
EasyChair Preprint
№ 9323

GPT-K : a GPT Based Model for Generation of
Text in Kannada

K H Manodnya and Animesh Giri

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 15, 2022

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

GPT-K: A GPT-based model for generation of text in
Kannada

Manodnya K H
Department of Computer Science and Engineering

PES University
Bangalore, India

manodynak@gmail.com

Animesh Giri
Department of Computer Science and Engineering

PES University
Bangalore, India

animeshgiri@pes.edu

Abstract— Large AI-based language models are changing
how we work with language. They are becoming
increasingly popular because they allow us to create
complex linguistic structures without requiring a lot of
resources. A language model must have access to a large
corpus of linguistic data (e.g., word frequencies) to learn
and generate new words. GPT-2, a language model, can
generate coherent paragraphs independently, without any
input on what to write about or guidance on grammar rules.
Although multiple pre-trained GPT-2 models exist for
English and other high-resource languages, there are few to
no such models for Indic languages like Kannada. In this
study, we propose GPT-K, a GPT-2 based model for
language modeling in Kannada. GPT-K has been trained on
a large corpus of Kannada text and can effectively perform
language modeling tasks in Kannada. The model generated
syntactically correct text in most cases.

Keywords—GPT-2, large language models, language modeling,
model training, hyperparameter finetuning, Indic languages

I. INTRODUCTION
Large language models are transforming the way we think

about language. They can do things like generate text or
transform text. This is changing how we work with language and
has garnered a lot of attention and become increasingly popular
in the past few years. Large Language Models use machine
learning algorithms to process enormous text-based sets. These
models can understand, predict, and generate human languages
by processing a massive text corpus. They are increasingly
based on transformer-based architectures, which can deal with
the excessive amount of text that such models require. They
must have access to a large corpus of linguistic data (e.g., word
frequencies) to learn and generate new words.

Language models are generated from text corpora and
trained either with supervised learning algorithms like
maximum entropy or conditional random fields or through
unsupervised training. A transformer is an algorithm that takes
in a sequence of words and outputs another sequence of words.
The GPT-2, created by OpenAI, is an example of a transformer.
It can generate coherent paragraphs and even short stories on its
own, without any input on what to write about or guidance on
grammar rules. GPT-2 can generate coherent paragraphs of

natural-sounding text in any language with 99% accuracy after
just 10 minutes of reading training data.

When GPT-2 is fed with an input sentence, it takes the words
and rearranges them to generate a new sequence of sentences.
Although GPT-2 was initially designed for translation purposes,
it can be finetuned for use in other applications as well:
summarization, paraphrasing, and text generation. GPT-2 has
been shown to be able to generate coherent and grammatically
correct paragraphs of English text, which are comparable in
quality to those generated by human copywriters.

Although multiple pre-trained GPT-2 models exist for
English and other high-resource languages, there are few to no
such models for Indic languages like Kannada. In this study, we
propose GPT-K, a GPT-2 based model for language modeling
in Kannada. GPT-K has been trained on a large corpus of
Kannada text and can effectively perform language modeling
tasks in Kannada.

The major research contributions of this study are
summarized as follows:

1. Collation of text-based datasets in the Kannada
language to generate a large corpus of Kannada text
for training.

2. Preprocessing of datasets to eliminate unwanted
text and invalid characters.

3. Finetuning the hyperparameters for optimal
performance.

4. Finetuning the GPT-2 model to reduce compute
costs.

5. Training the finetuned GPT-2 model in the
Kannada language.

6. Evaluating the model.

II. RELATED WORKS
Vaswani et al., 2017 [1] proposed a new simple network

architecture solely based on attention mechanisms doing away
with recurrence and convolution entirely. Experiments showed
that these models were superior in quality and required less
training time. They were also more parallelizable. They

achieved a BLEU score of 41.0, surpassing the best models of
the time.

 Radford et al., 2018 [2], in their paper “Improving Language
Understanding by Generative Pre-Training,” demonstrated that
significant gains on tasks like document classification, question
answering, textual entailment, and semantic similarity
assessment can be achieved by generative pre-training on a large

corpus of unlabeled text followed by discriminative fine-tuning
on each specific task. The proposed model was named GPT.

 Radford et al., 2019 [3] proposed a new language model
GPT-2 and also demonstrated that language models begin to
learn Natural language processing tasks such as reading
comprehension, machine translation, question answering, and
summarization without any supervision. Their largest model,
GPT-2, is a 1.5B parameter Transformer that achieves
astonishing results on 7 out of 8 tested language modeling
datasets in a zero-shot setting but still underfits WebText, an
internal OpenAI corpus. To create this corpus, all outbound links
from Reddit with karma greater than 3 were scraped. Samples
from the model contain articulate paragraphs of text and reflect
these improvements; Their findings suggested a promising path
toward building language processing systems which, from their
naturally occurring environment, learn to perform tasks.
Although the largest model had 1.5 billion parameters, the
largest model open-sourced by OpenAI had only 774 million
parameters. Concerns over the potential misuse of the
technology were cited for not releasing the larger models.

Brown et al., 2020 [4] proposed GPT-3, which is
architecturally similar to GPT-2 except that Alternating dense
and locally banded sparse attention patterns were used in GPT-
3. This autoregressive language model was trained on 175
billion parameters and outperformed GPT-2 on most counts.
However, this model was not open-sourced due to its potential
for misuse, and exclusive rights to use the model were granted
to Microsoft corporation.

 So et al., in their 2022 paper “Primer: Searching for Efficient
Transformers for Language Modeling” [5], proposed a new
language model called Primer(PRIMitives searched
transformER) in which they demonstrated that by squaring
ReLU(Regularized evoLUtion) activations and adding a
depthwise convolution layer after each Q, K, and V projection
in self-attention, the training cost for transformers could be
significantly reduced.

 Liao et al., 2019 [6] propose a GPT-based generation for
classical Chinese poetry. They use a simple GPT model [2] to
generate various forms of classical Chinese poems that meet
form and content requirements. While retaining the GPT
architecture, they only fine-tune the model on a large corpus of
Chinese poetry.

 Dhivyaa et al., 2022 [7] propose an attention-based LSTM-
NMT model for Tamil text summarization based on the GPT-2
architecture. They propose an improved GPT-2 model to
perform text summarization. They propose an efficient model
for text summarization in an Indic language, Tamil. Their
model uses an attention-based LSTM-NMT model for
transliterating Tamil text to English text which is then

processed by GPT-2 and later translated back to Tamil. They
improve the existing GPT-2 architecture by adding a masked
self-attention layer to the decoder block, allowing for large
batch sizes and parallel processing of multiple tokens.

III. OUR METHOD
The study can be broadly divided into six phases, model

selection, data collection and preprocessing model finetuning,
training, hyperparameter finetuning, and model evaluation. We
use an improved GPT-2 model for this study. We call this model
GPT-K. This model is then trained on a large corpus of Kannada
text to generate text samples in Kannada. We adopt GPT-2's
vocabulary and tokenization.

A. Model details
GPT-2 [3], based on the transformer architecture[1], is the

basic model used for our study. Figure 1 shows the basic model
proposed in [3]. Equation 1 is used by the authors of [3] to
factorize the joint probabilities over symbols as the product of
conditional probabilities since, language has a natural sequential
ordering. In the equation, x represents the set of variables,
whereas S represents the set of samples. We use the open-
sourced 117Million parameters GPT-2 model for this study.
Depth-wise convolution layers are then added after each K, Q,
and V projections in self-attention as proposed in [5].
ReLU(Regularized evolution) activations are also squared as
proposed in [5]. These changes reduce compute requirements
significantly. We adopt the tokenization and encoding for UTF-
8-based character sets released in GPT-2 for encoding Kannada
text. Figure 2 shows the improved GPT architecture.

𝑝(𝑥) =&𝑝(𝑆(|𝑆*,… , 𝑆(-*)
(

./*

 Equation 1.

 Figure. 1 GPT-2 architecture

Figure 2. Improved GPT-2 architecture

B. Data collection and preprocessing
Datasets available on the web, OSCAR corpus [8], CC-100

[9], and the Kannada Wikipedia dump [10] were collected.
These datasets were then cleaned and preprocessed. All the
metadata was stripped while retaining only Kannada text which
was then written to a set of text files, rendering a continuous
corpus of cleaned text. This data was preprocessed, and byte-
pair encoding (BPE) was used to encode these files. Invalid
UTF-8 characters were ignored in this process, and only the
valid UTF-8 bits were encoded. The encoded text was then
written to a single file. Figures 3 and 4 show samples of the raw
and cleaned corpus, respectively.

Figure 3. Sample of the raw corpus

Figure 4. Sample from the cleaned corpus

C. Pretraining and finetuning
The pretrained GPT-2 model was used in our study. No

additional pre-training was employed. The improved GPT-2
based model GPT-K was then trained on a large corpus of
Kannada text. The training sequences were then fed into the
transformer model to train an autoregressive model. Care was
taken to prevent model overfitting [12] as it tends to retrieve raw
sentences from the corpus.

D. Training
The model was trained with approximately 9.5 billion tokens

for 10000 steps with a batch size of 1 for a single epoch. The
corpus created in B was used as the dataset. The training takes
approximately 150 hours on 12 intel i7 CPUs. A MiniForge3-
based Conda environment was used to train the model
implemented in TensorFlow. Both Adam[13] and SGD[14]
optimizers were experimented with for compute optimization.
SGD consistently showed better optimization results and
resulted in lesser compute requirements than Adam. This is due
to the lesser number of book-keeping variables in SGD than
Adam [15]. A tensor rematerialization framework, as proposed
in [16], is used for graph optimization to further reduce compute
requirements. SGD shows better training and testing accuracies
than Adam. Figure 5 shows the training and testing accuracies
and losses for different optimizers where Adam is clearly
outperformed by SGD. Top K sampling was used as the
sampling method.

Figure 5. Comparison of Adam and SGD optimizers[15]

E. Hyperparameter finetuning
Finetuning hyperparameters showed a significant reduction

in loss during model training. Increasing the learning rate
showed a significant reduction in losses up to a point, followed
by an exponential increase in the training loss. Increasing the
number of attention heads and top k showed similar results,
except that the loss linearly increased after a certain threshold.

Table 1. and Figure 6 show the correlation between learning rate
and training loss. Table 2 and Figure 7 shows the correlation
between top_k and learning loss. Table 3 and Figure 8 shows the
relation between the number of attention heads and learning
loss.

Learning rate Loss

0.0001 1.1
0.0005 1.09

0.001 1.12
0.005 1.08

0.01 1.04
0.05 10.34

0.1 679
Table 1. Correlation of learning rate and loss

Figure 6. Correlation between learning rate and loss

Top_k Loss

40 1.47
60 1.36
80 1.35

100 1.33
120 1.35
140 1.32
160 1.3
180 1.3
200 1.28
220 1.26
240 1.25
260 1.28

Table 2. Correlation between top_k and loss

Figure 7. Correlation between top_k and loss

Number of attention
heads

Loss

10 1.25
12 1.21
14 1.19
16 1.13
18 1.32

Table 3. Correlation between Number of attention heads
and loss

Figure 8. Correlation between Number of attention heads

and loss

F. Evaluation
Finetuning Hyperparameters showed a significant reduction

in loss during model training. Increasing the number of attention
heads and layers significantly reduced the learning loss. The
model was evaluated on one major standard benchmark called
RecallOriented Understudy for Gisting Evaluation (ROUGE)
[17]. Equation (2) is used to calculate the F-measure.

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

Equation 2.

IV. GENERATED SAMPLES
The below images show certain samples of generated text

which are both syntactically and semantically correct. We
observed that the model generated syntactically correct text in
most cases, but the generated text was not semantically correct
except in rare cases. This can be attributed to short training times
and low batch sizes. Figures 9 through 13 show the samples
generated by the model.

Figure 9.

 Figure 10.

Figure 11.

Figure 12.

Figure 13.

V. FUTURE WORK
The model can be further improvised to reduce compute

requirements. Minor changes to the model architecture can be
considered to this effect. Further, the model training time can be
increased. The model can be trained on a larger corpus of data
for more epochs with large batch sizes to improve its accuracy.
Better optimizers can be used to improve compute efficiency.
Further studies on hyperparameter finetuning can be considered
to reduce loss and improve the efficiency of the model.

VI. CONCLUSION
Although the development of language models is taking

place on a global scale, the use of AI assistants in regional
languages has not yet been developed. Despite the fact that
international markets are becoming more diverse, there is still
an underdeveloped market for regional language models. The
model presented in this paper is a GPT-2 based model, which
can generate text in the Kannada language. Though the samples
are not perfect all the time, the model is a good start for further
research. We present this study in the hope that it will become a
prototype for language models in regional languages.

REFERENCES
[1] Vaswani et al, 2017 “Attention is All you Need”, Advances in Neural

Information Processing Systems, Curran Associates, Inc., vol 30, 2017
[2] Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018).

“Improving language understanding by generative pre-training.”
[3] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D. and Sutskever, I.,

2019. Language models are unsupervised multitask learners. OpenAI
blog, 1(8), p.9.

[4] Brown et al., 2020. Language models are few-shot learners. Advances in
neural information processing systems, 33, pp.1877-1901.

[5] So, et al. "Searching for Efficient Transformers for Language
Modeling." Advances in Neural Information Processing Systems 34
(2021): 6010-6022.

[6] Liao Y, Wang Y, Liu Q, Jiang X. Gpt-based generation for classical
chinese poetry. arXiv preprint arXiv:1907.00151. 2019 Jun 29.

[7] C. R. Dhivyaa, K. Nithya, T. Janani, K. S. Kumar and N. Prashanth,
"Transliteration based Generative Pre-trained Transformer 2 Model for
Tamil Text Summarization," 2022 International Conference on
Computer Communication and Informatics (ICCCI), 2022, pp. 1-6, doi:
10.1109/ICCCI54379.2022.9740991.

[8] J Abadji, P O Suarez, L Romary, B Sagot, 2022, “Towards a Cleaner
Document-Oriented Multilingual Crawled Corpus”, arXiv e-prints,

[9] Conneu et al., 2020 “Extracting High-Quality Monolingual Datasets from
Web Crawl Data,” 2020, Proceedings of the 12th Language Resources
and Evaluation Conference, European Language Resources Association,
4003--4012

[10] Wikimedia Foundation, Wikimedia Downloads, wiki dump
[11] Sennrich R, Haddow B, Birch A. Neural machine translation of rare words

with subword units. arXiv preprint arXiv:1508.07909. 2015 Aug 31.
[12] Hawkins, Douglas M. "The problem of overfitting." Journal of chemical

information and computer sciences 44.1 (2004): 1-12.
[13] Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic

optimization." arXiv preprint arXiv:1412.6980 (2014).
[14] Ruder, S., 2016. An overview of gradient descent optimization

algorithms. arXiv preprint arXiv:1609.04747.
[15] Keskar, Nitish Shirish, and Richard Socher. "Improving generalization

performance by switching from adam to sgd." arXiv preprint
arXiv:1712.07628 (2017).

[16] Kumar R, Purohit M, Svitkina Z, Vee E, Wang J. Efficient
rematerialization for deep networks. Advances in Neural Information
Processing Systems. 2019;32.

[17] Lin CY. Rouge: A package for automatic evaluation of summaries. InText
summarization branches out 2004 Jul (pp. 74-81).

