
EasyChair Preprint
№ 5491

Guidelines for Software Testing Education
Objectives from Industry Practices with a
Constructive Alignment Approach

Timo Hynninen, Jussi Kasurinen, Antti Knutas and Ossi Taipale

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 10, 2021

Guidelines for Software Testing Education Objectives from
Industry Practices with a Constructive Alignment Approach

Timo Hynninen
Lappeenranta University of

Technology
P.O. Box 20

FI-53851 Finland
timo.hynninen@lut.fi

Jussi Kasurinen
South-Eastern Finland University of

Applied Sciences (XAMK)
Finland

jussi.kasurinen@xamk.fi

Antti Knutas
Lero – The Irish Software Research

Centre
Ireland

antti.knutas@lero.ie

Ossi Taipale
Lappeenranta University of

Technology
P.O. Box 20

FI-53851 Finland
ossi.taipale@lut.fi

ABSTRACT
Testing and quality assurance are characterized as the most
expensive tasks in the software life cycle. However, several
studies also indicate that the industry could enhance product
quality and reduce costs by investing in developing testing
practices. Software engineering educators can bridge the gap
between formal education and industry practices to produce
more industry-ready graduates, by observing the industry in
action. To find out the current state of industry, we conducted a
study in software organizations to assess how they test their
products and which process models they follow. According to
the survey results, the organizations rely heavily on test
automation and use sophisticated testing infrastructures, apply
agile practices even when working with mission-critical
software, and have reduced the use of formal process reference
and assessment models. Based on the results, this paper identifies
a number of key learning objectives in quality assurance and
software testing disciplines that the industry expects from
university graduates. The principles of constructive alignment
are used to present learning goals, teaching methods, and
assessment methods that align with the industry requirements. 1

CCS CONCEPTS
• Social and professional topics → Software engineering
education; • Software and its engineering → Software
verification and validation

 KEYWORDS
Curriculum, software testing, constructive alignment

ACM Reference format:

Timo Hynninen, Jussi Kasurinen, Antti Knutas and Ossi Taipale. 2018.
Guidelines for Software Testing Education Objectives from Industry
Practices with a Constructive Alignment Approach. In Proceedings of
23rd Annual ACM Conference on Innovation and Technology in
Computer Science Education (ITiCSE’18). ACM, New York, NY, USA, 6
pages. https://doi.org/10.1145/3197091.3197108

1 INTRODUCTION
Testing is an important part of software life cycle, as

inadequate testing and quality assurance practices in can cause
substantial immediate costs as well as poor quality and high
maintenance products. Proper testing education can improve
software quality, for example students more experienced in
testing produce more reliable code [1], [2].

Constructive alignment is an outcomes-based approach to
teaching in which the learning outcomes that students are
intended to achieve are defined before teaching takes place [3].
Teaching and assessment methods are then designed to best
achieve those outcomes and to assess the standard at which they
have been achieved. The teaching environment, practices and
evaluation should support learning goals and the student’s
future environment [4].

Cite as:
Hynninen, T., Kasurinen, J., Knutas, A., & Taipale, O. (2018, July). Guidelines for software testing education objectives from industry
practices with a constructive alignment approach. In Proceedings of the 23rd Annual ACM Conference on Innovation and Technology in
Computer Science Education (pp. 278-283). ACM.

This is a pre-print version of the published article. Please cite the published version at: https://dl.acm.org/citation.cfm?id=3197108

https://doi.org/10.1145/3197091.3197108
https://doi.org/10.1145/3197091.3197108
https://dl.acm.org/citation.cfm?id=3197108

ITiCSE '18, July 2–4, 2018, Larnaca, Cyprus Timo Hynninen, Jussi Kasurinen, Antti Knutas, Ossi Taipale

In order to align the testing education content with industry
practices, the following research questions were formulated: 1)
Which testing tools and technologies are most used in the
industry? 2) What are the current issues related to testing in the
industry? 3) How should the learning goals, teaching methods
and evaluation methods in a software testing course
constructively aligned with current industry practices?

Rest of the paper is structured as follows: Section 2
introduces related work in testing education and testing surveys.
Section 3 describes the research process. The survey and its
results are presented in Section 4. The constructive alignment
model and guidelines are given in Section 5. Finally, we conclude
in Section 6.

2 RELATED RESEARCH
There are several studies that implicitly investigate software

testing education from a constructive or a requirements
alignment perspective without explicitly citing the theory. For
example, a study by Krutz et al. [5] investigates motivational
issues and placing students into a more real-life like
environment that supports learning. The studied issue was that
students tend to think testing and quality assurance work as
boring and unnecessary extra work. In the Krutz et al. study, the
motivational problems were addressed by applying real open-
source software projects as the course assignments to give the
tasks more realistic scope and scale. Based on their results, 85
percent of their students considered this approach to be positive,
with student feedback also indicating improved motivation and
learning results. Similar observations were also reported in a
study by Garousi and Mathur [6], which also observed that it is
not uncommon for a computer science degree program to omit
the concept of quality assurance and software testing from their
course curricula. In another similar study Broman et al. [7]
discuss aligning software testing course with real world
practices, and explicitly use the theory of constructive
alignment.

Another set of studies create requirements for software
testing courses and present ways to align courses with these
interventions. A study by Smith et al. [8] discusses the general
requirements for developing a testing course: the university
course has to be fun and competitive, allow students to learn
from each other, the assignments have to demonstrate the
importance of doing testing work, and provide an example of the
scale and difficulty of the real-world quality assurance issues.
They also present an example intervention where a course is
changed to align with. These are important considerations,
because for example in study aligning course curricula with the
games industry [9], it was established that the academia and the
industry do not share a common view on what are the necessary
and important skills for the students to possess, especially when
considering more theoretical topics beyond the set of taught
programming languages. In this sense, it would be important to
collect information on the tools and strategies applied by the
industry, in the development of a course with industry-
applicable experience, especially since the more refined testing

tools applied by the industry require domain-related expertise
[6] and which may actually be difficult or expensive to acquire
without support from the degree program [10].

3 RESEARCH PROCESS
The objective of this study was to align testing education

with industry practices and needs. We used surveys as the
primary research method to study the industry, as surveys are
used to collect information from people about their feelings and
beliefs [11]. We consider the constructive alignment approach as
an exploratory study for which the survey method is appropriate
[12].

We used the questionnaire form introduced in Kasurinen et
al. [13] and originally designed in 2005 [14] to get information
about the respondents’ organization profile, testing practices,
test process maturity, applied process models and the tasks
related to software development. The questionnaire comprised of
eleven chapters containing multi-item, multi-choice questions
and open-ended questions. The multi-item questions used a five-
point Likert scale (1 fully disagree - 3 neutral - 5 fully agree).
The reliability of the multi-item questions in the chapters were
originally estimated by using the Cronbach alpha coefficient. In
addition to the original 2009 questions, we added new questions
about the costs of maintenance and product support.

The sampling method was convenience sampling, with as
wide reach as possible within the industry. We advertised the
survey in social media platforms such as LinkedIn, Facebook,
Twitter and Researchgate and by direct contacts to our industrial
partners and open calls for participation in several public online
discussion channels. We used advertisement channels to get
responses especially from our alumni, and asked them to also
share the survey on social media. In order to avoid an extremely
biased and small sample anyone working in the software
industry was welcome to take part.

The questionnaire collected 33 responses from individuals in
working in different organizations. The survey form was opened
930 times (by unique clients or IP-addresses) resulting in a
response rate of 3.5 percent which is fairly normal for Internet
surveys [11]. To estimate the sample size, we used publicly
available statistics provided by the Ministry of Economic Affairs
and Employment of Finland [15]. According to the latest
estimate, there were 3360 companies in the software business
sector, making the sample size approximately 1 percent of the
Finnish software industry.

Finally, we used the recommendations for constructive
aligned teaching [3], [4] to derive learning goals for industry
practices that were collected in the survey. From there a set of
teaching methods and the performances of understanding
required for evaluation were designed, informed by the same
recommendations. They are summarized follows:
 Learning goals should be clear, serve a purpose, and set in

advance.
 Students need to be placed in situations and environments

that elicit the required learnings, with declarative teaching
minimized.

Guidelines for Software Testing Education Objectives … ITiCSE '18, July 2–4, 2018, Larnaca, Cyprus

 Students are then required to provide evidence, either by
self-set or teacher-set tasks, as appropriate, that their
learning can match the stated objectives.

4 SURVEY RESULTS
Questions in the survey addressed the testing and quality

assurance practices, the tools used to support these activities as
well as development practices and problems.

In terms of organizational profile, very small, small and
medium-sized organizations represented each about 21 % of the
participants, while 36.4 % were large or very large (more than
250 employee) organizations. Approximately eighty percent of
the organizations were private companies, the rest being
government or nonprofit organizations. Respondents from
organizations focusing primarily on national operations formed
21.2 % of the total while 39.3 % focused mostly on international
business. Respondents in 51.5 % of the organizations reported
that product fault could cause remarkable economic losses, and
18.2 % considered themselves primarily as open source
developers. The majority of the respondents (66.7 %) were
primarily software developers, 12.1% were managers and 15.2%
worked in quality assurance.

The first chapter of the questionnaire was about the
application level of different software testing tools. A tool was
defined as “any application, framework, web service, extra
library, feature of your development environment etc. whichever
supports the activity in question.” The four most popular tool
categories include defect reporting, test automation, unit testing
and defect/code tracing tools, which are used by over half of all
surveyed organizations. Table 1 presents the number of used
testing tools.

The second chapter of the questionnaire consisted of multi-
choice questions about the severity of test and quality assurance
problems. The questions covered topics such as which issues
slow down the development, which issues currently restrict
testing, and how well current testing tools support development
needs. The issues in the questions were originally identified in
2009 [13]. The results indicate that the configurability of the
testing tools is a common issue. In addition, feature development
in the late phases of development can have an effect on testing
schedule, and insufficient communication can slow down defect
fixing. Another problem highlighted from the responses was that
testing personnel do not have enough expertise in certain testing
applications.

The third and fourth chapter of the survey addressed
software processes and the amount of agile practices in the
organizations. In general, the results indicate that the industry is
quite confident in the use of agile practices. The industry drive
towards agile can also be observed from the questions
concerning the use of formal process models such as SPICE
(software process assessment, ISO/IEC 15504, currently part of
the ISO/IEC 33000 series) [16] or software testing standard
(ISO/IEC 29119) [17]. The questions covered also the utilization
of capability and maturity models, such as TMMi - test maturity
model integrated [18] or CMMi – capability maturity model

integrated [19]. Some form of process model (formal or self-
defined) was applied by only 21.2 percent of organizations, while

according to the respondents none of the organizations applied
capability or maturity certificates. V-model, acceptance criteria
for tickets and “generic agile” were mentioned by name, all
based on best practices collected from various sources and “self-
defined”. No standard, model or certificate program was directly
named. Also, in some organizations individual employees are
unsure about the application of process models or capability
certificates.

The final chapter in our survey included several questions
concerning the software testing and quality assurance practices.
Respondents were asked to evaluate how well different
statements about development practices fit their organizational
unit on a scale of 1 (fully disagree) to 5 (fully agree). The
statements and survey responses in are presented in Table 2. We
present mode as the primary indicator for the individual
statements, as the survey used an interval Likert scale. The
organizational units are more confident on their system level
quality assurance (system, acceptance) testing than on the unit
or integration level testing. Organizational units are also
confident that they are building the product right, and at the
same time, building the right product. Testing schedules may not
be kept (mode 2, partially disagree) and time is not necessarily
allocated enough for testing (mode 2, partially disagree). Code
review practices are varying between different organizations
(mode 1, fully disagree).

In addition to multi-choice questions the survey contained
open-ended questions, where respondents were asked to explain
how their organization manages testing and maintenance related
effort. The following themes in managing testing-related work
were highlighted from the open responses:

Table 1: The percentage of applied testing tools in the
industry.

Tool Percentage of
respondents

Bug/Defect reporting 72.7 %

Test automation 66.7 %
Unit testing 57.6 %

Bug/Code tracing 57.6 %

Performance testing 48.5 %

Test case management 45.5 %
Integration testing 45.5 %

Virtual test environment 42.4 %

Quality control 36.4 %

Automated metrics collector 36.4 %
System testing 27.3 %

Security testing 24.2 %
Test completeness 24.2 %
Test design 15.2 %
Protocol/Interface conformance tool 9.1 %

ITiCSE '18, July 2–4, 2018, Larnaca, Cyprus Timo Hynninen, Jussi Kasurinen, Antti Knutas, Ossi Taipale

 Moving from proprietary software to open source
 Increasing the coverage of automated tests
 Focusing on service scalability in design
 Re-implementing legacy applications
 Setting up dedicated testing and development

environments
 Offshoring testing work
 Establishing pre-planned maintenance time for

projects, during which last defects are fixed
 Forming dedicated maintenance teams
 Emphasizing the responsibility of current developers
 Employing a risk-based testing approach to cover the

most critical components rather than trying to get
perfect coverage.

5 DISCUSSION AND IMPLICATIONS
To answer the first research question, which testing tools and

technologies are most used in the industry, the most common tools
in 2017 were defect-reporting, unit testing and test automation
tools. Test case management and test design tools were the
categories with decreasing usage. Test automation tools are
popular on every level of automation (data collection,
performance, general automation and tracing). Automated
testing is considered cheap. However, the quality and coverage
of testing is a concern to some developers.

In terms of the second research question, issues related to
testing in the industry, the configurability of testing tools and
personnel not being familiar with certain testing tools were
common issues according to the survey. Although it is unclear if
the respondents meant personnel not being familiar with a
particular application their company uses or with tools of a
particular type, this result highlights the importance of having
students use a variety of tools already during their studies. The
test process follows a certain path, executing the test phases
regardless of the project limitations. Emphasis is put on the late
phases, such as acceptance testing phase. Some form of a
systematic process or method in testing is followed by 21.2% of
the software companies even though over half of the companies
use the most common testing tools.

Interestingly, the static testing practices are very varying
between our respondents. While some organizations keep code
reviews and go through checklists, about half of the responses
say the opposite. One possible explanation for this result may be
the fact that there were many respondents from small companies
who employ extreme agile development processes and have not
yet established formal processes for code reviews, walkthroughs
or checklists.

The third research question, constructively aligning a software
testing education, is addressed next. In Table 3 we present an
initial design for a software testing course whose learning goals,
teaching methods, and evaluation methods have been
constructively aligned based on the industry survey results. In
this design we aim to minimize declarative teaching, place
students in environments that elicit required learnings on

software testing and evaluate with “performances of
understanding,” as recommended in the guidelines by Biggs [3],
[4]. It should be noted that the model presented is not exclusive.
In other words, we recommend including listed topics in
software testing education, but do not recommend excluding any
topics that we do not list.

Additionally, we suggest the following guidelines for

constructive alignment of testing curriculum:
 Incorporate the use of the most common testing

tools, defect reporting, unit testing and test
automation, into the curriculum. The students will
most likely require the skill to use these tools in
their future workplace.

Table 2: The self-assessment of the testing and quality
assurance practices (1 fully disagree – 3 neutral – 5

fully agree).
Question Average Mode

Our software correctly
implements a specific function.
We are building the product
right.

4.1 4

Our software is built traceable
to customer requirements. We
are building the right product.

3.8 5

Our formal inspections are OK. 3.4 4

We go through checklists. 3.0 2

We keep code reviews. 3.2 1

Our unit testing (modules or
procedures) is excellent.

2.9 4

Our integration testing
(multiple components together)
is excellent.

3.0 3

Our usability testing (adapt
software to users' work styles)
is excellent.

3.0 3

Our function testing (detect
discrepancies between a
program's functional
specification and its actual
behavior) is excellent.

2.9 3

Our system testing (system
does not meet requirements
specification) is excellent.

3.4 3

Our acceptance testing (users
run the system in production) is
excellent.

3.6 4

We keep our testing schedules. 3.2 2

Last testing phases are kept
regardless of the project
deadline.

3.0 4

We allocate enough testing
time.

2.6 2

Guidelines for Software Testing Education Objectives … ITiCSE '18, July 2–4, 2018, Larnaca, Cyprus

 Use popular, widely used testing tools rather than
tools designed for education, in order to teach
students the correct use and configuration of real
environments.

 Emphasize the importance of static testing methods
as the way to improve code quality.

 Produce documentation early on to encourage a
mindset for documenting the progress of the
project.

 Use a variety of tools for the same purpose to give
students experience of the different tools available.

 Enforce documentation practices to enhance the
communication skills, for example producing and
handling defect reports.

The ACM computer science curricula places testing skills in
the knowledge area of software development fundamentals.
Verifying program correctness is an extensive topic in the core
contents of the recommendation. Testing activities in the ACM
software engineering curricula are mainly under the Software
Verification and Validation knowledge area, although testing
themes span across multiple areas of knowledge such as
Software process or Software quality. Although the ACM
curricula recommendations cover testing well, they have been
criticized for not providing students a rigorous enough testing
mindset [20].

6 CONCLUSIONS
In this paper, we presented the alignment of software testing

education goals to industry practices. We observed the industry
by conducting a survey on testing tools and quality assurance
practices. The survey results indicated a strong preference

towards agile development practices and high use of automation.
Moreover, the use of formal process reference and assessment
models was in the minority. In addition, the survey results
ranked the popularity of different testing tools, which directly
benefits the software engineering educators.

The survey results were used to constructively align software
testing education with industry practices and expectations,
producing a course model that responds to industry needs. The
presented model can be used as a frame of reference for the
learning objectives related to testing work in computer science
education. Additionally, a number of guidelines for actual course
content were presented.

The study addressed a similar issue as in Krutz et al. [5] and
Broman et al. [7], though from a different perspective. We took a
step back and gather requirements and learning objectives for a
course on software testing, rather than investigate how the
requirements can be used to constructively align a course. This
approach is similar to the work of Garousi and Mathur [6] who
performed a review as well, though they surveyed existing
degree programs instead of the industry.

The limitations of the study warrant some discussion. The
sampling of our survey was limited to a one country, and for this
reason the results are not strong and confirmatory. However, we
consider the survey results as exploratory from which estimates
can be drawn.

In future work the actual learning activities and course
organization should be addressed. One topic of interest could be
the alignment of actual software testing activities with the
different phases of software life cycle.

ACKNOWLEDGMENTS
This work was partially funded by the Technology Development
center of Finland (TEKES), as part of the .Maintain project

Table 3: The constructive alignment of software testing course goals and methods to industry practices.
Learning goals Teaching methods Assessment methods

("performances of understanding")
Learn the practice of defect reporting
and the use of bug tracking tools

Individual exercises: Find and report
bugs.

Demonstrate understanding through the
individual projects

Implementing unit tests and evaluating
test coverage

Individual exercises: Create a program
and set up unit tests

Independent implementation of test
automation

Individual exercises: Set up full testing
automation for a program

Understand and apply test process
design in future projects

Teamwork: Project management
exercise and testing process simulation

Demonstrate understanding through
equal contribution to the teamwork
project (individual and group
evaluation)

Integrating testing phases to software
engineering practices

Teamwork: Project management
exercise; acceptance testing between
two teams

Evaluating and managing technical
debt; making rational compromises

Teacher-led exercise: A review of the
shortcuts taken during the course, and
discussion & evaluation of the long-
term drawbacks of the shortcuts

Demonstrate understanding by a
written assignment that reviews and
evaluates technical issues

Implementing static testing: Creating
checklists and performing code reviews

Teamwork: Going through checklists
and reviewing each other's code. TA
acts as QA manager in final projects

Demonstrate understanding by working
in a simulated verification and
validation review

ITiCSE '18, July 2–4, 2018, Larnaca, Cyprus Timo Hynninen, Jussi Kasurinen, Antti Knutas, Ossi Taipale

(project number 1204/31/2016). The work of the third author was
supported by the Ulla Tuominen foundation.

REFERENCES
[1] O. A. L. Lazzarini Lemos, C. Cutigi Ferrari, F. Fagundes Silveira, and A.

Garcia, “Experience report: Can software testing education lead to more
reliable code?,” in 2015 IEEE 26th International Symposium on Software
Reliability Engineering (ISSRE), 2015, pp. 359–369.

[2] O. A. Lazzarini Lemos, F. Fagundes Silveira, F. Cutigi Ferrari, and A. Garcia,
“The impact of Software Testing education on code reliability: An empirical
assessment,” Journal of Systems and Software, Mar. 2017.

[3] J. Biggs, “Constructive alignment in university teaching,” HERDSA Review of
Higher Education, vol. 1, no. 5, pp. 5–22, 2014.

[4] J. Biggs, “Enhancing teaching through constructive alignment,” Higher
education, vol. 32, no. 3, pp. 347–364, 1996.

[5] D. E. Krutz, S. A. Malachowsky, and T. Reichlmayr, “Using a Real World
Project in a Software Testing Course,” in Proceedings of the 45th ACM
Technical Symposium on Computer Science Education, New York, NY, USA,
2014, pp. 49–54.

[6] V. Garousi and A. Mathur, “Current State of the Software Testing Education
in North American Academia and Some Recommendations for the New
Educators,” in 2010 23rd IEEE Conference on Software Engineering Education
and Training, 2010, pp. 89–96.

[7] D. Broman, K. Sandahl, and M. A. Baker, “The company approach to
software engineering project courses,” IEEE Transactions on Education, vol.
55, no. 4, pp. 445–452, 2012.

[8] J. Smith, J. Tessler, E. Kramer, and C. Lin, “Using Peer Review to Teach
Software Testing,” in Proceedings of the Ninth Annual International
Conference on International Computing Education Research, New York, NY,
USA, 2012, pp. 93–98.

[9] M. M. McGill, “Defining the Expectation Gap: A Comparison of Industry
Needs and Existing Game Development Curriculum,” in Proceedings of the
4th International Conference on Foundations of Digital Games, New York, NY,
USA, 2009, pp. 129–136.

[10] F. Kazemian and T. Howles, “A Software Testing Course for Computer
Science Majors,” SIGCSE Bull., vol. 37, no. 4, pp. 50–53, Dec. 2005.

[11] A. Fink, How to Conduct Surveys: A Step-by-Step Guide. Sage Publications,
2012.

[12] B. A. Kitchenham et al., “Preliminary guidelines for empirical research in
software engineering,” IEEE Transactions on software engineering, vol. 28, no.
8, pp. 721–734, 2002.

[13] J. Kasurinen, O. Taipale, and K. Smolander, “Software test automation in
practice: empirical observations,” Advances in Software Engineering, vol.
2010, 2010.

[14] O. Taipale, K. Smolander, and H. Kälviäinen, “Finding and Ranking Research
Directions for Software Testing,” in Software Process Improvement: 12th
European Conference, EuroSPI 2005, Budapest, Hungary, November 9-11, 2005.
Proceedings, I. Richardson, P. Abrahamsson, and R. Messnarz, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 39–48.

[15] T. Metsä-Tokila, “Kasvun mahdollistajat - toimialaraportti ohjelmistoalasta
ja teknisestä konsultoinnista” [Enablers of growth – sector report on the
software industry and technical consulting], Työ- ja elinkeinoministeriö
[Ministry of Economic Affairs and Employment], 2014. [Online]. Available:
http://urn.fi/URN:NBN:fi-fe2017102550274. [Accessed: 4-Apr-2018].

[16] “ISO/IEC 15504-1: Information technology — Process assessment — Part 1:
Concepts and vocabulary.” International Organization for Standardization,
2004.

[17] ISO/IEC, “ISO/IEC 29119-1 Software and systems engineering - Software
testing - Part 1: Concepts and definitions.” 2013.

[18] E. van Veenendaal and B. Wells, Test Maturity Model Integration TMMi. The
Netherlands: Uitgeverij Tutein Nolthenius, 2012.

[19] R. Kneuper, CMMI: Improving Software and Systems Development Processes
Using Capability Maturity Model Integration. Rocky Nook, 2008.

[20] P. H. D. Valle, E. F. Barbosa, and J. C. Maldonado, “CS curricula of the most
relevant universities in Brazil and abroad: Perspective of software testing
education,” in Computers in Education (SIIE), 2015 International Symposium
on, 2015, pp. 62–68.

