
EasyChair Preprint
№ 2257

Determine the Interconnection of a Hardware
Implementation for DSP Applications

Jehad A. Ghanim and Ali Shatanawi

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 26, 2019

 1

Determine the Interconnection of a

Hardware Implementation for DSP

Applications

Jehad A. Ghanim, IEEE Graduate

Student Member

Department of Computer Science

AlKharj Community College

Sattam bin AbdulAziz University

j.ghanim@psau.edu.sa

Ali Shatnawi

Department of Computer Engineering

Jordan University of Science and

Technology

Box 3030, Irbid 22110, JORDAN

ali@just.edu.jo

Abstract
In VLSI design the hardware is implemented with some objective and constrain functions (as lower

number of hardware used). When the system contains a lot of processing elements (PEs) and memory

(registers), the cost of the interconnections becomes of great issue and must be minimized. Work in the

field of determination of the interconnection for a hardware implementation is not very common. In

high-level synthesis it is usually considered the time scheduling and processor assignment from a given

DFG. However, the cost of interconnection is not widely discussed and is left to a VHDL system to
determine it. In this paper, a technique for determining the interconnection in a hardware design is

proposed. The objective function is the minimum number if hardware used and the constrain is minimum

iteration period bound. This interconnection is shown to accomplish cost optimality in terms of

minimizing the number of multiplexers used.

 Index Terms: Datapath, DFG, high-level synthesis, multiplexers

Introduction

Digital signal processing (DSP), communications, and image processing are computationally

intensive, and thus demand systems with high computational power. The high computational power is
necessary to accomplish the given tasks in real time. Due to the inherent parallelism of DSP

applications, a multiprocessor system is a natural choice for the implementation of these applications

[1].

The technique used to design digital systems at the high level is typically referred to as the high-level

synthesis (HLS). This technique is used to produce efficient hardware implementations for the given

 2

tasks. The HLS process starts with the specification of the algorithmic level behavior (input-output

specifications) of a given digital system, and completes by finding the data path realizing the given I/O

specifications. The algorithmic level behavior is usually represented by a data flow graph (DFG). An

example of a DFG is depicted in Figure 1. Through the HLS procedure objective functions and

constraints must be met.
In this paper, a technique [7] to determine the interconnection of a given hardware implementation

is proposed. The result of this technique is a schedule matrix used to represent a data path of

heterogeneous multiprocessor system's implementation.

4
*
 2

+

1D
 Z

-1

1D
 Z

-1

1
+ 8

+

6
+

7
*

3
*

5
*

+:Adder of 1 computational delay

*:Pipelined multiplier of 2 computational delays

9
I
 10

O

Figure 1: DFG graph of a second order IIR filter

Previous Work

Synthesis tools that are used to generate valid implementations for digital systems are present since

the 1970s. Many of them are targeted for the generation of data paths of general-purpose digital systems.

Some of the synthesis tools are specialized in DSP applications. LAGER is a data path compiler that

is specialized in DSP applications [3]. The algorithmic behavior specification is expressed in an

Assembly-like language program. The main disadvantage of this synthesis tool is that, the

multiprocessing system is limited to four processors communicating by serial interfaces. MARS

(Minnesota Architecture Synthesis) [4] does not consider the minimization of the interconnection

network. Furthermore, MARS execution time is unpredictable as the course of action of its procedure

tremendously varies with the graph topology [5].

M2 2D2S

R0 A1 1D1S

A2 1D1S

M1 2D2S

R1 R2

Input

X
I1

Output

Y
O1

C3

C0 C1 C2

MUX

M

U

X

MUX

MUX

Figure 2: Hardware implementation for the second-order IIR filter shown in Figure 1

 3

Determining the Interconnection
Since there are a number of processing elements (PEs) and registers which are used to handle

data tokens that are produced by other PEs or stored in registers, multiplexers are required to control

the data transfer between these PEs and the registers. Each PE or register having more than source of

data tokens requires a multiplexer to select between these sources. The selection inputs of each

multiplexer must be set to select the value of the required source at the different control steps. The

multiplexers and the write-enable signals from the control unit assure the proper operation of the system

(according to the I/O behavioral specifications).

The interconnection minimization is done by reducing the size of each multiplexing unit. This

minimization is performed by decreasing the number of sources of the variables that are attached to the

inputs of each multiplexer.
There are two groups of multiplexers, the PEs multiplexers and the registers multiplexers. The

sources of the PE-multiplexers are any PE, register, or constant-register. The sources of the register-

multiplexer are any PE or register. Since each PE has two inputs, each require a distinct group of input

multiplexers. In this case, there is a possibility that a source of data operands may be attached to the

inputs of each multiplexer group. Thus, if it is possible to attach each source of data operands to only

one multiplexers group, the total size of the multiplexers is reduced. The lower bound on the size of the

multiplexers groups of any PE is determined by the total number of different sources of this PE. The

algorithm that attempts to minimize the size of both multiplexers' groups of any PE (and thus the number

of multiplexers) is stated below:

1. Put all PEs in a non-selected PEs list

2. Select a PE from this list and set it as a target PE. This PE is removed from the non-selected PEs

list.
3. Group all the sources (PEs and registers) of the data tokens for the target PE in a sources-list. This

list also contains the control steps at which each source is accessed, since each source may occur

several times in this list.

4. Calculate the number of occurrences of each source in this list. This number equals to the number

of different references to a source in an iteration period.

5. Sort the sources in the sources-list according to the number of occurrences of each source in

descending order

6. Take the first source (the one with the largest number of accesses found) and remove it from the

sources-list

7. Assign each access of the taken source to the entry of the required control step in the row of the

multiplexers group of the target PE that has the highest number of free cells (in the PEs
multiplexers source selection matrix). If the entry of the required control step is not free, assign it

to the entry of the required control step in the row of the other multiplexers group.

8. If the source-list is not empty go to step 6

9. If the non-selected PEs list is not empty go to step 2

The register-multiplexer minimization process described in the register allocation algorithm in

the previous section is done in case that a variable consists of two elements only. In this case, the two

elements are assigned to the same register if possible. Thus, element produced in the previous iteration

is not required to be transferred between multiple registers, since this element is already stored in a

register.

Figure3 and Figure4 show the source of the data for each PE and register of the example (Figure

1) at each control step. From these figures, the values of the select lines of the multiplexers of each PE

and register at each control step are determined.
The columns determine the control steps (except the last one) and the rows determine the PEs.

Each cell in the table determines the type of the source of the variable and its number. The letters A, M,

R, and C denote adders, pipelined multipliers, registers, and registers that store constants (multiplier

constants) respectively. The number next to each letter identifies the source from the group of sources

 4

of the same type. The last column determines the number of inputs of the multiplexer, or the number of

different sources that are connected to the corresponding multiplexer. The row with dashed entries in

the multiplexer number (MUX#) or register number (register#) columns means that it does not have any

multiplexers or registers.

Control
Step

Processor

MUX# 0 1 2
of

inputs

A1
MUX1 M1 M1 M1 1

MUX2 I1 A1 A1 2

A2
MUX1 R2 - - 1

MUX2 A1 - - 1

M1
MUX1 R0 R0 A1 2

MUX2 C0 C1 C2 3

M2
MUX1 - - A1 1

MUX2 - - C3 1

I1 - - - - 0

O1 - - A2 - 1

Figure 3: The PEs multiplexers source selection matrix

Control

Step

Register

0 1 2
of

inputs

R0 - - A1 1

R1 - M2 - 1

R2 R1 - - 1

Figure 4: The registers multiplexers source selection matrix.

In Figure3, since each source appears only in one multiplexer row for each PE, hence, the bound

on the size of each multiplexer is achieved.
Due to the repeated nature of DSP algorithms, the sequences in the source selection matrices are

repeated every iteration. Thus, the iteration period imposes an upper bound on the number of inputs for

each multiplexer.

The dashed entries in the source selection matrices of the PEs and registers represent the case of

no input and thus the number-of-inputs for each multiplexer can be reduced by the number of these

dashed entries. In addition, many different variables can be taken from the same source (PE or register).

 All entries in the source selection matrices that belong to the same source must be set to the

same input line of the multiplexer. Furthermore, because the registers can latch the data based on a

write-enable signal from the control unit, consecutive elements of a variable that are stored in the same

register do not require additional inputs. This is because the previous element is still in the register until

its lifetime ends and the next element is latched by a write-enable signal from the control unit. For

example, in register number 0, the source of the third entry is the first add PE, but the source of the first

entry is the register 0 itself. Since the element is already in register 0, this entry does not need an input

for the multiplexer of register number 0. Thus, the minimum number of inputs (No_Inputs) for each

multiplexer is limited by the maximum number of different sources of each variable.
Instead of using () multiplexers for the representation of each PE multiplexer group or

TNo_Inputs

 5

register-multiplexer, N being the minimum power of 2 larger than (No_Inputs), a group of (No_Inputs-

1) two-input multiplexers Error! Reference source not found. can be used to form multiplexing unit.

This is because the number of multiplexer inputs N is usually more than the needed number of inputs

(No_Inputs). These (No_Inputs-1) two-input multiplexers are connected as a binary tree to form a

multiplexing unit with a lower cost than that of the () multiplexer. Since each two-input multiplexer

has only one select line, a group of log2(No_Inputs) select lines are required for the new multiplexing

unit. The least significant select line is connected to the leaf multiplexers and the most significant select

line is connected to the root multiplexer.

A row in the source selection matrices with only one input (indicated from the last column)

implies that the corresponding hardware unit (PE or register) does not require a multiplexer and is

connected directly to the source of that input. These rows with zero number of inputs means that the

corresponding hardware unit does not take any input from any other hardware units in the system. This
is the case for the input virtual PE. This PE takes its input stream from outside the system; thus, it has

a zero number of inputs with respect to other hardware units.

From Figure3, it is clear that there are two different sources at MUX2 of the first adder and at

MUX1 of the second multiplier. Thus, the multiplexers used are () multiplexers. The second PE

of each type has only one operation to process, thus it does not need any multiplexer, and it is connected

directly to its source of data. Clearly from Figure4 and Error! Reference source not found.5 the registers

do not need any multiplexers.

Conclusion

A new technique to determine the interconnection is presented here. It is used to assign the data

sources to the inputs of the processing elements is also presented. This algorithm minimizes the total

number of such sources assigned to each input multiplexer. As a result, the total size of multiplexing

units is minimized.

Bibliography

[1] D. J. DeFatta, J. G. Lucas, and W. S. Hadgkiss, “Digital signal processing, a system design approach,”
John Wiley & Sons, 1988.

[2] M. C. McFarland, A. C. Parker, and R. Camposano, “The high-level synthesis of digital systems,”
Proceedings of the IEEE, vol. 78, no. 2, pp. 301-318, Feb. 1990.

[3] J. M. Rabaey, S. P. Pope, and R. W. Brodersen, “An integrated automated layout generation system for
DSP circuits,” IEEE Trans. Computer-Aided Design, vol. CAD-4, no. 3, pp. 285-296, Jul. 1985.

[4] -Y. Wang, and K. K. Parhi, “High-level DSP synthesis using concurrent transformations, scheduling, and

allocation,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 14,
no. 3, pp. 274-295, Mar. 1995.

[5] Shatnawi, “Compile-time scheduling of digital signal processing data flow graphs onto homogeneous
multiprocessor systems,” Ph.D. Thesis Department of Electrical and Computer Engineer, Concordia
University, Montreal Canada, Apr. 1996.

[6] Shatnawi, M. O. Ahmad, and M. N. S. Swamy, “Scheduling of DSP data flow graphs onto
multiprocessors for maximum throughput,” Paper no.548, The 1999 IEEE International Symposium on
Circuits & Systems, May 30-June 2, 1999, Orlando, Florida.

[7] J. Ghanim, “High Level Synthesis of Integrated Heterogeneous Multiprocessor Systems for Digital
Signal Processing Applications,” Msc. Thesis Department of Electrical Engineering, Jordan University
of Science and Technology, Irbid Jordan, Jan. 2000.

1N

12

