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Abstract. Anomalous trajectory detection which plays an important
role in taxi fraud detection and trajectory data preprocessing is a cru-
cial task in trajectory mining fields. Traditional anomalous trajectory
detection methods which utilize density and isolation approaches mainly
focus on the differences of a new trajectory and the historical trajectory
dataset. Although these methods can capture the particular character-
istics of trajectories, they still suffer from the following two disadvan-
tages. (1) These methods cannot capture the sequential information of
the trajectory well. (2) These methods only concentrate on the given
source and destination which may lead to data sparsity issues. To over-
come above shortcomings, we propose a novel method called Anomalous
Trajectory Detection using Recurrent Neural Network (ATD-RNN)
which characterizes the trajectory by learning the trajectory embedding.
The trajectory embedding can capture the sequential information of the
trajectory and depict the internal characteristics between anomalous and
normal trajectory. To address the potential data sparsity problem, we
enlarge the dataset between a source and a destination by taking the rel-
evant trajectories into consideration. Extend experiments on real-world
datasets validate the effectiveness of our method.

Keywords: Anomalous Trajectory Detection · Trajectory Embedding ·
Recurrent Neural Network.

1 Introduction

With the proliferation of global positioning system (GPS) based equipment, mas-
sive spatial trajectory data has been generated. The trajectory data represents
the mobility of a diversity of moving objects and contains valuable information
concerning both Service Providers (SPs) and the customers. A large number of
trajectory data mining tasks [25], including map matching, trajectory compres-
sion, stay point detection, POIs recommendation, trajectory classification and
anomalous trajectory detection, have been widely researched. Anomalous tra-
jectory detection plays an important role in the fields of trajectory data mining.
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For example, anomalous trajectory detection can enhance the quality of taxi
services impressively, since the greedy taxi drivers who overcharge passengers
by deliberately taking unnecessary detours could be detected with anomalous
trajectory detection technique. Therefore, it allows the taxi companies to mon-
itor the movements of all the taxis and to identify the dishonest drivers who
tend to take routes longer than usual. A toy example of anomalous and normal
trajectory between a source (S) and destination (D) (SD-Pair) can be seen in
Fig. 1(a).

(a) Anomalous and normal trajectory. (b) Trajectory of two neighbor SD-Pairs.

Fig. 1. The historical trajectories between SD-pairs.

In recent years, automatically anomalous trajectory detection has attracted
extensive research attention. Some existing anomalous trajectory detection meth-
ods have been proposed to deal with this problem [13, 2, 8, 23, 4, 26, 20] . [13]
proposes a partition-and-detect framework for anomalous trajectory detection,
which partitions a trajectory into a set of line segments and detects outlying line
segments for trajectory outliers based on distance and density. IBAT [23] and
the augmented version IBOAT [4] present the isolation-based anomalous trajec-
tory detection methods which detect anomalous by comparing a new trajectory
against a large collection of historical trajectories. [26] determines whether an
input trajectory is an anomalous by taking spatial and temporal abnormalities
into consideration simultaneously. However, most existing methods addressing
the anomalous detection problem are only based on density or isolation methods.
So although these methods achieve impressive performances, there still remain
some limitations to these methods.

1. Sequential Information. These methods based on density or isolation
cannot characterize the sequential information of a trajectory well. Those
methods mainly focus on sub-trajectories or trajectory points and neglect
the influence of sequential information of the whole trajectory.
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2. Data Sparsity. These methods based on density or isolation also suffer
from data sparsity problem. If there are N intersections in a city, then the
number of SD-pairs will be up to N2. Even worse, it is only few trajectories
in historical dataset for some special intersection. As a result, it is difficult
to model these SD-pairs.

3. Computational Complexity and Space Complexity. Traditional anoma-
lous trajectory detection methods is time-consuming since these methods
need to compute the similarity of every two trajectories in historical datasets.
Moreover, for every SD-pair, a corresponding model is required.

Inspired by that word embedding [12, 17] models the co-occurrence of words
by mapping the words to the low-dimensional vectors, we propose a novel method
called Anomalous Trajectory Detection using Recurrent Neural Network (ATD-
RNN). ATD-RNN represents the trajectory by the low-dimensional vector using
recurrent neural network (RNN) and detects anomalous trajectory in the embed-
ded space. The sequential information is learned through trajectory embedding
because RNN can use its internal memory to process time series data. To ad-
dress the shortcoming of data sparsity, ATD-RNN attempts to train the model
through the extended large amount of historical trajectories. For example, as
illustrated in Fig. 1(b), there may be few historical trajectories from source S1

to destination D. But if take the source S2 into consideration which has suffi-
cient historical trajectories to build a model, the situation for source S1 could
be alleviated. Since different SD-Pairs could be trained together, ATD-RNN
has potential to reduce the frequency of accessing to historical trajectories and
has little demand for extra space. Therefore, ATD-RNN not only solves the
anomalous trajectory detection by capturing the sequential information through
trajectory embedding, but also alleviates the data sparsity problem by taking
different SD-Pairs into consideration. Experiments on several real-world datasets
demonstrate the superior performance of the proposed method. Source code is
available at Github1.

The main contributions of this paper are listed in detail as follows:

– We present a novel anomalous trajectory detection method named ATD-
RNN, which captures the sequential information of the trajectory by learn-
ing the trajectory embedding through a delicately designed recurrent neural
network.

– We take different sources and destinations into consideration to alleviate the
data sparsity problem. This can capture the internal characteristics from
similar trajectories.

– We evaluate ADT-RNN on real-world datasets collected from 442 taxis in
Porto for one year. It achieves remarkable detection results comparing to the
famous anomalous trajectory detection baselines.

The rest of this paper is organized as follows. Section 2 reviews the related
works. A formal definition of our problem is given in section 3. The details of

1 https://github.com/LeeSongt/ATD-RNN
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our proposed method are introduced in section 4. Experimental results of our
method are compared and analyzed in section 5. And section 6 concludes this
paper and outlines the future work.

2 Related Work

In this section, we give a brief review of the relevant academic literature on
anomalous trajectory detection and trajectory embedding.

Anomalous trajectory detection. A considerable amount of researches
have been published on anomalous trajectory detection. In general, these studies
could be divided into three major categories.

The first major category is clustering, which performs automated grouping
based on distance and density. [13] conducts a partition-and-detect framework
for trajectory outliers detection. [11] deals with finding outliers in large, mul-
tidimensional datasets based on distance. [22] characterizes outliers as mov-
ing objects that behaved differently from the majority in trajectory streams by
neighbor-based trajectory outliers definitions. However, these distance-based and
density-based approaches often need to calculate the measure metrics according
to the whole historical database that is time consuming.

The second category is classification, which relies on labeled training data.
In order to detect anomalous efficiently and effectively, [14] constructs a multi-
dimensional feature space oriented on segmented trajectories and then learns a
model to classify trajectories as normal or abnormal. [18] proposes an anomalous
behavior detection framework in a video surveillance scenario. However, these
classification-based approaches require amount of labeled data which spends
huge manpower and material resources.

The third category is based on patterns. [3] proposes an anomalous behavior
detection framework using trajectory analysis, which includes a trajectory pat-
terns learning module and an online abnormal detection module. [23] presents
an Isolation-Based Anomalous Trajectory (iBAT) detection method which ex-
ploits the property that anomalies are susceptible to a mechanism called iso-
lation. IBOAT [4] is an augmented version of iBAT. Specifically, in order to
process trajectories online and find the anomalous at early stag, IBOAT builds
an inverted index for historical trajectory data. [26] proposes a time-dependent
popular routes based algorithm which takes spatial and temporal abnormalities
into consideration simultaneously to improve the accuracy of the detection. [20]
proposes a probabilistic model-based approach via modeling the driving behav-
ior/preferences from the set of historical trajectories. Generally speaking, the
pattern-based approaches investigate the co-occurrence of trajectory points so
that the anomalous trajectory which is rarely appeared can be detected.

Trajectory Embedding. Trajectory Embedding is an extended field of
word embedding [12, 17] which represents a word as a fixed length numerical vec-
tor and the co-occurrence of words can be learned from the embedded vectors.
[24] proposes a time-aware trajectory embedding model in next-location recom-
mendation systems to deal with sequential information and data sparsity prob-
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lem. [19] predicts next location using a spatial-temporal-semantic neural net-
work algorithm. Concretely, the road networks is divided into significant discrete
points in terms of a distance parameter threshold and then a long short-term
memory (LSTM) neural network is used to model these sequences. [7] demon-
strates that trajectory-user linking problem can be solved by trajectory em-
bedding. After the check-ins in trajectories is embedded into a low-dimensional
space, the connection between a particular user and the motion patterns can
be learned with a LSTM. In order to learn sequential information, trajectory
embedding is applied to model the co-occurrence between the trajectory points.

3 Problem Definition

It is necessary here to clarify exactly what is meant by trajectory. After that,
the formal definition of anomalous trajectory detection is introduced.

Definition 1. (Raw Trajectory). A raw trajectory T = {p1→p2→· · ·→pn} is
a sequence of records, and each recored pi is represented by (loni, lati, ti) where
(loni, lati) is a geographic coordinate and ti is the timestamp. p1 and pn are
source and destination of the trajectory, respectively.

Definition 2. (Mapped Trajectory). For a given n and m, a map can be split
into n ∗m equal sized grids. Then, a map function ρ(lon, lat, n,m) = gridi im-
plements a discretization process. A mapped Trajectory corresponding to a raw
trajectory T = {p1→p2→· · ·→pn} is expressed as tr = {grid1→grid2 · · ·→gridn},
where gridi = ρ(loni, lati, n,m).

Definition 3. (Anomalous Trajectory Detection). Given a set of trajectories
D = {tr1, tr2, · · ·, trm}, anomalous trajectory detection is to find those trajectory
R that are significantly different from the majority in historical datasets.

Since anomalous trajectory is rarely occurred, we want to learn the normal
pattern from historical trajectories. Then, an anomalous can be detected by com-
paring a trajectory with these normal patterns. However, it is difficult to learn
the normal patterns for a given source and destination (SD-pair). Traditional
anomalous trajectory detection methods based on density and isolation mainly
focus on sub-trajectory and points in the trajectory and cannot capture the se-
quential information of the trajectory well. In addition, these methods tend to
train one model for one SD-Pair that cannot make use of similar characteris-
tics between different SD-Pairs. Even worse, these methods concentrate on an
SD-Pair may suffer from data sparsity.

In this paper, anomalous trajectory detection is conducted by learning tra-
jectory embedding through recurrent neural network. Trajectory embedding can
capture the internal characteristics between anomalous and normal trajectories.
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4 Methodology

4.1 Overview of ATD-RNN

In this paper, we propose a method to detect anomalous trajectories named
Anomalous Trajectory Detection using Recurrent Neural Network(ATD-RNN).
As illustrated in Fig. 2, the proposed method is mainly consists of three steps,
trajectory data preprocessing, trajectory embedding and anomalous detection.
In trajectory data preprocessing step, we discrete the trajectory points so that
the continuous numerical variables could be fed into the trajectory embedding
step. After that, a delicately designed neural network, stacked RNN, is applied
to learning the trajectory embedding which can capture the sequential infor-
mation and the internal characteristics of the trajectories. Then, the multilayer
perceptron and a softmax layer are used to detect anomaly from the trajectory
embeddings. We will describe these steps in detail in the following chapters.

Fig. 2. The architecture of ATD-RNN.

4.2 Trajectory Data Preprocessing

In general, the raw trajectory data is continuous numerical variables. These tra-
jectory points are enormous so that we cannot learn the trajectory embeddings
for every points. Even worse, it is difficult to generalize to new points. In trajec-
tory data preprocessing, we need a discretization step. In details, the geographic
coordinate space is meshed into equal sized grids according to the hyper param-
eters n and m. In fact, we adjust n and m so that the size of a grid is about
100m. Then we label each grid with a unique index. After that, the raw trajec-
tory points located on the grid will have the same index. Although we obtain
the mapped trajectories, we have to notice that the length of each trajectory
data is not equivalent. Therefore, we utilize some padding operations to align
the trajectories. After that, a trajectory tri is represented as:

tri = {x1, x2, · · ·, xm}, (1)
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another critical problem in anomalous detection is that the anomalies are often
rarely appear in historical datasets. This may be an obstacle in the process of
optimization. To alleviate this problem, we sample some anomalous trajectories
and make disturbances to generate new anomalous data. In practice, we ran-
domly select some trajectory points from an anomalous trajectory and replace
those points with their neighbors.

4.3 Trajectory Embedding

We use recurrent neural network to learn the sequential information of the tra-
jectory. After the whole trajectory feeds into a stacked recurrent neural network,
we can learn the trajectory embedding.

Recurrent Neural Network. Recurrent neural network (RNN) is powerful
to process sequential data in many fields including NLP [15] and speech recog-
nition [9]. In details, RNN can change monotonously along with the position in
a sequence. A rolled RNN structure can be unfolded as Fig. 3 illustrated. The
hidden state ht and output state ot are updated as Eq. 2. In order to capture
the relationship between trajectory points, we utilize a stacked RNN to learn
the trajectory embeddings. And the experiments of visualization of trajectory
embeddings illustrate the effectiveness of embedding.

Fig. 3. Recurrent neural network. Fig. 4. The structure of LSTM.

ht = f(W · ht−1 + U · xt + bh),

ot = f(V · ht + bo),
(2)

where W , U , V are weight matrices, and bh, bo are biases for hidden state and
output state respectively. f is the activation function, and xt is the embedding
for each trajectory points.

Long short-term memory (LSTM) is a special kind of RNN cell, capable of
learning long-term dependencies. The structure of LSTM cell is shown in Fig. 4.
Specifically, the LSTM cell utilizes three gates to control the cell state. The
forget gate ft decides how much information of the last cell state Ct−1 will keep
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to the current state Ct. The input gate it and Ĉt decides how much information
of the input xt will keep to the current state Ct. And the output gate ot decides
how much information of the current state Ct will output to ht. The detail
information can be seen in Eq. 3,

ft = σ(Wf · [ht−1,xt] + bf ),

it = σ(Wi · [ht−1,xt] + bi),

Ĉt = tanh(WC · [ht−1,xt] + bC),

Ct = ft ∗Ct−1 + it ∗ Ĉt,

ot = σ(Wo · [ht−1,xt] + bo),

ht = ot ∗ tanh(Ct),

(3)

where Wf , Wi, WC , Wo are the weight matrices and bf , bi, bC , bo are biases
of each gate, respectively. σ and tanh refer to the logistic sigmoid and hyperbolic
tangent function.

Gated recurrent unit (GRU) is a gating mechanism in recurrent neural net-
work which is similar to LSTM. A GRU has two gate, reset gate and update
gate. Formally, the reset gate and update gate are calculated as Eq. 4,

zt = σ(Wz · [ht−1,xt]),

rt = σ(Wr · [ht−1,xt]),

h̃t = tanh(W · [rt ∗ ht−1,xt]),

ht = (1− zt)ht−1 + zth̃t,

(4)

where Wz, Wr, W are weight matrices and h̃t is the candidate state.

Learn the Trajectory Embedding In our proposed method, we utilize a
delicately designed stacked RNN to learn trajectory embeddings, as shown in
Fig. 2. The mapped trajectories are inputed into the stacked RNN sequentially.
In every step, the RNN cell can learn a hidden state which summarizes the past
sequences by merging the current step input information and the previous hidden
state. The stacked RNN not only learns sequential information through the time
step, but also memorizes significant information through the RNN layers which
use non-linear function to capture trajectory characteristics in high-dimension
space. Moreover, to avoid the over-fitting problem, dropout techniques [6] are
used to constrain the representation ability of this model. In details, when data
information flow pass through different RNN cells, we randomly select some edge
and cut off the connection between the stacked layers. After the last step, we can
get the trajectory embedding by concatenating the output state of the stacked
RNN cells as Eq. 5:

Ei = [h1
t , h

2
t , · · ·, hl

t], (5)

where Ei is the embedding for tri, l is the number of stacked RNN layers, and
hk
t is the last output state at layer k (k = 1..l).
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4.4 Anomalous Detection

In section 4.3, we obtain the embedding Ei for the i-th trajectory. In order
to detect anomalous, we utilize a multilayer perceptron (MLP) to reduce the
dimensions of trajectory embedding.,

Mi = σ(Wi ·Ei + bi) (6)

where Mi is output vector, and Wi and bi are the projection parameters of
the MLP layer. After that, as illustrated in Fig. 2, the results are fed into a
softmax layer to generate the anomalous probability ŷi of a trajectory, then
given a trajectory datasets D = {tr1, tr2, · · ·, trm}, we can train our model by
minimize the cross-entropy as following:

J = −
m∑
i=1

[yi log ŷi + (1− yi) log(1− ŷi)]. (7)

5 Experiments

5.1 Dataset and Metrics

We conduct all experiments on a real-world taxi trajectory dataset which is
collected by 442 taxi in the city of Porto1, in Portugal from Jan. 07, 2013 to
Jun. 30, 2014 and the average sampling rate is 15s/points. We extract 5 SD-pairs
with sufficient historical trajectories. The basic information of those SD-pairs is
shown in Table 1. There are about 5% anomalous trajectories.

Table 1. The information of SD-pairs.

#Trajectories #Anomalousness(%) #avgPointsNum

SD-Pair1 1233 54(4.4%) 32
SD-Pair2 765 28(3.7%) 31
SD-Pair3 617 37(6.0%) 61
SD-Pair4 1379 44(3.2%) 51
SD-Pair5 4973 270(5.4%) 67

Instead of labelling the anomalous manually, we follow the solution in [20]
which adopts a complete-linkage clustering algorithm to hierarchically cluster
the trajectories. Given the prediction and its ground truth, we compute the
measure metrics as Eq. 8,

1 https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i/data
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ACC =
TP + TN

TP + TN + FP + FN
,

P =
TP

TP + FP
,

R =
TP

TP + FN
,

F1 =
2PR

P + R
,

(8)

where TP, TN, FP and FN are true positive, true negative, false positive and
false negative in confusion matrix, respectively.

5.2 Baselines

We compare our method with the baselines based on density and isolation. The
baselines are as following:

1. LCS [21]: The Longest Common Sub-sequence (LCS) method matches
the longest common sub-sequence between two sequences using dynamic pro-
gramming. LCS is also a widely used representative method for measuring the
trajectory similarity. We implement LCS by comparing all trajectories in the
training set for every given testing trajectory.

2. XGBoost [5]: XGBoost is an ensemble model based on the gradient
boosting decision tree (GBDT) and is designed to be highly efficient, flexible,
and portable. Those characteristics we extracted from a trajectory contain the
distance of a trajectory, the angle between trajectory points and so on.

3. TOP-EYE [8]: TOP-EYE uses a decay function to mitigate the influences
of the past trajectories on the evolving outlying score, which is defined based on
the evolving moving direction and density of the historical trajectories. Since the
sampling rate in our dataset is 15s/points, we conduct this method by counting
the density of each grid and compute anomalous score for each test trajectory.

4. IBOAT [4]: Anomalous trajectories will be isolated from the majority
of routes, while normal trajectories will be supported by a large number of
trajectories. IBOAT adopts the inverted index mechanism to fast retrieve the
relevant trajectories.

5.3 Settings

We implement the proposed model ATD-RNN with TensorFlow [1] and run the
code on an Intel Core i7-4790 with 8-GB RAM. As we introduced in section 4,
there are two kinds of RNN cell. In our experiments, ATD-LSTM represents the
model using the LSTM cell and ATD-GRU represents the model using GRU cell.
There are three key parameters in our model, the embedding dimensions, the
number of RNN layers and the dropout probabilities. For generality, we set the
dimensions of each point to 64, the size of hidden state of a RNN cell to 64 and
the layers of stacked RNN to 5. To alleviate the problem of over-fitting inherent
of RNN, we apply dropout technique [6] and the dropout probability is set to
0.5. We utilize Adam [10] to optimize our model.
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5.4 Results and Analysis

Performance Evaluation We evaluate the results on SD-Pair with the above
baselines. The results of anomalous trajectory detection in given SD-pair are
shown in Table. 2. We can observe that in most cases, ATD-LSTM and ATD-
GRU achieve the best results. This indicates that recurrent neural network could
capture the internal characteristics of anomalous trajectories and normal trajec-
tories. The better performance of ATD-RNN shows that the sequential infor-
mation of a trajectory is critical to anomalous trajectory detection. In addition,
the reason of the undesirable results of LCS and XGBoost may be that those
methods only consider the shape of a trajectory and neglect the information
of the historical dataset and the sequential information of the trajectory. On
the contrary, TOP-EYE and iBOAT achieve considerable performance because
those methods utilize the historical trajectories. And the reason of iBOAT out-
performs TOP-EYE in most circumstances. The reason is probably that iBOAT
not only takes the similarity of historical trajectories into consideration, but also
makes use of the local sequential information in the trajectory.

Table 2. Performance evaluation of anomalous trajectory detection on different SD-
Pairs. ATD-LSTM is ATD-RNN based on LSTM cell, and ATD-GRU is ATD-RNN
based on GRU cell.

LCS XGBoost TOP EYE iBOAT ATD-LSTM ATD-GRU

SD-Pair1

Acc 0.8434 0.8795 0.9629 0.9506 0.9518 0.9638
P 0.6765 0.9412 0.9583 0.9565 0.9565 0.9231
R 0.9200 0.6400 0.9200 0.8800 0.8800 0.9600
F1 0.7797 0.7619 0.9230 0.9167 0.9167 0.9412

SD-Pair2

Acc 0.9444 0.8810 0.9444 0.9583 0.9583 0.9583
P 0.9000 1.0000 0.7500 0.9091 0.9091 0.8462
R 0.7500 0.2857 1.0000 0.8333 0.8333 0.9167
F1 0.8182 0.4444 0.8571 0.8696 0.8696 0.8800

SD-Pair3

Acc 0.9625 0.8375 0.9625 0.9625 0.9875 0.9750
P 0.9333 0.7143 0.9333 0.8824 0.9412 0.8889
R 0.8750 0.3125 0.8750 0.9375 1.0000 1.0000
F1 0.9032 0.4348 0.9032 0.8276 0.9697 0.9412

SD-Pair4

Acc 0.9242 0.9470 0.9470 0.9394 0.9848 0.9924
P 1.0000 0.9412 0.8261 1.0000 0.9545 1.0000
R 0.5455 0.7273 0.8636 0.6364 0.9545 0.9545
F1 0.7059 0.8205 0.8444 0.7778 0.9545 0.9767

SD-Pair5

Acc 0.7819 0.7574 0.8431 0.8750 0.9020 0.9167
P 0.9623 0.9756 0.6832 0.8000 0.9537 0.9063
R 0.3696 0.2898 1.0000 0.8406 0.7463 0.8406
F1 0.5340 0.4469 0.8118 0.8198 0.8374 0.8722

Study on Influences with Multi-SD-Pairs. To explore the influence of
anomalous trajectory detection on different SD-Pairs instead of a given SD-pair,
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(a) Location of SD-Pairs. (b) SD-Pair1 performance. (c) SD-Pair2 performance.

Fig. 5. Anomalous trajectory detection with Multi-SD-pairs. ”1” means the model on
SD-Pair1, and ”+1” means the model of some SD-Pair and SD-Pair1.

we conduct experiments on the union set of two SD-Pairs selected from SD-
pair1 to SD-pair5. In details, for SD-Pair1 and SD-Pair2, we add the remaining
SD-Pairs into the train process, and then test the performance on SD-Pair1
and SD-Pair2 respectively. For example, we train a model with SD-Pair1 and
SD-Pair3, and then test the performance on SD-Pair1. The relative location of
these SD-Pairs is shown in Fig. 5(a). We can see that the source and destination
of SD-Pair1 are close to SD-Pair2, while SD-Pair3, SD-Pair4 and SD-Pair5 are
close to each other. The results are shown in Fig. 5. At the first sight, we can see
that if we train a model with different SD-Pairs trajectories dataset, the results
are better than a single SD-Pair. This demonstrates that the extra trajectory
information is useful in anomalous trajectory detection. Concretely, the merged
set of SD-Pair1 and SD-Pair2 gets a significant performance which indicates that
the close SD-Pairs could enhance the results of anomalous trajectory detection.
The probable reason is that different SD-Pairs which are close to each other can
offer valuable information in detection process and trajectory from different SD-
Pairs can deliver information through the model. As mentioned in Fig. 1(b), the
trajectories from S2 to D can provide information to the detection process from
S1 to D. In addition, the results indicate that the proposed model ATD-RNN
has potential to alleviate data sparsity.

Parameter Experiments. In this section, we explore the influence of dif-
ferent parameters. The key parameters include the dimensions of embedding,
the dropout probability and the number of stacked RNN layers. All parameter
experiments are conducted on SD-Pair4 with LSTM cell. The results are shown
in Fig 6. As shown in Fig 6(a), we can observe that the accuracy and F1 get
the best score when embedding dimensions is 64. As one can see from Fig 6(b),
when dropout keep prob is 0.5, the model gets the best performance. It is inter-
esting that the change of dropout keep prob has slightly influence on accuracy,
but the influence on F1 is serious. The reason of this phenomenon may cause by
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(a) Embedding dimension. (b) Dropout probabilistic. (c) The number of layers.

Fig. 6. Performance of different parameters.

the unbalance of anomalous and normal trajectory proportion. As illustrated in
Fig 6(c), when num layers is 5, we can get a significant performance.

(a) SD-Pair1 (b) SD-Pair2 (c) SD-Pair3

Fig. 7. Visualization of trajectory embeddings.

Visualization. To analyze the trajectory embedding, we visualize the vectors
of trajectory embedding by t-SNE [16]. The results are shown in Fig. 7. We
can observe that the trajectories embeddings can separate the anomalous tra-
jectories from normal historical trajectories dataset. The results indicate that
the trajectory embedding learned by recurrent neural network can capture the
internal characteristics of the trajectories.

6 Conclusions and Future Work

In this paper, we propose Anomalous Trajectory Detection using Recurrent
Neural Network (ATD-RNN). ATD-RNN learns the trajectory embeddings
through a delicately designed recurrent neural network. Comparing to traditional
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methods, ATD-RNN can capture the sequential information of the historical
trajectories and the internal characteristics between the anomalous and normal
trajectories. Moreover, ATD-RNN is not constrained by the given SD-Pair, but
takes different SD-Pairs into consideration. This means that ATD-RNN has po-
tential to alleviate data sparsity. Extensive experiments on real-world datasets
demonstrate the effectiveness of ATD-RNN.

In the future, we will extend our model to learn the trajectory embedding
with the up-to-date techniques, e.g., attention mechanism and memory augmen-
tation. In addition, we will attempt to solve other trajectory data mining tasks
and make use of the additional information to improve the quality of the trajec-
tory embedding.
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