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Abstract— Large AI-based language models are changing 
how we work with language. They are becoming 
increasingly popular because they allow us to create 
complex linguistic structures without requiring a lot of 
resources. A language model must have access to a large 
corpus of linguistic data (e.g., word frequencies) to learn 
and generate new words. GPT-2, a language model, can 
generate coherent paragraphs independently, without any 
input on what to write about or guidance on grammar rules. 
Although multiple pre-trained GPT-2 models exist for 
English and other high-resource languages, there are few to 
no such models for Indic languages like Kannada. In this 
study, we propose GPT-K, a GPT-2 based model for 
language modeling in Kannada. GPT-K has been trained on 
a large corpus of Kannada text and can effectively perform 
language modeling tasks in Kannada. The model generated 
syntactically correct text in most cases. 

Keywords—GPT-2, large language models, language modeling, 
model training, hyperparameter finetuning, Indic languages 

I. INTRODUCTION  
Large language models are transforming the way we think 

about language. They can do things like generate text or 
transform text. This is changing how we work with language and 
has garnered a lot of attention and become increasingly popular 
in the past few years. Large Language Models use machine 
learning algorithms to process enormous text-based sets. These 
models can understand, predict, and generate human languages 
by processing a massive text corpus. They are increasingly 
based on transformer-based architectures, which can deal with 
the excessive amount of text that such models require. They 
must have access to a large corpus of linguistic data (e.g., word 
frequencies) to learn and generate new words. 

Language models are generated from text corpora and 
trained either with supervised learning algorithms like 
maximum entropy or conditional random fields or through 
unsupervised training. A transformer is an algorithm that takes 
in a sequence of words and outputs another sequence of words. 
The GPT-2, created by OpenAI, is an example of a transformer. 
It can generate coherent paragraphs and even short stories on its 
own, without any input on what to write about or guidance on 
grammar rules. GPT-2 can generate coherent paragraphs of 

natural-sounding text in any language with 99% accuracy after 
just 10 minutes of reading training data. 

When GPT-2 is fed with an input sentence, it takes the words 
and rearranges them to generate a new sequence of sentences. 
Although GPT-2 was initially designed for translation purposes, 
it can be finetuned for use in other applications as well: 
summarization, paraphrasing, and text generation. GPT-2 has 
been shown to be able to generate coherent and grammatically 
correct paragraphs of English text, which are comparable in 
quality to those generated by human copywriters. 

Although multiple pre-trained GPT-2 models exist for 
English and other high-resource languages, there are few to no 
such models for Indic languages like Kannada. In this study, we 
propose GPT-K, a GPT-2 based model for language modeling 
in Kannada. GPT-K has been trained on a large corpus of 
Kannada text and can effectively perform language modeling 
tasks in Kannada. 

The major research contributions of this study are 
summarized as follows: 

1. Collation of text-based datasets in the Kannada 
language to generate a large corpus of Kannada text 
for training.  

2. Preprocessing of datasets to eliminate unwanted 
text and invalid characters. 

3. Finetuning the hyperparameters for optimal 
performance. 

4. Finetuning the GPT-2 model to reduce compute 
costs. 

5. Training the finetuned GPT-2 model in the 
Kannada language. 

6. Evaluating the model. 

II. RELATED WORKS 
Vaswani et al., 2017 [1] proposed a new simple network 

architecture solely based on attention mechanisms doing away 
with recurrence and convolution entirely. Experiments showed 
that these models were superior in quality and required less 
training time. They were also more parallelizable. They 



achieved a BLEU score of 41.0, surpassing the best models of 
the time. 

 Radford et al., 2018 [2], in their paper “Improving Language 
Understanding by Generative Pre-Training,” demonstrated that 
significant gains on tasks like document classification, question 
answering, textual entailment, and semantic similarity 
assessment can be achieved by generative pre-training on a large  

corpus of unlabeled text followed by discriminative fine-tuning 
on each specific task. The proposed model was named GPT. 

 Radford et al., 2019 [3] proposed a new language model 
GPT-2 and also demonstrated that language models begin to 
learn Natural language processing tasks such as reading 
comprehension, machine translation, question answering, and 
summarization without any supervision. Their largest model, 
GPT-2, is a 1.5B parameter Transformer that achieves 
astonishing results on 7 out of 8 tested language modeling 
datasets in a zero-shot setting but still underfits WebText, an 
internal OpenAI corpus. To create this corpus, all outbound links 
from Reddit with karma greater than 3 were scraped. Samples 
from the model contain articulate paragraphs of text and reflect 
these improvements; Their findings suggested a promising path 
toward building language processing systems which, from their 
naturally occurring environment, learn to perform tasks. 
Although the largest model had 1.5 billion parameters, the 
largest model open-sourced by OpenAI had only 774 million 
parameters. Concerns over the potential misuse of the 
technology were cited for not releasing the larger models.  

Brown et al., 2020 [4] proposed GPT-3, which is 
architecturally similar to GPT-2 except that Alternating dense 
and locally banded sparse attention patterns were used in GPT-
3. This autoregressive language model was trained on 175 
billion parameters and outperformed GPT-2 on most counts. 
However, this model was not open-sourced due to its potential 
for misuse, and exclusive rights to use the model were granted 
to Microsoft corporation. 

 So et al., in their 2022 paper “Primer: Searching for Efficient 
Transformers for Language Modeling” [5], proposed a new 
language model called Primer(PRIMitives searched 
transformER) in which they demonstrated that by squaring 
ReLU(Regularized evoLUtion) activations and adding a 
depthwise convolution layer after each Q, K, and V projection 
in self-attention, the training cost for transformers could be 
significantly reduced. 

 Liao et al., 2019 [6] propose a GPT-based generation for 
classical Chinese poetry. They use a simple GPT model [2] to 
generate various forms of classical Chinese poems that meet 
form and content requirements. While retaining the GPT 
architecture, they only fine-tune the model on a large corpus of 
Chinese poetry. 

       Dhivyaa et al., 2022 [7] propose an attention-based LSTM-
NMT model for Tamil text summarization based on the GPT-2 
architecture. They propose an improved GPT-2 model to 
perform text summarization. They propose an efficient model 
for text summarization in an Indic language, Tamil. Their 
model uses an attention-based LSTM-NMT model for 
transliterating Tamil text to English text which is then 

processed by GPT-2 and later translated back to Tamil. They 
improve the existing GPT-2 architecture by adding a masked 
self-attention layer to the decoder block, allowing for large 
batch sizes and parallel processing of multiple tokens. 

III. OUR METHOD 
The study can be broadly divided into six phases, model 

selection, data collection and preprocessing model finetuning, 
training, hyperparameter finetuning, and model evaluation. We 
use an improved GPT-2 model for this study. We call this model 
GPT-K. This model is then trained on a large corpus of Kannada 
text to generate text samples in Kannada. We adopt GPT-2's 
vocabulary and tokenization. 

A. Model details 
GPT-2 [3], based on the transformer architecture[1], is the 

basic model used for our study. Figure 1 shows the basic model 
proposed in [3]. Equation 1 is used by the authors of [3] to 
factorize the joint probabilities over symbols as the product of 
conditional probabilities since, language has a natural sequential 
ordering. In the equation, x represents the set of variables, 
whereas S represents the set of samples. We use the open-
sourced 117Million parameters GPT-2 model for this study. 
Depth-wise convolution layers are then added after each K, Q, 
and V projections in self-attention as proposed in [5]. 
ReLU(Regularized evolution) activations are also squared as 
proposed in [5]. These changes reduce compute requirements 
significantly. We adopt the tokenization and encoding for UTF-
8-based character sets released in GPT-2 for encoding Kannada 
text. Figure 2 shows the improved GPT architecture. 

𝑝(𝑥) =&𝑝(𝑆(|𝑆*,… , 𝑆(-*)
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       Equation 1. 



         

 
                Figure. 1 GPT-2 architecture 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Improved GPT-2 architecture 

 

 

 

B. Data collection and preprocessing 
Datasets available on the web, OSCAR corpus [8], CC-100 

[9], and the Kannada Wikipedia dump [10] were collected. 
These datasets were then cleaned and preprocessed. All the 
metadata was stripped while retaining only Kannada text which 
was then written to a set of text files, rendering a continuous 
corpus of cleaned text. This data was preprocessed, and byte-
pair encoding (BPE) was used to encode these files. Invalid 
UTF-8 characters were ignored in this process, and only the 
valid UTF-8 bits were encoded. The encoded text was then 
written to a single file. Figures 3 and 4 show samples of the raw 
and cleaned corpus, respectively. 

 
Figure 3. Sample of the raw corpus 

 
Figure 4. Sample from the cleaned corpus 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



C. Pretraining and finetuning 
The pretrained GPT-2 model was used in our study. No 

additional pre-training was employed. The improved GPT-2 
based model GPT-K was then trained on a large corpus of 
Kannada text. The training sequences were then fed into the 
transformer model to train an autoregressive model. Care was 
taken to prevent model overfitting [12] as it tends to retrieve raw 
sentences from the corpus. 

D. Training 
The model was trained with approximately 9.5 billion tokens 

for 10000 steps with a batch size of 1 for a single epoch. The 
corpus created in B was used as the dataset. The training takes 
approximately 150 hours on 12 intel i7 CPUs. A MiniForge3-
based Conda environment was used to train the model 
implemented in TensorFlow. Both Adam[13] and SGD[14] 
optimizers were experimented with for compute optimization. 
SGD consistently showed better optimization results and 
resulted in lesser compute requirements than Adam. This is due 
to the lesser number of book-keeping variables in SGD than 
Adam [15]. A tensor rematerialization framework, as proposed 
in [16], is used for graph optimization to further reduce compute 
requirements. SGD shows better training and testing accuracies 
than Adam. Figure 5 shows the training and testing accuracies 
and losses for different optimizers where Adam is clearly 
outperformed by SGD. Top K sampling was used as the 
sampling method. 

 
Figure 5. Comparison of Adam and SGD optimizers[15] 

 

E. Hyperparameter finetuning 
Finetuning hyperparameters showed a significant reduction 

in loss during model training. Increasing the learning rate 
showed a significant reduction in losses up to a point, followed 
by an exponential increase in the training loss. Increasing the 
number of attention heads and top k showed similar results, 
except that the loss linearly increased after a certain threshold. 

Table 1. and Figure 6 show the correlation between learning rate 
and training loss. Table 2 and Figure 7 shows the correlation 
between top_k and learning loss. Table 3 and Figure 8 shows the 
relation between the number of attention heads and learning 
loss. 

Learning rate Loss 

0.0001 1.1 
0.0005 1.09 

0.001 1.12 
0.005 1.08 

0.01 1.04 
0.05 10.34 

0.1 679 
Table 1. Correlation of learning rate and loss 

 

 
Figure 6. Correlation between learning rate and loss 

 

Top_k Loss 

40 1.47 
60 1.36 
80 1.35 

100 1.33 
120 1.35 
140 1.32 
160 1.3 
180 1.3 
200 1.28 
220 1.26 
240 1.25 
260 1.28 

Table 2. Correlation between top_k and loss 

 



 
Figure 7. Correlation between top_k and loss 

 

Number of attention 
heads 

Loss 

10 1.25 
12 1.21 
14 1.19 
16 1.13 
18 1.32 

Table 3. Correlation between Number of attention heads 
and loss 

 
Figure 8. Correlation between Number of attention heads 

and loss 

F. Evaluation 
Finetuning Hyperparameters showed a significant reduction 

in loss during model training. Increasing the number of attention 
heads and layers significantly reduced the learning loss. The 
model was evaluated on one major standard benchmark called 
RecallOriented Understudy for Gisting Evaluation (ROUGE) 
[17]. Equation (2) is used to calculate the F-measure. 

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 

Equation 2. 

IV. GENERATED SAMPLES 
The below images show certain samples of generated text 

which are both syntactically and semantically correct. We 
observed that the model generated syntactically correct text in 
most cases, but the generated text was not semantically correct 
except in rare cases. This can be attributed to short training times 
and low batch sizes. Figures 9 through 13 show the samples 
generated by the model. 

 

 
Figure 9. 
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Figure 11. 

 

 
Figure 12. 

 

 
Figure 13. 

V. FUTURE WORK  
The model can be further improvised to reduce compute 

requirements. Minor changes to the model architecture can be 
considered to this effect. Further, the model training time can be 
increased. The model can be trained on a larger corpus of data 
for more epochs with large batch sizes to improve its accuracy. 
Better optimizers can be used to improve compute efficiency. 
Further studies on hyperparameter finetuning can be considered 
to reduce loss and improve the efficiency of the model. 

VI. CONCLUSION  
Although the development of language models is taking 

place on a global scale, the use of AI assistants in regional 
languages has not yet been developed. Despite the fact that 
international markets are becoming more diverse, there is still 
an underdeveloped market for regional language models. The 
model presented in this paper is a GPT-2 based model, which 
can generate text in the Kannada language. Though the samples 
are not perfect all the time, the model is a good start for further 
research. We present this study in the hope that it will become a 
prototype for language models in regional languages. 
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