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C.! Pretraining and finetuning 
The pretrained GPT-2 model was used in our study. No 

additional pre-training was employed. The improved GPT-2 
based model GPT-K was then trained on a large corpus of 
Kannada text. The training sequences were then fed into the 
transformer model to train an autoregressive model. Care was 
taken to prevent model overfitting [12] as it tends to retrieve raw 
sentences from the corpus. 

D.! Training 
The model was trained with approximately 9.5 billion tokens 

for 10000 steps with a batch size of 1 for a single epoch. The 
corpus created in B was used as the dataset. The training takes 
approximately 150 hours on 12 intel i7 CPUs. A MiniForge3-
based Conda environment was used to train the model 
implemented in TensorFlow. Both Adam[13] and SGD[14] 
optimizers were experimented with for compute optimization. 
SGD consistently showed better optimization results and 
resulted in lesser compute requirements than Adam. This is due 
to the lesser number of book-keeping variables in SGD than 
Adam [15]. A tensor rematerialization framework, as proposed 
in [16], is used for graph optimization to further reduce compute 
requirements. SGD shows better training and testing accuracies 
than Adam. Figure 5 shows the training and testing accuracies 
and losses for different optimizers where Adam is clearly 
outperformed by SGD. Top K sampling was used as the 
sampling method. 

 
Figure 5. Comparison of Adam and SGD optimizers[15] 

 

E.! Hyperparameter finetuning 
Finetuning hyperparameters showed a significant reduction 

in loss during model training. Increasing the learning rate 
showed a significant reduction in losses up to a point, followed 
by an exponential increase in the training loss. Increasing the 
number of attention heads and top k showed similar results, 
except that the loss linearly increased after a certain threshold. 

Table 1. and Figure 6 show the correlation between learning rate 
and training loss. Table 2 and Figure 7 shows the correlation 
between top_k and learning loss. Table 3 and Figure 8 shows the 
relation between the number of attention heads and learning 
loss. 

Learning rate Loss 

0.0001 1.1 
0.0005 1.09 

0.001 1.12 
0.005 1.08 

0.01 1.04 
0.05 10.34 

0.1 679 
Table 1. Correlation of learning rate and loss 

 

 
Figure 6. Correlation between learning rate and loss 

 

Top_k Loss 

40 1.47 
60 1.36 
80 1.35 

100 1.33 
120 1.35 
140 1.32 
160 1.3 
180 1.3 
200 1.28 
220 1.26 
240 1.25 
260 1.28 

Table 2. Correlation between top_k and loss 

 



 
Figure 7. Correlation between top_k and loss 

 

Number of attention 
heads 

Loss 

10 1.25 
12 1.21 
14 1.19 
16 1.13 
18 1.32 

Table 3. Correlation between Number of attention heads 
and loss 

 
Figure 8. Correlation between Number of attention heads 

and loss 

F.! Evaluation 
Finetuning Hyperparameters showed a significant reduction 

in loss during model training. Increasing the number of attention 
heads and layers significantly reduced the learning loss. The 
model was evaluated on one major standard benchmark called 
RecallOriented Understudy for Gisting Evaluation (ROUGE) 
[17]. Equation (2) is used to calculate the F-measure. 

0 1 2345673 % 8 9
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Equation 2. 

IV.! GENERATED SAMPLES 
The below images show certain samples of generated text 

which are both syntactically and semantically correct. We 
observed that the model generated syntactically correct text in 
most cases, but the generated text was not semantically correct 
except in rare cases. This can be attributed to short training times 
and low batch sizes. Figures 9 through 13 show the samples 
generated by the model. 

 

 
Figure 9. 
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Figure 11. 

 

 
Figure 12. 

 

 
Figure 13. 

V.! FUTURE WORK  
The model can be further improvised to reduce compute 

requirements. Minor changes to the model architecture can be 
considered to this effect. Further, the model training time can be 
increased. The model can be trained on a larger corpus of data 
for more epochs with large batch sizes to improve its accuracy. 
Better optimizers can be used to improve compute efficiency. 
Further studies on hyperparameter finetuning can be considered 
to reduce loss and improve the efficiency of the model. 

VI.! CONCLUSION  
Although the development of language models is taking 

place on a global scale, the use of AI assistants in regional 
languages has not yet been developed. Despite the fact that 
international markets are becoming more diverse, there is still 
an underdeveloped market for regional language models. The 
model presented in this paper is a GPT-2 based model, which 
can generate text in the Kannada language. Though the samples 
are not perfect all the time, the model is a good start for further 
research. We present this study in the hope that it will become a 
prototype for language models in regional languages. 
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