
EasyChair Preprint
№ 5531

Inductive Benchmarks for Automated Reasoning

Márton Hajdu, Petra Hozzová, Laura Kovács,
Johannes Schoisswohl and Andrei Voronkov

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 17, 2021



Inductive Benchmarks for Automated Reasoning

Márton Hajdu1, Petra Hozzová1, Laura Kovács1, Johannes Schoisswohl1,2, and
Andrei Voronkov2,3

1 TU Wien, Austria
2 University of Manchester, UK

3 EasyChair

Abstract. We present a large set of benchmarks for automated theo-
rem provers that require inductive reasoning. Motivated by the need to
compare first-order theorem provers, SMT solvers and inductive theorem
provers, the setting of our examples follows the SMT-LIB standard. Our
benchmark set contains problems with inductive data types as well as
integers. In addition to SMT-LIB encodings, we provide translations to
some other less common input formats.

1 Introduction

Recently, automated reasoning approaches have been extended with inductive
reasoning capabilities, for example in the context of superposition theorem prov-
ing [4,8,5] and SMT solving [9]. Evaluation of these developments prompts com-
parison not only among first-order theorem provers and/or SMT solvers but also
with inductive provers (e.g., ACL2 [2], Zeno [10] or Imandra [7]). As a part of our
work on automating induction in the first-order theorem prover Vampire [5], we
created a benchmark set of 3516 benchmarks based on variations of properties
of inductive data types as well as integers. To facilitate comparison of different
solvers and provers, we translated our benchmarks into the input formats of
other state-of-the-art inductive reasoners, supporting for example the SMT-LIB
input format [1] and functional program encodings.

Our dataset is comparable to the TIP repository of inductive benchmarks [3].
We note however that TIP focuses on problems with inductive data types and
uses a non-standard variant of SMT-LIB. Our dataset employs the current stan-
dard SMT-LIB 2.6 syntax, allowing us to potentially integrate our examples in
any repository using the SMT-LIB standard. Our benchmark set is available at:

https://github.com/vprover/inductive_benchmarks

2 Benchmark Format

We provide all benchmarks in the standard SMT-LIB 2.6 syntax. In our ex-
amples, we use the SMT-LIB construct declare-fun to declare functions and
assert to axiomatize functions (see the example benchmarks in Section 3). In

https://github.com/vprover/inductive_benchmarks


2

addition to the SMT-LIB syntax, we also translated our examples to other for-
mats depending on the data types used in these examples: three subsets of our
benchmark set use inductively defined data types, and one subset uses integers
(see Section 3). For the benchmarks with inductively defined data types, we also
provide SMT-LIB encoding using the define-fun-rec construct for recursive
function definitions.

Besides the SMT-LIB format, we also provide our benchmarks translated
into other, less common input formats supported by state-of-the-art solvers for
automating induction. Namely, for our benchmarks with inductively defined data
types, we provide two encodings for Zipperposition [4] (using Zipperposition’s
native input format .zf with/without function definitions encoded as rewrite
rules), and when possible4 functional program encodings for ACL2 [2] (in Lisp),
Imandra [7] (in OCaml) and Zeno [10] (in Haskell). For our inductive benchmarks
over integers, we only provide translation into Lisp for ACL2. To the best of our
knowledge, in addition to Vampire [6] and CVC4 [9], ACL2 is the only prover
supporting inductive reasoning with integers.

3 Benchmark Categories

Our benchmark set consists of two categories, requiring different kinds of induc-
tive reasoning, as follows. The benchmark category dty uses structural induction
over inductively defined data types, whereas our int benchmark suite exploits
integer induction. Further, our benchmark set dty is organized within three
categories nat, list and tree, respectively collecting inductive properties over
naturals, lists and trees.

3.1 dty - Benchmarks with Inductively Defined Data Types

The 3396 problems within the category dty involve three different inductively
defined data types: natural numbers, lists of natural numbers, and binary trees
of natural numbers. These data types are defined as follows:

(declare-datatypes ((nat 0) (list 0) (tree 0))

(((zero) (s (s0 nat)))

((nil) (cons (head nat) (tail list)))

((Nil) (node (lc tree) (val nat) (rc tree)))))

The benchmark category dty collects results of [5]. It is split into three
subcategories nat, list, and tree, depending on the algebraic data types used
in the examples. The category nat uses natural numbers only, list uses lists
and natural numbers, and tree uses all three of the data types. Each of these
categories within dty contains examples defining functions and predicates on the
respective data type and a conjecture/goal to prove about these functions and
predicates, as described next. To avoid repetition in the displayed examples, we
use short descriptions of repeated content beginning with the comment sign ;-.

4 Some concepts, like conjectures that contain existential quantification, or some un-
interpreted functions used to model out of bounds access for list indexing, are not
straightforwardly translatable into these formats.



3

nat Examples. The category nat contains a set of hand-crafted benchmarks
encoding basic properties like commutativity of addition and multiplication.
Additionally, nat contains three groups of generated benchmarks. In group
add <m>var <n>occ, the conjecture of each benchmark consists of an equality
of two sums of variables, with arbitrary bracketing, and n variables on each
sides of the equality, where m distinct variables occur in the conjecture. In group
add <n>sym, the conjectures are equalities with an arbitrary combination of the
successor function, zero, addition, and variables, on both hand sides. Each side
of the equality in these benchmarks contains n symbols in total. The group
leq <m>var <n> <o>occ has a less-or-equal inequality as conjecture. It contains
m distinct variables, with a total of n variables on the left-hand side arbitrarily
added up, and a total of o variables occurring on the right-hand side, where
each variable on the left-hand side is contained on the right-hand side at least
as often as on the left one in order to ensure that the conjecture is indeed valid.

Inductive nat example from the set add 2var 4occ

(set-logic UFDT)

(declare-datatypes ((nat 0)) (((zero) (s (s0 nat)))))

(declare-fun add (nat nat) nat)

(assert (forall ((y nat) ) (= (add zero y) y )))

(assert (forall ((x nat) (y nat)) (= (add (s x) y) (s (add x y)))))

(assert (not (forall ((v0 nat) (v1 nat))

(= (add (add v0 (add v1 v1)) v1) (add (add (add v1 v1) v1) v0)))))

(check-sat)

list Examples. These examples describe basic properties about lists, such as
relating concatenation of lists to the resulting list length. Similarly to nat, the
category list also contains two generated example sets: concat <m>var <n>occ

contains examples as in add <m>var <n> occurrences, but using list concatena-
tion instead of list addition, while pref <m>var <n> <o>occ is defined in the
same way as leq <m>var <n> <o>occ, but replacing the less-or-equal order with
the prefix relation and using list concatenation instead of natural addition.

Inductive list example from the set crafted

(set-logic UFDT)

;- nat and list declaration, as shown at the beginning of this Section

;- add function declaration and axiomatization, as in the example above

(declare-fun app (list list) list)

(assert (forall ((r list) ) (= (app nil r) r)))

(assert (forall ((a nat) (l list) (r list))

(= (app (cons a l) r) (cons a (app l r)))))

(declare-fun len (list) nat)

(assert (= (len nil ) zero ))

(assert (forall ((e nat) (l list)) (= (len (cons e l)) (s (len l)))))



4

(assert (not (forall ((x list) (y list))

(= (add (len x) (len y)) (len (app x y))))))

(check-sat)

tree Examples. This category has two main subcategories: one problem set
relates binary trees indirectly by flattening them to lists, the other relates them
directly to each other. The defined functions are two in-order flattening variants,
two functions that recursively rotate a tree completely to the left and to the right
at its root, one counting the number of non-leaf nodes in a tree and one checking
if two trees are mirror images of each other. Occurrences of the flattenning and
rotating functions are varied to get variants for each problem.

Inductive tree example from the set flatten0 rotate 5var

(set-logic UFDT)

;- data types declaration, as shown at the beginning of this Section

;- app function declaration and axiomatization, as in the example above

(declare-fun flat0 (tree) list)

(assert (= (flat0 Nil) nil))

(assert (forall ((p tree) (x nat) (q tree))

(= (flat0 (node p x q)) (app (flat0 p) (cons x (flat0 q))))))

(assert (not (forall ((p tree) (q tree) (r tree) (x nat) (y nat))

(= (flat0 (node (node p x q) y r)) (flat0 (node p x (node q y r))))

)))

(check-sat)

3.2 int - Benchmarks with Integers

The int category of our benchmark set contains 120 problems for inductive rea-
soning with integers. It is inspired by software verification problems [6] for three
programs: power, computing powers of integers, sum, computing sums of integer
intervals, and val, using integers as array indices to encode array properties.
A sample problem from power expressing that the recursively defined power
function on integers for positive exponents is distributive over multiplication, is:

Inductive int example from the set power

(set-logic UFNIA)

(declare-fun pow (Int Int) Int)

(assert (forall ((x Int)) (= (pow x 1) x)))

(assert (forall ((x Int) (e Int))

(=> (<= 2 e) (= (pow x e) (* x (pow x (- e 1)))))))

(assert (not (forall ((x Int) (y Int) (e Int))

(=> (<= 1 e) (= (pow (* x y) e) (* (pow x e) (pow y e)))))))

(check-sat)



5

All variations of the int benchmarks were created by varying the constraints
and constants in the definitions and goals. For example, variations of the sample
problem above use the function pow defined starting from 0 instead of 1, or
introduce additional constraints on variables x, y and e in the goal.

4 Conclusions

We describe our benchmark set for evaluating inductive capabilities of automated
reasoners. Although we primarily provide our problems in the standard SMT-
LIB syntax, we also translated them to other input formats of state-of-the-art
reasoners. A possible integration of our dataset with the TIP benchmark set
or with the SMT-LIB repository is a task for future work. One possibility for
incorporating our benchmark set into SMT-LIB would be to add a new subset
or an annotation for inductive problems in SMT-LIB, since SMT-LIB does not
currently distinguish benchmarks focused on induction from those which can be
easily solved without induction. Another possibility is to introduce subsets of
the DT (data types) set from SMT-LIB for each notable algebraic data type
(natural numbers, lists, trees).

Acknowledgements. This work has been partially funded by the the ERC
starting grant 2014 SYMCAR 639270, the EPSRC grant EP/P03408X/1 and
the Austrian FWF research project LogiCS W1255-N23.

References

1. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org (2016)

2. Boyer, R.S., Moore, J.S.: A Computational Logic Handbook, Perspectives in com-
puting, vol. 23. Academic Press (1979)

3. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: TIP: Tons of Inductive
Problems. In: Proc. of CICM. pp. 333–337. Springer (2015)

4. Cruanes, S.: Superposition with Structural Induction. In: Proc. of FRoCoS. pp.
172–188 (2017)

5. Hajdú, M., Hozzová, P., Kovács, L., Schoisswohl, J., Voronkov, A.: Induction
with Generalization in Superposition Reasoning. In: Proc. of CICM. pp. 123–137.
Springer (2020)

6. Hozzová, P., Kovács, L., Voronkov, A.: Integer induction in saturation. EasyChair
Preprint no. 5176 (EasyChair, 2021)

7. Passmore, G., Cruanes, S., Ignatovich, D., Aitken, D., Bray, M., Kagan, E., Kani-
shev, K., Maclean, E., Mometto, N.: The Imandra Automated Reasoning System.
In: Proc. of IJCAR. pp. 464–471. Springer (2020)

8. Reger, G., Voronkov, A.: Induction in Saturation-Based Proof Search. In: Proc. of
CADE. pp. 477–494 (2019)

9. Reynolds, A., Kuncak, V.: Induction for SMT Solvers. In: Proc. of VMCAI. pp.
80–98 (2015)

10. Sonnex, W., Drossopoulou, S., Eisenbach, S.: Zeno: An Automated Prover for
Properties of Recursive Data Structures. In: Proc. of TACAS. pp. 407–421 (2012)


