
EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

C.! Pretraining and finetuning
The pretrained GPT-2 model was used in our study. No

additional pre-training was employed. The improved GPT-2
based model GPT-K was then trained on a large corpus of
Kannada text. The training sequences were then fed into the
transformer model to train an autoregressive model. Care was
taken to prevent model overfitting [12] as it tends to retrieve raw
sentences from the corpus.

D.! Training
The model was trained with approximately 9.5 billion tokens

for 10000 steps with a batch size of 1 for a single epoch. The
corpus created in B was used as the dataset. The training takes
approximately 150 hours on 12 intel i7 CPUs. A MiniForge3-
based Conda environment was used to train the model
implemented in TensorFlow. Both Adam[13] and SGD[14]
optimizers were experimented with for compute optimization.
SGD consistently showed better optimization results and
resulted in lesser compute requirements than Adam. This is due
to the lesser number of book-keeping variables in SGD than
Adam [15]. A tensor rematerialization framework, as proposed
in [16], is used for graph optimization to further reduce compute
requirements. SGD shows better training and testing accuracies
than Adam. Figure 5 shows the training and testing accuracies
and losses for different optimizers where Adam is clearly
outperformed by SGD. Top K sampling was used as the
sampling method.

Figure 5. Comparison of Adam and SGD optimizers[15]

E.! Hyperparameter finetuning
Finetuning hyperparameters showed a significant reduction

in loss during model training. Increasing the learning rate
showed a significant reduction in losses up to a point, followed
by an exponential increase in the training loss. Increasing the
number of attention heads and top k showed similar results,
except that the loss linearly increased after a certain threshold.

Table 1. and Figure 6 show the correlation between learning rate
and training loss. Table 2 and Figure 7 shows the correlation
between top_k and learning loss. Table 3 and Figure 8 shows the
relation between the number of attention heads and learning
loss.

Learning rate Loss

0.0001 1.1
0.0005 1.09

0.001 1.12
0.005 1.08

0.01 1.04
0.05 10.34

0.1 679
Table 1. Correlation of learning rate and loss

Figure 6. Correlation between learning rate and loss

Top_k Loss

40 1.47
60 1.36
80 1.35

100 1.33
120 1.35
140 1.32
160 1.3
180 1.3
200 1.28
220 1.26
240 1.25
260 1.28

Table 2. Correlation between top_k and loss

Figure 7. Correlation between top_k and loss

Number of attention
heads

Loss

10 1.25
12 1.21
14 1.19
16 1.13
18 1.32

Table 3. Correlation between Number of attention heads
and loss

Figure 8. Correlation between Number of attention heads

and loss

F.! Evaluation
Finetuning Hyperparameters showed a significant reduction

in loss during model training. Increasing the number of attention
heads and layers significantly reduced the learning loss. The
model was evaluated on one major standard benchmark called
RecallOriented Understudy for Gisting Evaluation (ROUGE)
[17]. Equation (2) is used to calculate the F-measure.

0 1 2345673 % 8 9
!73:;5;<= 9 73:4>>
?73:;5;<= @ 73:4>>

Equation 2.

IV.! GENERATED SAMPLES
The below images show certain samples of generated text

which are both syntactically and semantically correct. We
observed that the model generated syntactically correct text in
most cases, but the generated text was not semantically correct
except in rare cases. This can be attributed to short training times
and low batch sizes. Figures 9 through 13 show the samples
generated by the model.

Figure 9.

 Figure 10.

Figure 11.

Figure 12.

Figure 13.

V.! FUTURE WORK
The model can be further improvised to reduce compute

requirements. Minor changes to the model architecture can be
considered to this effect. Further, the model training time can be
increased. The model can be trained on a larger corpus of data
for more epochs with large batch sizes to improve its accuracy.
Better optimizers can be used to improve compute efficiency.
Further studies on hyperparameter finetuning can be considered
to reduce loss and improve the efficiency of the model.

VI.! CONCLUSION
Although the development of language models is taking

place on a global scale, the use of AI assistants in regional
languages has not yet been developed. Despite the fact that
international markets are becoming more diverse, there is still
an underdeveloped market for regional language models. The
model presented in this paper is a GPT-2 based model, which
can generate text in the Kannada language. Though the samples
are not perfect all the time, the model is a good start for further
research. We present this study in the hope that it will become a
prototype for language models in regional languages.

REFERENCES
[1]! Vaswani et al, 2017 “Attention is All you Need”, Advances in Neural

Information Processing Systems, Curran Associates, Inc., vol 30, 2017
[2]! Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018).

“Improving language understanding by generative pre-training.”
[3]! Radford, A., Wu, J., Child, R., Luan, D., Amodei, D. and Sutskever, I.,

2019. Language models are unsupervised multitask learners. OpenAI
blog, 1(8), p.9.

[4]! Brown et al., 2020. Language models are few-shot learners. Advances in
neural information processing systems, 33, pp.1877-1901.

[5]! So, et al. "Searching for Efficient Transformers for Language
Modeling." Advances in Neural Information Processing Systems 34
(2021): 6010-6022.

[6]! Liao Y, Wang Y, Liu Q, Jiang X. Gpt-based generation for classical
chinese poetry. arXiv preprint arXiv:1907.00151. 2019 Jun 29.

[7]! C. R. Dhivyaa, K. Nithya, T. Janani, K. S. Kumar and N. Prashanth,
"Transliteration based Generative Pre-trained Transformer 2 Model for
Tamil Text Summarization," 2022 International Conference on
Computer Communication and Informatics (ICCCI), 2022, pp. 1-6, doi:
10.1109/ICCCI54379.2022.9740991.

[8]! J Abadji, P O Suarez, L Romary, B Sagot, 2022, “Towards a Cleaner
Document-Oriented Multilingual Crawled Corpus”, arXiv e-prints,

[9]! Conneu et al., 2020 “Extracting High-Quality Monolingual Datasets from
Web Crawl Data,” 2020, Proceedings of the 12th Language Resources
and Evaluation Conference, European Language Resources Association,
4003--4012

[10]! Wikimedia Foundation, Wikimedia Downloads, wiki dump
[11]! Sennrich R, Haddow B, Birch A. Neural machine translation of rare words

with subword units. arXiv preprint arXiv:1508.07909. 2015 Aug 31.
[12]! Hawkins, Douglas M. "The problem of overfitting." Journal of chemical

information and computer sciences 44.1 (2004): 1-12.
[13]! Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic

optimization." arXiv preprint arXiv:1412.6980 (2014).
[14]! Ruder, S., 2016. An overview of gradient descent optimization

algorithms. arXiv preprint arXiv:1609.04747.
[15]! Keskar, Nitish Shirish, and Richard Socher. "Improving generalization

performance by switching from adam to sgd." arXiv preprint
arXiv:1712.07628 (2017).

[16]! Kumar R, Purohit M, Svitkina Z, Vee E, Wang J. Efficient
rematerialization for deep networks. Advances in Neural Information
Processing Systems. 2019;32.

[17]! Lin CY. Rouge: A package for automatic evaluation of summaries. InText
summarization branches out 2004 Jul (pp. 74-81).

