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Abstract—Although human pose estimation technology based
on RGB images is becoming more and more mature, most
of the current mainstream methods rely on depth camera to
obtain human joints information. These interaction frameworks
are affected by the infrared detection distance so that they
cannot well adapt to the interaction scene of different distance.
Therefore, the purpose of this paper is to build a modular
interactive framework based on RGB images, which aims to
alleviate the problem of high dependence on depth camera
and low adaptability to distance in the current human-robot
interaction (HRI) framework based on human body by using
advanced human pose estimation technology. To enhance the
adaptability of the HRI framework to different distances, we
adopt optical cameras instead of depth cameras as acquisition
equipment. Firstly, the human joints information is extracted
by a human pose estimation network. Then, a joints sequence
filter is designed in the intermediate stage to reduce the influence
of unreasonable skeletons on the interaction results. Finally,
a human intention recognition model is built to recognize the
human intention from reasonable joints information, and drive
the robot to respond according to the predicted intention. The
experimental results show that our interactive framework is
more robust in the distance than the framework based on depth
camera and is able to achieve effective interaction under different
distances, illuminations, costumes, customers, and scenes.

Index Terms—human-robot interaction; human pose estima-
tion; intention recognition

I. INTRODUCTION

HRI technology has become an important research hotspot
in the field of robot application. In order to complete effective
interaction, the robot needs to rely on its own sensors, which
can sense sound, force, distance and image, etc. Compared
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with other sensors, image sensors are cheaper and convey
richer information. Studies [1] showed that 93% of human
communication is non-verbal, 55% of which is physical com-
munication. Physical communication is the most intuitive way
of communication between humans and robots. Therefore,
we explore the HRI method based on human pose from the
perspective of robot vision. Interaction happens if a human and
a robot sharing the same workspace are communicating with
each other [2]. In the HRI based on actions, the robot interacts
with the human’s actions as the guide. After the robot gives
feedback, the human can start a new round of interaction.

At present, HRI research based on human pose mostly relies
on external depth sensors, such as Microsoft’s Kinect. Kinect
[3] has a strict software configuration environment, the official
hardware interface is not open enough, the compatibility is
weak, and it is not friendly to the embedded environment,
so the existing HRI frameworks lack universality. In addition,
Kinect operates in range of 0.5-4.5 m, and the range of stable
human body pose capture is limited to 4 m, which is not
available for people at a relatively long distance. But in the
actual scene, it is necessary to interact with people in the
farther scene, whether for industrial robots or indoor service
robots. These restrictions reduce the flexibility of HRI.

Compared with depth camera, optical camera is not sen-
sitive to distance requirements, and has no strict software
configuration environment and hardware interface. In order
to improve universality and flexibility of the HRI framework
based on the depth camera, we use optical camera instead
of depth cameras as the acquisition device. We introduced
advanced human pose estimation methods and built a set
of modular interaction framework based on human motion



intention, which can extract effective human joints information
from RGB images and predict human intention based on the
joints information, so that drive the robot to complete effective
interaction.

II. RELATED WORK

For a long time, people have been accustomed to use voice,
expression, body language, body contact and other information
when interacting with each other, which are the solidified
interaction modes formed by people for a long time. Therefore,
the interaction framework for service-oriented robots is mostly
based on human gestures, actions, expressions, intentions and
other information as the basis of interaction.

Carli et al. [4] and Zhu et al. [5] proposed an implicit
Markov model to infer user’s operation intention. Wang et al.
[6] established a dynamic model for intention recognition, used
Bayesian theorem to estimate the probability distribution of
intention from observation and infer the user’s real intention.
Elfring et al. [7] used a growing hidden Markov model to
predict human target location. Petković et al. [8] used Markov
and TOM theory to judge people’s intentions. Liu et al. [9]
proposed an implicit control method and used a finite state
machine to recognize the human intention. Yu X et al. [10]
proposed a Bayesian method to acquire the estimation of
human impedance and motion intention in a human-robot
collaborative task, in which the human stiffness and human
motion intention are obtained by Bayesian estimation with the
human prior knowledge. These intention recognition methods
most use the traditional probabilistic correlation model to
predict the intention of part of human body.

Sigalas et al. [11] proposed a HRI system based on gesture
recognition, which identifies the tasks to be performed through
the category recognition of gestures. Li X [12] proposed a
robot arm interaction model based on gesture recognition
and body movement recognition by DTW template matching
algorithm with both RGB video frames and depth images.
Luo X et al. [13] proposed a two-handed gesture recog-
nition method based on depth camera for real-time control
of McNaim wheeled mobile robot, which can perform tasks
such as directional movement, grasping, and clearing obstacles
based on gesture recognition. Koppula et al. [14] predicted
the motion of the extracted skeleton information based on
the depth image. GerardCanal et al. [15] used depth images
collected by KinectTMv2 sensor for gesture recognition. Li
Kang [16], a scholar of Chinese academy of sciences, and
others used Kinect depth camera to recognize the directly
acquired three-dimensional human skeleton, and completed
the interaction task on the design of HRI rules. Mazhar et al.
[17] combined Kinect V2 extraction of three-dimensional pose
with two-dimensional pose estimation method to recognize the
extracted hand joints, thereby enabling the robot to complete
the interaction.

In summary, human intention and action play a very im-
portant role in HRI framework. In addition, the depth camera
has been found to have a high usage rate in the HRI frame-
work, while depth cameras generally use infrared for ranging,

which makes the interaction frames unable to well adapt to
interaction scenes at different distances due to the influence
of infrared detection distances. Therefore, we will introduce
advanced human pose estimation methods, extract effective
joints information from RGB images, and then predict human
motion intention according to the joints information, and build
a set of modular interactive framework based on human motion
intention.

III. METHOD

This section mainly introduces the design ideas of our
framework to ensure that it can enable the robot to effectively
interact only according to the image captured by optical
cameras under different conditions. The module schematic
of our framework is described in section III-A. The human
joints sequence filter is presented in section III-B. A detailed
description of the human intention recognition method based
on joints sequences is given in section III-C.

A. Overview

In order to improve the universality and flexibility of HRI
framework based on depth camera, we will replace depth
camera with optical camera as acquisition device to build a
HRI framework based on RGB images sequence instead of
depth images. The purpose of our framework is to enable the
robot to complete the corresponding interaction on different
scenes over a long distance according to the human intention
extracted from the RGB images sequence. For example, in a
specific offensive and defensive scenario, when the robot sees
a person hurling a blow at it, even at a relatively long distance,
the robot can recognize the behaviour intention according to
the images information and make a corresponding defence
according to this intention. Because of the interaction action
cycle is a short-time, we will use the human action category
as the human intention.

Our framework takes the human joints information con-
tained by the image as the intermediate data, which not only
considers the interaction framework independence between
modules, but also adapts to different acquisition equipment.
In order to enable the robot to complete effective interaction,
it is necessary to infer the information conveyed by the
human joints sequence. We use multi-frame joints sequence
as the intention recognition basis, which not only reduces
the complexity of the intention recognition network, but also
makes the framework still available when the depth camera is
used as the acquisition device.

As shown in Fig. 1, when the robot sees the images of the
human right arm attacking forward, it completes the action
of protecting the head. Our framework involves two stages:
Human pose estimation stage and Intention recognition stage.
The first stage is the robot’s camera capture images, using
the robot system interface to obtain the images sequence
recorded by the camera, and input the images acquired by the
robot into the human pose estimation network to extract the
three-dimensional joints features of the human body contained
by the image. The second stage is to recognize the human



Fig. 1. Overview. Our framework enables the robot to complete corresponding
interactive actions only according to the images captured by the camera.

intention according to the reasonable human joints features
extracted from the image, and transmit the human intention
category to the robot, so that the robot can make an expected
response. In order to effectively reduce the wrong interaction
caused by unreasonable joint information, we set a human
joints sequence filter between the first stage and the second
stage to further ensure the accuracy of human joints informa-
tion. Human pose estimation stage by using image recognition
technology to extract important features of human body joints,
represented by convolution neural network method, this kind
of method can extract 3d joints information of human body
from the images obtained by robot vision sensor.

Intention recognition network stage aims at the specific
interaction group of human and robot, and its purpose is
to enable the robot to make corresponding feedback actions
after acquiring effective human joints sequences. For example,
when the robot sees the image of the man’s right arm attacking
forward, the trained intention recognition network can recog-
nize the intention category of the people, and drive the robot
to make corresponding feedback action to protect its head.

B. Human joints sequence filter

Based on the deep learning method, even if the network
depth reaches more than a thousand layers, it is still possible
to make mistakes. What’s worse is that the algorithm does not
know when the error occurs. It’s a question of uncertainty.
Human pose estimation stage using deep neural network is
the intermediate stage of the HRI framework, so we need to
further identify the accuracy and reliability of the prediction
results. We use the length relationship between skeletons and
the position relationship of the joints to roughly exclude
unreasonable predictions to improve the accuracy of HRI.

As shown in Fig. 2, the joints coordinates output from the
human pose estimation network are connected and displayed
in the form of the skeleton. The first two human skeletons
are obviously unreasonable. For example, in the first human
skeleton, the left forearm length is too long because the
prediction of left elbow joint’s vertical dimension is much
larger than the actual position, and in the second human
skeleton, the left forearm length is too long because the

Fig. 2. The schematic diagrams of two unreasonable skeletons and a
reasonable skeleton. There are skeletons extracted from three images. The
first two skeletons are obviously unreasonable, and the last one is a reasonable
skeleton schematic.

prediction of left elbow joint’s horizontal dimension is much
larger than the actual position. According to these obvious
problems, we designed a human joints sequence filter based
on the length relationship between skeletons and the position
relationship of the joints. When similar unreasonable skeleton
information is input, the human joints sequence filter will make
them prohibit. Only input a reasonable skeleton similar to the
last one can pass through the human joints sequence filter
successfully. These unreasonable skeletons will not enter the
intention recognition stage to avoid adverse effects on the latter
stage.

Based on the output by human pose estimation network,
according to the standard of Chinese adult body size [18], we
designed the corresponding joints limitations.

Fig. 3. The joints numbering diagram. Each joint position is marked as a
fixed serial number, for example, the head joint is numbered 9, and the right
and left foot joints are numbered 0 and 5.

• The height of the foot joint should not exceed the height
of the head joint.

• The length of the thigh and calf does not exceed the sum
of the length of the upper body and the head.

• The length of upper arm and forearm should not more
than 1.5 times the length of the calf.

According to the above limitations, we designed a ratio-
nality judgment function of a single pose and used v(pi) to
represent the filtering result of the i-th joints sequence.

v(pi) = l1(pi)× l2(pi)× l3(pi) (1)

l1, l2, l3 are joints rationality limit functions, which are
expressed as follows:

l1(p) =

{
0 h0>h9 or h5>h9

1 other
(2)



l2(p) =

{
0 d0,1>d8,9 + d6,8 or d4,5>d8,9 + d6,8

1 other
(3)

l3(p) =

{
0 d11,12>1.5× d0,1 or d14,15>1.5× d0,1

1 other
(4)

p denotes the pose information contained in an image, hi
denotes the distance between the i-th joint shown in the Fig. 3
and the ground, and dj,k denotes the distance between the j-th
joint and the k-th joint.

R(X) =

{
reasonable

∑N
i=0 v(pi) ≥M

unreasonable other
(5)

R(X) represents the reasonable judgment function of all
skeletons sequence, X = [p0, p1, ..., pN ]T , N represents the
length of the filtered skeletons sequence, and M represents
the minimum number of skeletons in a reasonable skeletons
sequence that conforms to the above restriction.

The human joints sequence filter is primarily for obvious
errors in joints position and skeletons length. When the number
of skeletons in the skeleton sequence that do not meet the
above limitations exceeds the set value, we will directly
regard these sequences as invalid sequences, skip the intention
recognition network, drive the robot to make a voice prompt
and start a new round of interaction.

C. Intention recognition network

In natural HRI, interactive intention is often abstract motion
information (such as movement trend, direction) or command
(gesture). Traditional intention prediction methods mainly rely
on Markov model and Bayes’ theorem, but we do not use the
traditional probability model. Aiming at the limited category of
adversarial interaction, we transform the intention prediction
in a short time into the intention recognition of the current
action. In this particular scenario, we build the corresponding
dataset and model the relationship between human joint data
and human intentions.

Because human intention to obtain directly from the image
will be affected by the image background or light, a very
large data set is required. To avoid this practical problem,
we simplify the recognition from image to human intention
into human joint coordinate sequence to human intention. In
addition, a pose can’t accurately reflect the human body’s
intention, so we use continuous multi-frame joins data as
the basis for intention recognition. Therefore, we designed an
intention recognition network based on the LSTM [19].

The multiple continuous images acquired by the robot are
input into the pose feature extraction network. After combining
the pose features of these images, they are input into the
intention recognition network in this section. The size of input
data is N × (16 × 3) and N represents the number of pre-
merged feature sequences. Each sequence contains the x, y, z

three-dimensional features of 16 joints on the axes, and the
size of each feature is 16× 3 .

Assuming N = 5 , the input data of intention recognition
network is 5 frames pre-merged feature , and feature sequences
can be regarded as a time series. The features learned by the
intentional recognition network are composed of the hidden
state ht−1 of the previous frame and the input of the following
frame pt . Where ht−1 and Ot are defined as:

ht−1 = Ot−1 ∗ tanh(ft−1) (6)

Ot = σ(W0[ht−1, pt] + b0) (7)

W0 and b0 denote output weights and bias, σ denotes the
Sigmoid activation function, Ot−1 denotes the output at time
t−1, and ft−1 denotes the combination of old and new features
at time t− 1.

The human feature pt−1 of each frame is transformed into
all neurons at time t− 1 , and the human feature pt of the
next frame is used as the input of time t . The final output
Ot = [o0, o1, ..., oC ]

T contains all the important features of
the previous time, where C denotes the number of intention
categories.

After two layers LSTM network is a Softmax function,
which can transform to a probability Yt,c corresponding to
the c-th class of the intention:

Yt,c =
exp (Ot, c)∑C
k=1 exp (Ot,k)

(8)

where k = 1, 2, ..., C and Ot,k denotes the encoding of
the confidence score on the c-th intent class. Finally, we set
Yt = [y1, y2, ..., yC ]

T as the predicted class label vector.

IV. EXPERIMENTS

In this part, we first introduced our experimental setup
and experimental details. Finally, we designed two groups of
experiments for five different interaction categories. One group
compares the existing interaction framework and the other
group verifies the adaptability of the framework of different
conditions.

A. Experimental configuration

The implementation of our framework relies on Pytorch
framework and uses Python language to call Naoqi interface
to communicate with the robot. The pythons used in this
experiment are Python 2.7 and python 3.6. Python 2.7 is used
for interaction, and python 3.6 is used for posture feature
extraction and human intention recognition. The experimental
hardware is NVIDIA GeForce GTX-1080Ti GPU with a mem-
ory size of 11GB. In the HRI contrast experiment, the existing
interactive framework uses external Kinect depth camera to
simulate with Nao robot (external camera and adapter are
needed).



B. Training details

The existing human action recognition datasets rely on deep
camera to extract and have no clear interactive intention,
and do not apply to the specific group of human and robot.
Therefore, we establish the antithesis interactive intention
prediction data set applicable to humans and robots.

TABLE I
HUMAN-ROBOT INTERACTIVE MECHANISM.

Interaction actions
Human actions Robot actions

1 Right punching Protecting the belly
2 Pushing forward Standing firm
3 Bowing Standing upright with lift up
4 Right arm swing Blocking with left arm
5 Right hand shooting forward Protecting the head

Based on the common interaction, the human-robot inter-
active mechanism is designed as shown in Tab I. In order
to establish human intention recognition network, we build
a dataset for training intention recognition network, which
including 5 males and 6 females and 41580 groups of joints
sequence. Then the images of each action were organized to
expand the dataset. The dataset contains a total five types of
interactions, and each interaction type includes 8316 joints
sequences.

In our experiment, the human pose estimation stage is
based on the open method updated by Xingyi Zhou [20] on
github.com, which is proved to be suitable for extracting three-
dimensional joints information of a single human of a single
human from the RGB image.

In the training of intention identification network, we ran-
domly divided into 33264 training joints sequences and 8316
testing joints sequences, and the learning rate is 0.01. In order
to prevent fast decay, we choose cross entropy as loss function
and Adam algorithm as weight update function. We printed
the accuracy of the intention recognition network within 20
generations of training, and found that the accuracy of the
network was infinitely close to 100% and its performance
was very stable. In the experiment, it is found that when
there is unfamiliar new data input, it can still make accurate
identification.

C. Experimental results

First of all, we compare with the current interaction frame-
work at different distances, and randomly select an interaction
for analysis. The video of complete comparison experiment
can be found here: Youku video1.

At a relatively close distance, our framework extracts the
same human skeleton information as the current interaction
framework. Through the intention recognition network, the
robot can correctly recognize the human intention and perform
the same interaction, as shown in Fig. 4.

At a relatively long distance, the current interaction frame-
work fails to extract the effective human skeleton due to the
limitation of the working range of depth camera, but our

Fig. 4. (a) and (b) are short-distance interactive screenshots of the current
frame and our framework respectively. The first line are depth and RGB
images, the second line are skeletons extracted, and the third line are a five-
frame of the robot’s response action.

Fig. 5. Long-distance interaction with our framework.

framework can still extract the effective human skeleton and
complete the expected interaction, as shown in Fig. 5.

Fig. 6. Partial interactive screenshots of different scenario. (illumination,
customer, costume, distance, distance, scene).

Fig. 6 shows that the robot extracts effective joints from
images at different distances, lighting, clothing, customers and
scene conditions and completes effective interactions through
the human intention recognition network. All experimental
results can be found here: Youku video2.

The experiments show that our framework can be applied
to different interaction scenarios, and has certain robustness
to distance, light intensity, clothing brightness, human height
and background complexity, effectively reduce the limitation
inside 4m and has universality in different scenes.

After a lot of experiments, we found that when the human
pose estimation network output joints position are greatly
different from the real position or the robot acquired image
contains incomplete human body as shown in Fig. 7 (b), the
joints sequences we obtained often make the intent recognition
network get a wrong result. When received as shown in
Fig. 7(a) the human points sequence, the intention recognition
network outputs the correct human intention.

By adding the human joints sequence filter, our framework
is able to reduce the impact of these unreasonable sequences.
In the final experiments, we found that not all the human joints
sequence can enter intention recognition network. If the human
joints information extracted from the human pose estimation
network is unreasonable, our framework will directly treat



Fig. 7. (a) is a joints sequence that passes the human joints sequence filter
successfully, and (b) is a joints sequence that fail to passes the human joints
sequence filter. The sequences that pass successfully will be sent into the
intention recognition network, and the fail sequences will be judged as invalid
intention.

them as invalid sequences, and skip intention recognition
network to drive the robot to make voice prompts and start
a new round of interaction.

The above experiments show that compared with the frame-
work based on depth camera, our framework not only reduces
the constraints of distance and SDK, but also can complete
the desired interactive actions of robots according to human
body images under different conditions.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduce the human pose estimation
method and build an intention recognition model, take ef-
fective human joints information as the intermediate data,
improve the independence between the modules of the inter-
action framework, and reduce the limitations of the existing
framework relies on the depth camera. The experimental
results show that our framework can be implemented under
the condition of different effective interaction. In addition, the
framework can be applied to a wider range of interactions and
robots. It is worth mentioning that the human pose estimation
network introduced in the experiment is only effective for
the detection of single people. Therefore, when the captured
image contains multiple people during the interaction, the
more important human joints information (closer to the center
or with a larger background color difference) will be extracted
for interaction. In addition, since we modeled for a fixed class
of interactions, the interaction mechanism here has only a
single interaction for actions of the same type and different
magnitude. Therefore, our next work will be to consider the
accurate interaction in the case of multiple people, and make
the robot make corresponding response actions at different
motion ranges, so as to further empower the robot with
stronger intelligence.
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G. Chryssolouris, ”Symbiotic Human-Robot Collaborative Assembly,”
CIRP Annals – Manufacturing Technology, 2019, Vol.68, No.2, pp.701-
726.

[3] P. Fankhauser, B. Michael, R. Diego, K. Ralf, H. Marco, Y. S. Roland,
Kinect v2 for mobile robot navigation: Evaluation and modelling. In:
2015 International Conference on Advanced Robotics (ICAR). Istanbul,
2015, pp. 388-394.

[4] De Carli, D., Hohert, E., Parker, C. A., Zoghbi, S., Leonard, S.,
Croft, E., Bicchi, A, Measuring intent in human-robot cooperative
manipulation. In: 2009 IEEE International Workshop on Haptic Audio
visual Environments and Games. Lecco, 2009, pp. 159-163.

[5] C. Zhu, W. Sun, W. Sheng, Wearable sensors based human intention
recognition in smart assisted living systems. In: 2008 International
Conference on Information and Automation. Changsha, 2008, pp. 954-
959.
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