For  a   positive  recurrent  (  recurrent   non-null  )  CTMC,  in  the  Region  of  

Convergence  (ROC)  (  of  Laplace  Transform )  the  sub-matrices  on  the  diagonal  of  ( Q – s I ) 

are  non-singular 

Proof:    As  in  the  equilibrium  case,  such  matrices   are  all  strictly  diagonally  dominant  and  

hence  are  all  non-singular.                                                                                                     Q.B.D. 

                                                    Thus,  as  in   the  case  of  computation  of  equilibrium  PMF, 

𝜋 ̅(𝑠)  can  be  determined  efficiently  for  the  values  of  ‘s’  lying  in  the  Region  of   

Convergence.  Detailed  Duplication  of  equations  is  avoided  for  brevity. 

 

4. Lower  Bound  on  Computation  of  Equilibrium /  Transient  Probability  Mass 

Function: 

 

                  From  the  above  discussion,  it  is  clear  that  the  computation  of   

transient/equilibrium  Probability  Mass  Function (PMF)  reduces  to solving structured  

system  of  linear  equations.  We  exploit  the  fact  that  inversion  of  2 x  2  matrices   

( lying  on  the  diagonal  of  the  generator  matrix  of  CTMC )  can  be  carried  out  in  a  

computationally  efficient  manner.  Using  that  idea,  based  on  Finite  Memory  

Recursions  for  the  equilibrium/ transient  PMF,  such  probabilities  are  determined  

with  minimum  number  of  arithmetic  operations. 

 

Remark  5:    

                     If  the  generator  matrix  of  a  CTMC  is  arbitrary  (  without  any  specific  

structure  as  in  the  case  of   say  QBD  process ),  the  above  algorithm  MOSTLY  

achieves  the  lower  bound  on  computational  complexity  (  i.e.  number  of  

arithmetical  operations  are  minimum  possible  in   number ).  In  computational  linear  

algebra,  there  are   well   known  algorithms   to  achieve   the  LOWER  BOUND  on  

solving  an  arbitrary  linear  system  of  equations [Gall], [Sto], [Wil] .  We  borrow  those  

ideas  alongwith  the  approach  proposed  in   this  research  paper  to  efficiently  

compute  the  equilibrium/transient   PMF  of  an  arbitrary  CTMC.  On  the  other hand  

the  ideas  of  this  research  paper  could  be  utilized  in  solving  structured  system  of  

linear  equations  arising  in  other  applications. 

 

Remark  6:   Consider  an  arbitrary  system  of  linear  equations  of  the  following  

form: 

                       A X =  b, where   A  is  N x N  matrix  and  X  is  N x 1 vector. 



We convert  the  above  system  of  linear   equations  into  homogeneous  system  in  

the  following  manner.  Let �̃�𝑇 = [𝑋𝑇:  1 ]]  , 𝐴 ̃ =   [
𝐴 −𝑏
0̅ 0

] .  We  thus  arrive  at  the  

following  homogeneous  system  of   linear  equations 

                                  �̃� �̃� =  0̅ . 

If  the  matrices  on   the  diagonal  of  �̃�  are  all  non-singular  as  in  the  case  of  CTMC, 

the  above   recursions   can  be  used  to  compute  the  vector  in  the  null  space of �̃� . 

 

[ Remark  7 ]:  The  method   proposed  in  this  paper  can  be  applied  to  solving  

system  of  linear  equations,  where   the   coefficient  matrix  has  the  structure  similar 

to  a   generator  matrix ( i.e.  Structured  Diagonally  Dominant  matrix ). 

 

                              We  now  provide   some   numerical  results  for  transient  probability  

mass  function  of  an  arbitrary  CTMC. 

 

 

Figure  1.  Transient  Probability of CTMC  being in  State 10, as a function of 

time, given that it starts out  in  state  ‘1’ 



 

 

Figure 2:  Transient  Probability of  the  CTMC  being in  state ‘1’ as  a  function  of  

time, given that the CTMC  starts out  in  state  ‘1’. 

 

 We can plot the expected value of the transient  probability  distribution 

and variance of the transient  probability  distribution  ( as a function of 

time) , as follows:

 
 

 Variance of the  transient  probability  distribution  can also be obtained ( as 

a function of time): 



 

 

5. Conclusions: 

                           In  this   research  paper,  efficient  algorithms  for  computing  the  

equilibrium  and  transient  probability  distribution  of  an  arbitrary  finite state  space  

Continuous   Time  Markov  Chain  are  discussed.  The  algorithms  effectively  solve a  

structured  system  of  linear  equations  efficiently. The  algorithms  potentially  achieve  

the  lower  bound  on  computational  complexity. 
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