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ABSTRACT 

 
In this work a very important theorem about the separation of a vector space 

convex parts, consequence of the Hahn-Banach Theorem, is presented. 
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1. INTRODUCTION 

 

The definition of separation, see (1), to be considered in this work is: 

 

Definition 1.1 

Be M and N two subsets of a real vector space L.A linear functional f, defined in 

L separates M and N if and only if exists a number c such that 

 

𝑓(𝑥) ≥ 𝑐, for 𝑥 ∈ 𝑀 and 𝑓(𝑥) ≤ 𝑐, for 𝑥 ∈ 𝑁 

 

that is, if 

                                       
𝑖𝑛𝑓

𝑥 ∈ 𝑀
𝑓(𝑥) ≥

𝑠𝑢𝑝
𝑥 ∈ 𝑁

𝑓(𝑥). 

 

The functional f separates strictly the sets M and N if and only if 

 

 
𝑖𝑛𝑓

𝑥 ∈ 𝑀
𝑓(𝑥) >

𝑠𝑢𝑝
𝑥 ∈ 𝑁

𝑓(𝑥). 

 

 

Proposition 1.1 

a) A linear functional separate the sets M and N if and only if separates the sets 

𝑀 − 𝑁 = {𝑥 − 𝑦: 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑁} and {0}. 
b) A linear functional f separates the sets M and N if and only if separates the 

sets M-x and N-x for any 𝑥 ∈ 𝐿. 

 
1 This work was financially supported by FCT through the Strategic Project PEst-OE/EGE/UI0315/2011. 
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          2. THE HAHN-BANACH THEOREM 

 

           Definition 2.1 

           Consider a vector space L and a respective subspace 𝐿0. Suppose that in 𝐿0 is 

defined a linear functional 𝑓0. 
            A linear functional f defined in L is an extension of the functional 𝑓0 if and only 

if 

 

𝑓(𝑥) = 𝑓0(𝑥),
∀

𝑥 ∈ 𝐿0
. 

 

The Hahn-Banach Theorem, see (2), plays an important role in the 

resolution of the problem of finding an extension of a linear functional.  

 

            Theorem 2.1(Hahn-Banach) 

Be p a positive homogeneous convex functional defined in a real vector space L and   

𝐿0  a subspace of L. If   𝑓0  is a linear functional defined in   𝐿0 , fulfilling the condition 
 

𝑓0(𝑥) ≤ 𝑝(𝑥),
∀

𝑥 ∈ 𝐿0
          (2.1), 

there is an extension f of 𝑓0  defined in L, linear, and such that 𝑓(𝑥) ≤ 𝑝(𝑥),
∀

𝑥 ∈ 𝐿
. 

 

          Dem.: 

Begin by showing that if  𝐿0 ≠ 𝐿, there is an extension of 𝑓0, 𝑓 ´, defined in a 

subspace 𝐿´ such that 𝐿 ⊂ 𝐿´, to fulfill the condition (2.1). 

Be z any element of L not belonging to 𝐿0; if 𝐿´ is the subspace generated by  𝐿0 and z,  

each element of  𝐿´ is expressed in the form tz + x, being   𝑥 ∈  𝐿0. If 𝑓 ´is an extension 

(linear) of the functional  𝑓 0 to 𝐿´, it will be 𝑓 ´(𝑡𝑧 + 𝑥) = 𝑡𝑓 ´(𝑧) +  𝑓 0 (𝑥) or, imposing 

𝑓 ´(𝑧) = 𝑐, 
 

𝑓 ´(𝑡𝑧 + 𝑥) = 𝑡𝑐 +  𝑓 0 (𝑥). 
 

Choose now c  in a way that respects on 𝐿´ the condition (2.1), that is: fulfilling 

the inequality  𝑓0(𝑥) + 𝑡𝑐 ≤ 𝑝(𝑥 + 𝑡𝑧), for any 𝑥 ∈ 𝐿0 and any real number t.  

          For t>0 that inequality is equivalent to the condition  𝑓 0 (
𝑥

𝑡
) + 𝑐 ≤ 𝑝 (

𝑥

𝑡
+

𝑧) or 

𝑐 ≤ 𝑝 (
𝑥

𝑡
+ 𝑧) +  𝑓 0 (

𝑥

𝑡
)                           (2.2). 

 

For t<0 it is equivalent to the condition  𝑓 0 (
𝑥

𝑡
) + 𝑐 ≥ −𝑝 (−

𝑥

𝑡
− 𝑧), or 

𝑐 ≥ −𝑝 (−
𝑥

𝑡
− 𝑧) −  𝑓 0 (

𝑥

𝑡
)                            (2.3). 

 

It will be shown now that there is always a number c that satisfies 

simultaneously the conditions (2.2) and (2.3).  

Given any two elements y´ and y´´ from𝐿0,  

 



−𝑓0(𝑦´´) + 𝑝(𝑦´´ + 𝑧) ≥ −𝑓0(𝑦´) − 𝑝(−𝑦´´ − 𝑧)                   (2.4) 

 

since 𝑓0 (𝑦´´) − 𝑓0 (𝑦´) ≤ 𝑝(𝑦´´ − 𝑦′) = 𝑝((𝑦´´ + 𝑧) − (𝑦´ + 𝑧)) ≤ 𝑝(𝑦´´ + 𝑧) + 𝑝(−𝑦´ − 𝑧). 
 

Be 𝑐´´ = inf
𝑦´´

(−𝑓0(𝑦´´) + 𝑝(𝑦´´ + 𝑧)) and 𝑐´ = sup
𝑦´

(−𝑓0(𝑦´) − 𝑝(−𝑦´ − 𝑧)) . As y´ and y´´ 

are arbitrary, it results from (2.4) that 𝑐´´ ≥ 𝑐´. Choosing c so that 𝑐´´ ≥ 𝑐 ≥ 𝑐´,it is 

defined the functional f´on L´ as 

 

𝑓´(𝑡𝑧 + 𝑥) = 𝑡𝑐 + 𝑓0(𝑥). 
 

This functional satisfies the condition (2.1). So any functional 𝑓0defined in a 

subspace 𝐿0 ⊂ 𝐿 and having to fulfill in 𝐿0 the condition (2.1),  may be extended to 

a subspace L´. The extension f´ satisfies the condition 

 

𝑓´(𝑥) ≤ 𝑝(𝑥),
∀

𝑥 ∈ 𝐿´
. 

 

If L has a numerable algebraic base(𝑥1 , 𝑥2 , … , 𝑥𝑛, … ), the functional is built in L by 

finite induction, considering an increasing sequence of subspaces  

 

                                                               𝐿(1) = (𝐿0,𝑥1), 𝐿(2) = (𝐿(1),𝑥2),…  

 

(Calling (𝐿(𝑘), 𝑥𝑘+1) the L subspace generated by  𝐿(𝑘)and 𝑥𝑘+1). 

In the general case, that is, when L has not a numerable algebraic base, it is 

mandatory to use a transfinite induction process, for instance, the Haudsdorf 

maximal chain Theorem. Be ℑ  the set of the whole pairs (L´, f´), where L´ is a L 

subspace that contains  𝐿0 and f´ is an extension of  𝑓 0 to L´ that verifies (2.1). 

Order partially ℑ in the following way:  

 

(𝐿´, 𝑓´) ≤ (𝐿´´, 𝑓´´) if and only if  𝐿´ ⊂ 𝐿´´ and 
𝑓´´

𝐿⁄ ´ = 𝑓´. 

By the Haudsdorf maximal chain Theorem, there is a chain  (that is: a subset of 

ℑtotally ordered) maximal (that is: not strictly contained in another chain).  Call it 

Ω.Be Φ a family of the whole L´ such that (𝐿´, 𝑓′) ∈ Ω. Φ is totally ordered by the 

inclusion of sets; so, the union Τ of the whole elements belonging to   Φ  is a subspace of L. If 

𝑥 ∈ Τ, so 𝑥 ∈ 𝐿´ for some 𝐿´ ∈ Φ; define 𝑓(𝑥) = 𝑓´(𝑥), where f´ is the extension of 

 𝑓 0 that is in the pair (𝐿´, 𝑓′) −the definition of 𝑓 is obviously coherent.  It is easy to 

check that �̃�=L and that f=𝑓 fulfills the condition (2.1).  □ 

 

It follows the Hahn- Banach Theorem complex case that corresponds to the 

contribution of Hahn to the theorem, see (3). Begin with 

 

 

Definition 2.2 

A linear functional p, assuming only positive values, defined in a complex vector space 

L, is called homogeneous convex if and only if, for any 𝑥, 𝑦 ∈ 𝐿and and any complex 

number 𝜆, 

 

𝑝(𝑥 + 𝑦) ≤ 𝑝(𝑥) + 𝑝(𝑦), 𝑝(𝜆𝑥) = |𝜆|𝑝(𝑥). 
 

 

 

 

 



Theorem 2.2 (Hahn-Banach) 

Be p a homogeneous convex functional defined in a vector space L and   𝑓0 a linear 

functional, defined in a subspace  𝐿0 ⊂ 𝐿 , fulfilling the condition 

 
|𝑓0(𝑥)| ≤ 𝑝(𝑥), 𝑥 ∈ 𝐿0. 

 

So, there is a linear functional f   defined in L, satisfying the condition 

 

     |𝑓(𝑥)| ≤ 𝑝(𝑥), 𝑥 ∈ 𝐿;  𝑓(𝑥) = 𝑓0(𝑥), 𝑥 ∈ 𝐿0. 
 

Dem.:  

          Call 𝐿𝑅 and 𝐿𝑂𝑅 the real vector spaces underlying, respectively the spaces L 

and 𝐿0. Evidently, p is a homogeneous convex functional in 𝐿𝑅 and  𝑓𝑂𝑅(𝑥) = 𝑅𝑒[𝑓0(𝑥)] a real 

linear functional in  𝐿𝑂𝑅, satisfying the condition  |𝑓𝑂𝑅(𝑥)| ≤ 𝑝(𝑥) and so 

 

                                                             |𝑓𝑂𝑅(𝑥)| ≤ 𝑝(𝑥). 
 

So, from Theorem 2.1, there is a real linear functional 𝑓𝑅 , defined in the whole space 𝐿𝑅  ,that 

satisfies the conditions  

 

𝑓𝑅(𝑥) ≤ 𝑝(𝑥), 𝑥 ∈ 𝐿𝑅 ; 𝑓𝑅(𝑥) = 𝑓𝑂𝑅(𝑥), 𝑥 ∈ 𝐿𝑂𝑅 . 

 

But −𝑓𝑅(𝑥) = 𝑓𝑅(−𝑥) ≤  𝑝(−𝑥) = 𝑝(𝑥) and so 

 

                                  |𝑓𝑅(𝑥)| ≤ 𝑝(𝑥), 𝑥 ∈ 𝐿𝑅                         (2.5). 
 

Define in L the functional f setting  

 

                                  𝑓(𝑥) = 𝑓𝑅(𝑥) − 𝑖𝑓𝑅(𝑖𝑥). 
 

Obviously, f  is a complex  linear functional in L such that 

 

                            𝑓(𝑥) = 𝑓0(𝑥), 𝑥 ∈ 𝐿0 ;  𝑅𝑒[𝑓(𝑥)] = 𝑓𝑅(𝑥), 𝑥 ∈ 𝐿.  
 

Finally, it must be shown that |𝑓(𝑥)| ≤ 𝑝(𝑥), 𝑥 ∈ 𝐿. 
Proceed by absurd. Suppose that there is 𝑥0 ∈ 𝐿 such that |𝑓(𝑥0)| > 𝑝(𝑥0).So, 

𝑓(𝑥0)=𝜌𝑒−𝑖𝜔, 𝜌 > 0  and making 𝑦0 = 𝜌𝑒−𝑖𝜔𝑥0, it would happen that 𝑓𝑅(𝑦0) = 𝑅𝑒[𝑓(𝑦0)] =

𝑅𝑒[𝑒−𝑖𝜔𝑓(𝑥0)] = 𝜌 > 𝑝(𝑥0) = 𝑝(𝑦0) that is contrary of (2.5). □ 

 

3. SEPARATION OF VECTOR SPACE CONVEX PARTS 

 

The theorem main objective of this work is 

 
Theorem 3.1 

Be M and N two convex subsets of a vector subspace L such that the kernel
2
 of, at least, 

one of them, for instance the one of M, is non-empty and do not intersect the other set; So, there 

is a non-null linear functional on L that separates M and N. 

 

 
2 The kernel of a set 𝐸 ⊂ 𝐿, designated J(E) , is the set of points 𝑥 ∈ 𝐸 such that, given any 𝑦 ∈ 𝐿, it is 

determined 𝜀 = 𝜖(𝑦) > 0 such that 𝑥 + 𝑡𝑦 ∈ 𝐸 𝑠𝑖𝑛𝑐𝑒 |𝑡| < 𝜀. 
A convex set with non-empty kernel is a convex body. 



Dem.: 
Less than one translation it is possible to suppose that the point 0 belongs 

to kernel of M, which will be designated�̌�. So,  given 𝑦0  natural,  −𝑦0 belongs to 

the kernel of M-N and to the kernel of M-N+𝑦0. As �̌� ∩ 𝑁 = ∅  (by hypothesis), 0 

does not belong to the kernel of M-N and  𝑦0 does not belong to the one of    M-

N+𝑦0 .  

Put K=M-N+𝑦0 and be p the Minkowsky functional
3
 of �̌�. So 𝑝(𝑦0) ≥ 1 

since 𝑦0 does not belong to �̌�. Define, now, the linear functional  

 

𝑓0(𝛼𝑦0) = 𝛼𝑝(𝑦0). 
 

Note that  𝑓0  is defined in a space with dimension 1 , constituted by 

elements   𝛼𝑦0, and is such that   𝑓0(𝛼𝑦0) ≤ 𝑝(𝛼𝑦0). In fact, 𝑝(𝛼𝑦0)=  𝛼𝑝(𝑦0), when  

𝛼 < 0    and     𝑓0(𝛼𝑦0) = 𝛼𝑓0(𝑦0) < 0 <  𝑝(𝛼𝑦0), when 𝛼 < 0. 
With these conditions, by the Hahn-Banach Theorem, it is possible to state 

the existence of a linear functional f , defined in L, that extends 𝑓0, fulfilling 

𝑓(𝑦) ≤ 𝑝(𝑦),
∀

𝑦 ∈ 𝐿
. 

                     Then 𝑓(𝑦) ≤ 1,
∀

𝑦 ∈ 𝐾
  and 𝑓(𝑦0) ≥ 1.  So, 

                   -f separates the sets K and {𝑦0}, that is 

                   -f separates the sets M-N and {0},that is 

                   -f separates the sets M and N.□ 

 

 

4. CONCLUSIONS 

After a detailed study of the Hahn-Banach Theorem, in both its forms: real and 

complex, an important result, a separation theorem, consequence of it is presented. 

In fact, it is determinant for important results in Optimization and Convex 

Programming, see for instance (4,5), that are among the most important mathematical tools used 

in Management and Economics, see (1) and (5-10). 
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