
EasyChair Preprint
№ 6802

The Covid-19 CODO Development Process: an
Agile Approach to Knowledge Graph
Development

Michael DeBellis and Biswanath Dutta

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 8, 2021

The Covid-19 CODO Development Process: An Agile Ap-

proach to Knowledge Graph Development

Michael DeBellis [0000-0002-8824-9577] and Biswanath Dutta 2[0000-0003-3059-8202]

1 mdebellissf@gmail.com, michaeldebellis.com
2 bisu@isibang.ac.in, Indian Statistical Institute, Bangalore, India

Abstract. The CODO ontology was designed to capture data about the Covid-19

pandemic. The goal of the ontology was to collect epidemiological data about the

pandemic so that medical professionals could perform contact tracing and answer

questions about infection paths based on information about relations between pa-

tients, geography, time, etc. We took information from various spreadsheets and

integrated it into one consistent knowledge graph that could be queried with

SPARQL and visualized with the Gruff tool in AllegroGraph. The ontology is

published on Bioportal and has been used by two projects to date. This paper

describes the process used to design the initial ontology and to develop transfor-

mations to incorporate data from the Indian government about the pandemic. We

went from an ontology to a large knowledge graph with approximately 5M triples

in a few months. Our experience demonstrates some common principles that ap-

ply to the process of scaling up from an ontology model to a knowledge graph

with real-world data.

Keywords: Ontology, Knowledge Graph, Healthcare, Covid-19, Agile Meth-

ods, Software Development Life-Cycle (SDLC), OWL, SPARQL, Transfor-

mations.

1 Introduction

At the beginning of the Covid-19 pandemic (March 2020) we began to develop an on-

tology called CODO, an Ontology for collection and analysis of COVID-19 data. The

ontology followed the FAIR model for representing data and incorporated classes and

properties from standard vocabularies such as FOAF, Dublin Core, Schema.org, and

SNOMED CT. While other Covid ontologies, such as CIDO, VIDO, CoVoc, etc. (more

detail provided in section 1.1) focus on analyzing the virus, CODO focuses on epide-

miological issues, such as tracking how the virus was spread based on data about rela-

tionships, geography, temporal relations, etc. For more details on the FAIR principles

and the general structure of the CODO ontology see [1]. We evolved what started as a

small ontology in Protégé to a large knowledge graph (KG) in the AllegroGraph triple-

store product from Franz Inc.1 We use the term ontology to refer to the CODO Web

Ontology Language (OWL) model with only basic example test data. We use the term

1 http://www.allegrograph.com

mailto:mdebellissf@gmail.com
http://www.allegrograph.com/

2

knowledge graph to refer to the ontology populated with large amounts of real-world

data.

1.1 Relation to Other Work

There has been extensive work in the Semantic Web community to add value to the

vast amount of data produced by the pandemic. The existing Covid-19 ontologies can

broadly be classified into three categories:

1. High level statistics that illustrate the number of patients infected and the

number of deaths per region for various time intervals.

2. Modeling of concepts required to analyze the virus in order to develop treat-

ments and vaccines. This includes modeling the Covid-19 virus and how it

is similar and different from related viruses such as SARS and modeling

drugs used to treat and develop vaccines for viruses and other illnesses sim-

ilar to Covid-19.

3. Modeling the space of scientific articles on topics related to Covid-19 in

order to provide semantic search capabilities for researchers developing

treatments and vaccines.

Examples of the first category include the Johns Hopkins [2] and NYTimes [3]

knowledge graphs. Examples of the second category include CIDO [4], IDO-COVID-

192, COVID-19 Surveillance Ontology3, and CoVoc4. These ontologies all extend the

Infectious Disease Ontology (IDO) [23]. Examples of the third category include The

Covid-19 Knowledge Graph.[5]

CODO fills a specific niche that is different from these categories. It focuses on

modeling epidemiology and the various ways that the virus has spread throughout the

population, with a case study of India. For example, the demographics of the patients

who were infected by the virus (age, sex, family and social relations, geographic home,

travel history) and contact tracing from one patient to another. The graphical features

of the AllegroGraph Gruff tool are especially useful for this type of analysis. Infor-

mation such as the graph of which patient infected which other patients can be gener-

ated automatically with Gruff (see figures 6-7 below). Information that is implicit in

the data but difficult to understand without a knowledge graph model can be made ex-

plicit and obvious with a knowledge graph and visualization tools. This allows medical

professionals to conduct contact tracing and perform epidemiological research. Alt-

hough, the focus of the current work has been on the pandemic in India, CODO can be

applied to any location and indeed to the spread of any infectious disease.

2 https://bioportal.bioontology.org/ontologies/IDO-COVID-19
3 https://bioportal.bioontology.org/ontologies/COVID19
4 https://www.ebi.ac.uk/ols/ontologies/covoc

https://bioportal.bioontology.org/ontologies/IDO-COVID-19

3

In addition, the CODO team has been taking part in a harmonization process with

many of the designers of the ontologies described above.[22] As part of the harmoni-

zation process, we have altered the design of the ontology to be more consistent with

and more easily integrate with other ontologies that deal with different aspects of the

Covid-19 pandemic such as the CIDO ontology.

The main contributions of this paper are:

1. Details the CODO Agile knowledge graph development processes

2. Describes the issues related to the real world COVID-19 data we incorporated and

its transformation to a knowledge graph.

3. Demonstrates some of the visualization capabilities provided by the CODO

knowledge graph.

The rest of the paper is organized as follows: Section 2 discusses the CODO ontology

design process and its lifecycle. Section 3 discusses the five phases of CODO KG de-

velopment activity. The issues related to the pandemic data and their transformations

to the graph are discussed in section 4. Section 5 provides example results. Finally,

section 6 concludes with the future plans to enhance CODO and to harmonize it with

other ontologies designed for the pandemic, especially those in the OBO foundry.

2 CODO Processing Lifecycle

Our development process was a hybrid of two different methods. We utilized the

YAMO process for ontology development [6] and Agile Methods [7] to drive our iter-

ations and overall approach to analysis, design, implementation, and testing. These two

are complimentary, they address different aspects of the development process. YAMO

addresses the specific details of how to design an ontology rather than say an Object

Oriented Programming (OOP) or transactional database system. Agile Methods defines

the approach to development issues that apply to all software development processes

such as length of iterations and interaction between analysis, design, testing, and im-

plementation. It is possible to practice the YAMO methodology in a Waterfall or Agile

process. This is similar to the Rational Unified Process (RUP) which defines the design

artifacts and processes to develop an OOP system. Although RUP is typically done in

an iterative manner it can be used in a Waterfall manner as well.[8]

We have created a hybrid approach that is well suited to knowledge graph develop-

ment in general. The specific Agile methods that we applied were:

• Test Driven Development. We had test data from the very first ontology as

well as various competency questions (stories in Agile terminology) that we

used to practice test-driven development of the ontology. As we began to ac-

quire more data it was clear that simply visually inspecting the ontology to

4

validate it was inadequate. Hence, we developed SPARQL queries and Lisp

functions5 to facilitate the testing process.

• Rapid Iterations. Our iterations were approximately on a weekly basis. To pre-

sent the path of our development we have abstracted these iterations into

monthly phases where we describe the major development done in each phase.

• Refactoring. Our goal was to deliver technology that could be usable from the

very beginning. However, as we scaled up the ontology to support larger data,

we needed to refactor the model and the transformations we used to transform

tabular data into a knowledge graph. As an example of how we used refactor-

ing of the model (as opposed to refactoring the transformations described be-

low), in our initial model the diagnosis date and the date that the patient was

released from the hospital were simply stored on the Patient class. When we

decided to take advantage of the temporal reasoning in AllegroGraph we re-

factored these properties onto the Disease class and made Disease a subclass

of the Event class which had the appropriate properties for temporal reasoning

such as the start and end time of an Event. We used this information to gener-

ate visualizations and summary data such as the average length of hospitaliza-

tion and temporal relations among patients graphed on a timeline.

• Bottom Up and Top-Down Design. A key concept of Agile is that design

emerges over time rather than being set in stone at the end of an Analysis and

Design phase as in the Waterfall model. We designed an initial ontology based

on our best understanding of the problem and the existing data but refactored

that design as we acquired more data and added new ways to utilize the data.

• Story driven development. The YAMO methodology is designed around com-

petency questions that the model is meant to answer. These competency ques-

tions are essentially the same as stories in Agile development.

Figure 1 illustrates the complete life cycle as data goes from heterogeneous input for-

mats to a knowledge graph. These processes consist of:

1. The Upload process

2. Data Transformation

3. Reasoning

4. Publication

The Upload process imports data into the initial version of the triplestore. The inputs

to this process are various documents and the CODO ontology. The output of this pro-

cess is an initial triplestore knowledge graph. An additional output of this process are

suggested standards fed back to the user communities that recommend canonical for-

mats to standardize future input data in order to make it more amenable to conversion

into a knowledge graph.

5 We utilized Lisp because our team was very small (2 people), and the lead developer had the

most experience in Lisp and we wanted to work as rapidly as possible to meet the needs of

the pandemic. In future versions we will reimplement the functions in Python.

5

Fig. 1. CODO Data Processing Life-Cycle

The Data Transformation process transforms text strings from the Upload process

into objects and property values. The boundary between the Upload and Transformation

process is not rigid. It is possible to do a significant amount of conversion into objects

and properties via the initial Upload process using tools such as Cellfie [11]. However,

due to the varied nature of our input data we often required the power of a programming

language and SPARQL to transform data over those available in tools designed for

initial uploading. Thus, we would often simply transfer strings from columns directly

to data properties (which we call utility properties) in the initial knowledge graph and

then apply more sophisticated transformations to the graph that converted these data

properties into objects and object properties. We deleted each utility property string

after it had been transformed. The output of the transformation process is the initial

semantic knowledge graph model.

The Reasoning process utilizes OWL and rule-based reasoners. This is required for

reasoning about social and family relations as well as other kinds of relations. For ex-

ample:

• Reasoning about inverse values. E.g., if a patient X is the father of patient

Y then patient Y is the child of patient X.

• Reasoning about property hierarchies. E.g., if patient X is the father of pa-

tient Y then patient X is also the parent of patient Y.

• Reasoning about transitive place relations. E.g., if city X is contained in

state Y and state Y is contained in nation Z then city X is contained in nation

Z.

• SWRL (and later SPARQL) rules to cover reasoning that can’t be done with

OWL. E.g., if patient X is the brother of patient Y and patient Z is the

daughter of patient Y then patient X is the uncle of patient Z.

 For the early iterations of CODO this process consisted of running the Pellet rea-

soner which included execution of SWRL rules. For later iterations of CODO where

Protégé could not support the large number of objects in the knowledge graph we uti-

lized the AllegroGraph triplestore. In these later iterations we utilized the Materializer

6

reasoner in AllegroGraph. In addition, since SWRL is currently not supported in Alle-

groGraph we replaced SWRL rules with equivalent SPARQL rules.

Finally, the publication process consists of making the knowledge graph available

as a SPARQL endpoint. In addition, we publish and update the CODO ontology on

Bioportal and the transformation rules and Lisp code on Github.

3 The CODO KG Development Phases

The CODO6 project was divided into 5 phases, beginning with a basic ontology in Pro-

tégé with only a handful of test data to an AllegroGraph knowledge graph with over

3M triples.

3.1 Phase 1: Protégé Ontology

The initial phase consisted of defining the basic competency questions that we wanted

the ontology to answer and building the initial ontology in the desktop version of the

Protégé ontology editing tool [9]. Competency questions are a concept from YAMO.

[6] Example competency questions are:

• What is the travel history of patient p (see figure 6)?

• What is the transitive closure for any patient p of all patients who infected

and were infected by patient p (see figure 7)?

• Who are the people with any known relationship (family, co-workers, etc.)

to patient p?

• What was the average length of time from infection to recovery for all pa-

tients or for patients in a given geographic area or time span?

• What are summary statistics for the incidents of infection, both globally and

in different geographic areas and time periods?

This version of the ontology had no real data. However, as part of our test-driven

approach we created representative individuals as example test data. Primarily patients

but also test results, cities, etc. These individuals were used to validate the ontology.

This version included rules in the Semantic Web Rule Language (SWRL) [10] to define

concepts beyond basic OWL Description Logic such as Aunts and Uncles.

3.2 Phase 2: Cellfie and AllegroGraph

In phase 2 we began to use the Cellfie plugin for Protégé to load data from the Indian

government about the pandemic. As we loaded our initial data it soon became clear that

we required a true database to get acceptable performance. Protégé is a modeling tool

and is not designed to accommodate large data sets. We chose the free version of the

6 The details of the CODO project can be found at: https://github.com/biswanathdutta/CODO.

The CODO ontology can be found at: https://bioportal.bioontology.org/ontologies/CODO

https://github.com/biswanathdutta/CODO
https://bioportal.bioontology.org/ontologies/CODO/?p=summary

7

AllegroGraph triplestore from Franz Inc. As a result, we refactored our SWRL rules

into SPARQL as SWRL is not currently supported by AllegroGraph.

We also began to use Web Protégé to store the CODO ontology. This made collab-

oration much easier. Prior to using Web Protégé we had issues with consistency be-

tween the various changes we each made to the ontology. Web Protégé eliminated these

issues and also allowed further collaboration capabilities such as having threaded dis-

cussions about various entities stored with the ontology. However, there are also capa-

bilities that are currently only supported in the desktop version of Protégé, most signif-

icantly the ability to run a reasoner to validate the model. Thus, at regular intervals we

would download the ontology into the desktop version of Protégé to run the Pellet rea-

soner and make other changes not currently supported in Web Protégé.

3.3 Phase 3: SPARQL Transformations

In phase 3 we began to use SPARQL to transform the strings that were too complex for

Cellfie to process. This is discussed in more detail in the next section.

3.4 Phase 4: Pattern Matching and LISP

Although we performed pattern matching in phase 3, the majority of our early SPARQL

transformations were specific (ad hoc, discussed below). In phase 4 we eliminated most

of these transformations with fewer pattern matching transformations in SPARQL and

Lisp. In this phase we also wrapped all of our SPARQL transformations in Lisp code.

This eliminated the tedious and potentially error filled task of manually running each

SPARQL transformation in AllegroGraph’s Gruff editor [12]. Instead, we could run

Lisp functions which executed several SPARQL transformations automatically.

We also began to use Lisp to do more complex transformations that were too difficult

to do in SPARQL such as iterating through a sequence of patient IDs. We created Lisp

functions that utilized the regex extensions in Franz’s version of Common Lisp and

directly manipulated the knowledge graph.

3.5 Phase 5: Test Harness and Additional Refactoring of Transformations

One issue we identified when testing the transformations developed in the previous

phase was that in some cases a general pattern matching transformation might make an

inappropriate transformation to a string it wasn’t designed to match. In order to facili-

tate testing we developed a test harness in Lisp. In testing mode when we deleted a

utility property, we would copy it to another test utility property. Thus, we could still

take advantage of our strategy of working from specific to more general transformations

(see figure 4) which required deleting utility property values once they were processed

but we could retain an audit trail so that we could inspect objects to ensure that the

processed strings were appropriately transformed.

8

In addition, we further refactored our SPARQL and Lisp transformations to elimi-

nate multiple specific transforms with individual pattern matching transforms. We also

imported data on longitude and latitude for the various places (cities, states, nations,

etc.) in the CODO ontology. A significant part of our data involves geographic infor-

mation such as where patients were infected, where they live, travel, etc. We added

various SPARQL queries that could provide statistical information and connectivity

among patients which could be visualized via the Gruff graph layout tool. Finally, we

took advantage of the temporal reasoning capabilities in AllegroGraph. Allegro has a

temporal reasoning model based on the well-known Allen model for reasoning about

time.[13] We added the required properties from the Allegro model to the CODO on-

tology so that we could take advantage of the capabilities in Gruff for displaying graphs

along a timeline and could also use SPARQL queries to create additional summary data

and visualizations about the spread of the pandemic over time.

4 Transforming Strings to Objects

The most difficult part of transforming data from documents, spreadsheets, and rela-

tional databases into a knowledge graph is transforming data represented by strings and

tables into objects and property values.[14] This is because much of the information

required for a useful knowledge graph is implicit in the context of a document. One of

the main benefits added by a knowledge graph is to take this implicit context infor-

mation that users apply when reading the document and make it explicit in the

knowledge graph.

For example, one of the columns in the spreadsheets that we used as a data source

had the heading Reason. This was meant to be the reason that the patient in that row

contracted the virus. Examples of values were:

1. “Travel to Bangalore”

2. “Contact with P134- P135- P136- P137 and P138”

3. “Father”

4. “Policeman on duty”

The meaning for these strings is implicit but easy for humans to understand. Example

1 means that the patient travelled to Bangalore and caught the virus as a result of this

trip (information about travel companions was captured in another column). Example

2 means that the patient had contact with a certain group of other patients and caught

the virus from one of them. Example 3 means the patient caught the virus from their

father (family relations were captured in another column). Example 4 means that the

patient was a policeman on duty and caught the virus in the course of their duties. In

the CODO ontology this kind of information results in creation of several different ob-

jects and property values. In addition to transforming strings in each column our trans-

formations needed to integrate relevant information from other columns.

9

As an example of the kinds of transformations we developed, ExposureToCOVID-

19 is a class with several sub-classes for the different kinds of potential exposures to

the virus. Figure 2 shows a partially expanded view of the subclasses of this class in

Protégé. For each string in the Reason column, we need to create an instance of the

appropriate subclass of ExposureToCOVID-19 and then make that new individual the

value of the suspectedReasonOfCatchingCovid-19 property for the patient. We also

need to integrate information such as family relations and travel companions from other

columns.

Relating back to the examples above, Example 1 should result in an instance of In-

fectedCo-Passenger. Example 2 should result in an instance of CloseContact. Example

3 should result in an instance of InfectedFather (a subclass of InfectedFamilyMember).

Example 4 should result in an instance of InfectedViaPoliceWork.

In addition, depending on the specific instance, other objects or property values may

need to get instantiated. For example, for the InfectedCo-Passenger class there is a

property to define the place that was the travel destination, in this case the city Banga-

lore India. For strings such as example 2 the contractedVirusFrom property on the Pa-

tient needs to have values for each Patient referenced in the string as a value.

The difficulty with pro-

cessing these types of strings is

that the input data does not ad-

here to standardized patterns. In

some cases, someone may

simply enter “Bangalore” in

other cases “Travel to Banga-

lore”. Similarly, when the rea-

son is contact with other patients

there are many different patterns

used to enter the data. Example

2 can also be entered as: “Con-

tact with P134-P138”, “Contact

with P134, 135, 136, 137, and

138”, “Contact with P134-138”,

and other formats.

While upload tools such as Cell-

fie can do simple pattern match-

ing these more complex exam-

ples are difficult to process with

upload tools. As a result, we uti-

lized a two-step process for up-

loading and transforming data as illustrated in Figure 1. During the Upload process we

would where possible directly transform strings to data types or objects. However,

where there were many patterns to the data, we would simply upload those strings into

Fig. 2. Exposure to Covid Class Hierarchy

10

data properties we defined as utility properties. Then in the Transformation process we

would use tools such as SPARQL and Lisp to perform more complex pattern matching

on the strings uploaded into the utility data properties. The Lisp and SPARQL files can

be found at [15].

Our process for transforming these types of strings illustrates our Agile development

approach. To begin with when we had a small amount of sample data, we wrote specific

SPARQL queries. We call these queries transformations because they don’t just query

the data but change it via INSERT and DELETE statements. To begin we had many

SPARQL transformations in a text file which we would execute by hand via Allegro-

Graph’s Gruff tool. These included transformations (which we call ad hoc transfor-

mations) that directly match for specific strings via WHERE clauses in SPARQL and

then perform the appropriate creation of objects and property values via INSERT

clauses.

Figure 3 shows an example of an ad hoc transformation. The FILTER statement

exactly matches a specific string, and the INSERT statement adds the appropriate new

triples. E.g., it creates a new instance of the CloseContact class shown in Figure 2 and

adds that to the suspectedReasonOfCatchingCovid-19 property for the patient. The

DELETE statement removes the utility string value.

DELETE {?p codo:reasonString ?rs.}

INSERT {?nexp a codo:CloseContact.

 ?p codo:suspectedReasonOfCatchingCovid-19 ?nexp;

 codo:contractedVirusFrom ?pc1; codo:hasRelationship ?pc1;

 codo:contractedVirusFrom ?pc2; codo:hasRelationship ?pc2.}

WHERE {?p codo:reasonString ?rs; codo:statePatientID ?pid.

 ?pc1 codo:statePatientID "485". ?pc2 codo:statePatientID "483".

BIND (IRI((CONCAT("http://www.isibang.ac.in/ns/codo#CloseContact-",

?pid))) AS ?nexp).

FILTER(?rs = "Contact of P485 and P483")}

Fig. 3. An Ad hoc SPARQL Transformation

Of course. this approach was not scalable. As a result, we defined a more scalable

approach to transforming our data. That process was as follows:

1. Delete each utility data property value after it has been transformed (in Figure

3 the reasonString property is a utility property).

2. Apply transformations in an order from the most specific transformations to

more general transformations. See figure 4.

This process illustrated in figure 4 allowed us to write pattern matching transformations

that were very general and would not correctly process certain unusual strings. These

more specific strings were processed first by less general pattern matching transfor-

mations. After processing, the value for the processed utility property was deleted so

11

that the more general pattern matching transformations could be applied without risk

of error on the more unusual strings.

Figure 5 shows a pseudo code

fragment7 from a Lisp function that

does general pattern matching.

This function matches strings such

as: "Contact of P6135-6139". The

function first executes a SPARQL

query to find all the patients with a

reasonString that matches the pat-

tern. It then uses the Allegro CL

function match-re to extract the

sub-string required for the transfor-

mation (e.g., “6135-6139"). It then uses the function split-re to extract the two patient

ID strings, in this case “6135” and “6139”. It then converts these strings to integers

and loops from the first to last integer. Within the loop it performs the appropriate ma-

nipulation of the knowledge graph. This requires converting each integer back into a

string and performing a lookup of the Patient object that matches the ID. Finally, it calls

the function make-close-contact-object which does the equivalent of the part of the

SPARQL transformation in figure 3 to create an instance of the CloseContact class and

fill in appropriate property values. The make-close-contact-object function also deletes

the utility property value. If the system is running in test mode it saves a copy of the

value on a testing utility property.

results = run-sparql("SELECT ?p ?rs WHERE {?p codo:reasonString ?rs.

FILTER(REGEX(?rs, 'Contact of P\\\\d+-\\\\d+'))}")

for result in results do

 patient = first(result)

 rs = second(result)

 patient-ids = match-re(“\\d+-\\d+”, rs)

 first-and-last-list = split-re(“-“, patient-ids)

 first-id-num = integer(first(first-and-last-list))

 last-id-num = integer(second(first-and-last-list))

 for id-index from first-id-num to last-id-num do

 contact-patient = freetext-get-unique-subject(string(id-index))

 add-triple(patient, codo:contractedVirusFrom, contact-patient)

 make-close-contact-object(patient, contact-patient)

Fig. 5. Pseudo Code Fragment for A General Pattern Matching Lisp Function

The most general pattern matching function for these types of contact strings (a

transformation at the bottom of figure 4) simply uses the Allegro CL function: (split-re

"\\D+" rs) where rs is bound to the reasonString to extract all the numeric substrings in

7 See [15] for the actual Lisp and SPARQL code for this and all transformations.

file://///d+-/d+

12

the string. This function needs to be run after other functions that match patterns for

locations, relatives, etc. since those strings may have numbers in them that are not re-

lated to patient ID’s. It also needs to run after transformations that have patterns such

as “P6135-6139” since it only finds each individual numeric string and would not cor-

rectly process the iteration implied in those types of strings. When run at the appropriate

time, after the more specific strings have been removed this general pattern matching

function processes a great deal of the strings that were previously handled by several

more specific transformations. This is an example of how refactoring can help us build

a knowledge graph capable of handling increasing amounts of data.

5 Results

The CODO knowledge graph has over 71 thousand patients and approximately 5M tri-

ples after running the Materializer reasoner. We implemented 100% of the initial com-

petency questions defined in the original phase of the project via SPARQL queries.

These queries can be found at [15]. In addition, we found countless opportunities for

providing new ways to visualize the data once it is in one integrated graph format. Just

three of these are shown in figures 6 and 7 below. These visualizations come from

simple SPARQL queries. Typically, (as in these figures) we use Gruff to automatically

transform the results of the SPARQL query into a visualization. We have also imported

the output of SPARQL queries into Excel to create pie and other charts.

Fig. 6. Visualization of Geographic and Travel Data

5.1 Evaluation of CODO

The most significant failure of the team to follow an Agile process is that as much as

we tried, it was very difficult to find medical professionals to define requirements and

to utilize the ontology and give us feedback. The reason is analogous to the classic

Knowledge Acquisition Bottleneck problem. Healthcare professionals in India were

so overwhelmed with simply dealing with the pandemic that they were unable to par-

ticipate in research. As part of the Covid harmonization process [22], Dr. Sivaram Ar-

abandi MD reviewed the ontology. CODO was also used as a test ontology for the

OOPS! Ontology evaluation tool.[24] Design changes were made as a result of both

13

these reviews. We hope that future versions of CODO will be utilized and evaluated

by more healthcare professionals as their time is freed from the crisis of the pandemic.

Fig. 7. Visualization of Infection Paths among Patients in the CODO Knowledge Graph

5.2 Privacy Issues

Although the data in CODO was anonymous, legislation such as the US Health Insur-

ance and Portability Act (HIPAA) and the European Union’s Regulation 2016/679

may make utilization of CODO for functions such as contact tracing problematic.

However, as [25] points out, Google and Apple have released voluntary contact trac-

ing apps and nations such as Singapore and Ireland have had success in the voluntary

usage of these apps by patients and consumers.

6 Conclusions

Most current ontology design methods (e.g., [16], [17], the models surveyed in [18])

emphasize an approach that is essentially a Waterfall model where all the emphasis is

on designing the model (essentially the T-Box). For example, in the evaluation of the

productivity of upper models in [19] the evaluation criteria were focused only on the

model with no consideration of the model’s ability to incorporate and provide value to

actual data. These approaches have the same problems for designing ontologies as the

waterfall model in general has shown for most software development projects [7]. The

emphasis on getting a “perfect” design the first time is doomed to failure. This insight

goes back to Boehm’s spiral model.[20] What might be a correct ontology in terms of

the actual domain may turn out to be difficult to use because of issues with existing

data or other non-functional requirements. In the real-world good software design

comes both from the bottom up (from constraints imposed by legacy data, business

processes, etc.) as from the top down (by analysis of the problem domain). Our experi-

ence with CODO, where only two developers developed a large knowledge graph in a

few months, is evidence that the Agile approach provides the same benefits for the

design of knowledge graphs as it has demonstrated for many other types of software

systems [21]. In addition, our experience demonstrates principles that apply to real-

world knowledge graph development in general:

14

• Use of pattern matching transformations. In transforming from “strings to

things” [14] the basic capabilities of upload tools may not be sufficient and

may require transformations that utilize features such as iteration in pro-

gramming languages.

• Transforming from specific to general. In developing transformations, the

most productive strategy is to begin with the most specific types of patterns

and then use more general transformations after ensuring that outliers that

would be incorrectly processed by the general transformations have been

processed and removed.

In the future we plan to investigate the use of ML and NLP for these transformations

Acknowledgements

This work has been supported by Indian Statistical Institute, Kolkata. This work was

conducted using the Protégé resource, which is supported by grant GM10331601 from

the National Institute of General Medical Sciences of the United States National Insti-

tutes of Health. Thanks to Franz Inc. (http://www.allegrograph.com) for their help with

AllegroGraph and Gruff. Thanks to Dr. Sivaram Arabandi, MD for his feedback on the

CODO ontology.

References

1. Dutta, B. and DeBellis, M. (2020). CODO: an ontology for collection and analysis

of COVID-19 data. Proc. of 12th Int. Conf. on Knowledge Engineering and Ontol-

ogy Development (KEOD), 2-4 November 2020.

2. Gardner, Lauren. Modeling the Spreading Risk of 2019-nCoV. January 31, 2020.

https://systems.jhu.edu/research/public-health/ncov-model-2/

3. Sirin, Evren. Analyzing COVID-19 Data with SPARQL. July 13, 2020.

https://www.stardog.com/labs/blog/analyzing-covid-19-data-with-sparql/

4. He, Y., Yu, H., Ong, E. et al. CIDO, a community-based ontology for coronavirus

disease knowledge and data integration, sharing, and analysis. Sci Data 7, 181

(2020). https://doi.org/10.1038/s41597-020-0523-6

5. Domingo-Fernandez, D., Baksi, S., et. al. COVID-19 Knowledge Graph: A com-

putable, multi-modal, cause-and-effect knowledge model of COVID-19 pathophys-

iology. BioRxiv. https://doi.org/10.1101/2020.04.14.040667

6. Dutta, B., Chatterjee, U. and Madalli, D. P. YAMO: Yet Another Methodology for

Large-scale Faceted Ontology Construction. Journal of Knowledge Management.

19 (1): 6 – 24 (2015)

7. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley,

Boston, MA. (2000)

8. Kroll, P., Kruchten, P.: The Rational Unified Process Made Easy: A Practitioner's

Guide to the RUP. 1st edn. Addison-Wesley Professional, Boston, MA (2003).

https://systems.jhu.edu/research/public-health/ncov-model-2/
https://www.stardog.com/labs/blog/analyzing-covid-19-data-with-sparql/
https://doi.org/10.1038/s41597-020-0523-6
https://doi.org/10.1101/2020.04.14.040667

15

9. Musen, Mark, 2015. The Protégé Project: A Look Back and a Look Forward. A.I.

Matters 1(4). https://dl.acm.org/doi/10.1145/2757001.2757003

10. W3C. SWRL: A Semantic Web Rule Language Combining OWL and RuleML.

W3C Member Submission. https://www.w3.org/Submission/SWRL/ (2004).

11. O'Connor, M.J., Halaschek-Wiener, C, Musen, M. A. Mapping Master: A Flexible

Approach for Mapping Spreadsheets to OWL. 9th International Semantic Web Con-

ference (ISWC), Shanghai, China. (2010).

12. AAsman, J. Cheatham, K. RDF Browser for Data Discovery and Visual Query

Building. Workshop on Visual Interfaces to the Social and Semantic Web

(VISSW2011) Co-located with ACM IUI 2011. Palo Alto, US. (2011)

13. AAsman, J. Unification of geospatial reasoning, temporal logic, & social network

analysis in event-based systems. DEBS '08: Proceedings of the second international

conference on Distributed event-based systems. Pages 139–145

https://doi.org/10.1145/1385989.1386007 (2008).

14. Singhal, A. Introducing the Knowledge Graph: things, not strings. Google white

paper. https://www.blog.google/products/search/introducing-knowledge-graph-

things-not/ (2012).

15. DeBellis, Michael. Lisp and SPARQL files for CODO ontology.

https://github.com/mdebellis/CODO-Lisp (2020).

16. Arp, R., Smith, B, Spear, A.: Building Ontologies with Basic Formal Ontology.

MIT Press, Cambridge, Massachusetts (2015).

17. Falbo, R. SABiO: Systematic Approach for Building Ontologies. Technical Report.

Ontology and Conceptual Modeling Research Group (NEMO), Federal University

of Espírito Santo, Vitória, Brazil.

18. Garcia, A., et. al. Developing Ontologies within Decentralized Settings. Nature Pro-

ceedings: hdl:10101/npre.2009.3231.1, 8 May 2009

19. Keet, M. The use of foundational ontologies in ontology development: an empirical

assessment. Technical Report. KRDB Research Centre, Free University of Bozen-

Bolzano, Italy

20. B. W. Boehm, "A spiral model of software development and enhancement," in

Computer, vol. 21, no. 5, pp. 61-72, May 1988, doi: 10.1109/2.59.

21. Pallozzi, D. The Word that Took the Tech World by Storm: Returning to the roots

of agile. ThoughtWorks white paper. https://www.thoughtworks.com/perspec-

tives/edition1-agile-article (2018).

22. Lin, Asiyah Yu, et. al. A community effort for COVID-19 Ontology Harmonization.

Proceedings of ICBO 2021, The 12th International Conference on Biomedical On-

tologies. September 2021.

23. Cowell L.G., Smith B. (2010) Infectious Disease Ontology. In: Sintchenko V. (eds)

Infectious Disease Informatics. Springer, New York, NY.

https://doi.org/10.1007/978-1-4419-1327-2_19

24. Chansanam, Wirapong and Suttipapa, Kittiya and Ahmad, Abdul Rahman, COVID-

19 Ontology Evaluation (October 17, 2020). International Journal of Management,

11(8), 2020, pp. 47-57, Available at SSRN: https://ssrn.com/abstract=3713660

25. Kejriwal, M. (2020). Knowledge Graphs and COVID-19: Opportunities, Chal-

lenges, and Implementation. Harvard Data Science Review.

https://doi.org/10.1162/99608f92.e45650b8

https://dl.acm.org/doi/10.1145/2757001.2757003
https://www.w3.org/Submission/SWRL/
https://doi.org/10.1145/1385989.1386007
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
https://github.com/mdebellis/CODO-Lisp
https://www.thoughtworks.com/perspectives/edition1-agile-article
https://www.thoughtworks.com/perspectives/edition1-agile-article
https://doi.org/10.1007/978-1-4419-1327-2_19
https://ssrn.com/abstract=3713660

