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Abstract

Here, we develop a unversal method of [effective] constructing a [finite] Hilbert-

style axiomatization of the logic of a given finite disjunctive/implicative matrix

with equality determinant (in particular, any/implicative four-valued expansion

of Belnap’s logic) [and finitely many connectives].

Keywords: [disjunctive/implicative] logic, [disjunctive/implicative] matrix, de-

duction theorem, Peirce Law, Belnap’s four-valued logic, expansion, equality de-

terminant, [{purely} single/multi-conclusion|premise] sequent (calculus).

1. Introduction

The general study [10] has suggested a universal method of [effective] con-
structing a multi-conclusion sequent calculus with structural rules and Cut
Elimination Property for a given finite matrix with equality determinant
[and finitely many connectives] (in particular, any four-valued expansion of
Belnap’s logic; cf. [1]). In this paper, providing the matrix involved is dis-
junctive (that equally covers four-valued expansions of Belnap’s logic), we
advance the mentioned study by [effective] transforming the calculus con-
structed therein to a [finite] Hilbert-style axiomatization of the logic of the
matrix through intermediate equivalent axiomatic extensions of the single-
and multi-conclusion sequent calculi constituted by merely structural rules
and classical rules for disjunction (cf. [3]).

The rest of the paper is as follows. We entirely follow the standard
conventions (as for Hilbert-style calculi) as well as those adopted in both
[9] and [10] — as to sequent calculi. Section 2 is a concise summary of
mainly those basic issues underlying the paper, which have proved beyond
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the scopes of the mentioned papers, those presented therein being normally
(though not entirely) briefly summarized as well for the exposition to be
properly self-contained. In Section 3 we present a uniform formalism for
covering both Hilbert- and Gentzen-style calculi, and recall some key results
concerning disjunctive logics (mainly belonging to a logical folklore) and
sequent calculi with structural rules going back to [9]. Then, Section 4 is a
preliminary study of minimal disjunctive Hilbert- as well as Gentzen-style
(both multi- and single-conclusion) calculi to be used further. Section 5
then contains the main generic results of the paper. Finally, in Section 6 we
apply it to disjunctive and implicative positive fragments of the classical
logic as well as to four-valued expansions of Belnap’s logic.

2. Basic issues

2.1. Set-theoretical background

We follow the standard set-theoretical convention, according to which nat-
ural numbers (including 0) are treated as finite ordinals (viz., sets of lesser
natural numbers), the ordinal of all them being denoted by ω. The proper
class of all ordinals is denoted by ∞. Likewise, functions are viewed as bi-
nary relations. In addition, singletons are often identified with their unique
elements, unless any confusion is possible.

Given a set S, the set of all subsets of S [of cardinality ∈ K ⊆ ∞] is
denoted by ℘[K](S). Next, S-tuples (viz., functions with domain S) are
often written in either sequence t̄ or vector ~t forms, its s-th component
(viz., the value under argument s), where s ∈ S, being written as either
ts or ts. As usual, given two more sets A and B, any relation between
them is identified with the equally-denoted relation between AS and BS

defined point-wise. Further, elements of S∗ , (S0 ∪ S+), where S+ ,
(
⋃

i∈(ω\1) S
i), are identified with ordinary finite tuples/[comma separated]

sequences. Then, any binary operation � on S determines the equally-
denoted mapping � : S+ → S as follows: by induction on the length
l = (dom ā) of any ā ∈ S+, put:

�ā ,

{
a0 if l = 1,
(�(ā�(l − 1))) � al−1 otherwise.

Given any f : S → S, put f1 , f and f0 , ∆S , {〈s, s〉 | s ∈ S}, functions
of the latter kind being said to be diagonal.
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Let A be a set. A U ⊆ ℘(A) is said to be upward-directed, provided,
for every S ∈ ℘ω(U), there is some T ∈ U such that (

⋃
S) ⊆ T . An

operator over A is any unary operation O on ℘(A). This is said to be
(monotonic) [idempotent] {transitive} 〈inductive/finitary/compact〉, pro-
vided, for all (B, )D ∈ ℘(A)〈resp., any upward-directed U ⊆ ℘(A)〉, it
holds that (O(B))[D]{O(O(D)} ⊆ O(D)〈O(

⋃
U) ⊆

⋃
O[U ]〉. A closure

operator over A is any monotonic idempotent transitive operator C over
A.

2.1.1. Disjunctivity versus multiplicativity

Fix any set A and any δ : A2 → A. Given any X,Y ⊆ A, set δ(X,Y ) ,
δ[X × Y ]. Then, a closure operator C over A is said to be [K-]δ-multipli-
cative, where K ⊆ ∞, provided

δ(C(X ∪ Y ), a) ⊆ C(X ∪ δ(Y, a)), (2.1)

for all (X ∪ {a}) ⊆ A and all Y ∈ ℘[K](A).1 Next, C is said to be δ-
disjunctive, provided, for all a, b ∈ A and every Z ⊆ A, it holds that

C(Z ∪ {δ(a, b)}) = (C(Z ∪ {a}) ∩ C(Z ∪ {b})), (2.2)

in which case the following clearly hold, by (2.2) with Z = ∅:

δ(a, b) ∈ C(a), (2.3)
δ(a, b) ∈ C(b), (2.4)

a ∈ C(δ(a, a)), (2.5)
δ(b, a) ∈ C(δ(a, b)), (2.6)

C(δ(δ(a, b), c)) = C(δ(a, δ(b, c))), (2.7)

for all a, b, c ∈ A.

Lemma 2.1. Let C be a[n inductive] closure operator over A. Then, (i)⇔
(ii)⇔(iii)⇐ [⇔](iv), where:

(i) C is δ-disjunctive;
(ii) (2.3), (2.5) and (2.6) (as well as (2.7)) hold and C is singularly-δ-

multiplicative;

1In this connection, “finitely-/singularly-” means “ω-/{1}-”, respectively.
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(iii) (2.3), (2.5) and (2.6) (as well as (2.7)) hold and C is finitely-δ-
multiplicative;

(iv) (2.3), (2.5) and (2.6) (as well as (2.7)) hold and C is δ-multiplicative.

Proof: First, (ii/iii) is a particular case of (iii/iv), respectively. [Next,
(iii)⇒(iv) is by the inductivity of C.]

Further, assume (i) holds. Consider any (X ∪ {a, b}) ⊆ A and any
c ∈ C(X ∪{b}), in which case δ(c, a) ∈ C(X ∪{b}), by (2.3). Moreover, by
(2.4), we also have δ(c, a) ∈ C(X ∪ {a}). Thus, by (2.2), we get δ(c, a) ∈
(C(X ∪ {b}) ∪ C(X ∪ {a}) = C(X ∪ {δ(b, a)}). In this way, (ii) holds.

Finally, assume (ii) without (2.7) holds.
In that case, both (2.3) and so, by (2.6), (2.4) hold, and so the inclusion

from left to right in (2.2). Conversely, consider any c ∈ (C(X∪{b})∪C(X∪
{a}). Then, by (2.6) and (2.1) with Y = {a} and b instead of a, we have
δ(b, c) ∈ C(X ∪ {δ(a, b)}). Likewise, by (2.5) and (2.1) with Y = {b} and
c instead of a, we have c ∈ C(X ∪ {δ(b, c)}). Therefore, we eventually get
c ∈ C(X ∪ {δ(a, b)}). Thus, (i) holds.

Now, assume (2.7) holds too. By induction on any n ∈ ω, let us
show that C is n-δ-multiplicative. For consider any (X ∪ {a}) ⊆ A, any
Y ∈ ℘n(A), in which case n 6= 0, and any b ∈ C(X ∪ Y ). In case Y = ∅,
(2.1) is by (2.3). Otherwise, take any c ∈ Y , in which case Y ′ , (Y \
{c}) ∈ ℘n−1(A), and put X ′ , (X ∪ {c}) ⊆ A, in which case (X ′ ∪ Y ′) =
(X ∪ Y ), and so b ∈ C(X ′ ∪ Y ′). Hence, by induction hypothesis, we get
δ(b, a) ∈ C(X ′∪δ(Y ′, a)). Therefore, since C is singularly-δ-multiplicative,
we then get δ(δ(b, a), a) ∈ C(X ∪ δ(Y, a)) as well as both δ(δ(a, b), a) ∈
C(δ(δ(b, a), a)), in view of (2.6), and δ(a, b) ∈ C(δ(δ(a, a), b)), in view of
(2.5). In this way, by (2.6) and (2.7), we eventually get δ(b, a) ∈ C(X ∪
δ(Y, a)), as required. Thus, as (

⋃
ω) = ω, we conclude that C is finitely-δ-

multiplicative, and so (iii) holds, as required.

2.2. Algebraic background

Unless otherwise specified, throughout the paper, we deal with a fixed but
arbitrary signature Σ of connectives of finite arity to be treated as function
symbols.

Given any α ∈ ℘∞\1(ω), Fmα
Σ denotes the absolutely free Σ-algebra

freely-generated by the set Vα , {xi | i ∈ α} of variables, its endomor-
phisms/elements of its carrier Fmα

Σ being called Σ-substitutions/formulas,
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in case α = ω. The finite set of all variables actually occurring in a ϕ ∈ Fmω
Σ

is denoted by Var(ϕ).
As usual, (logical) Σ-matrices (cf. [4]) are treated as first-order model

structures (viz., algebraic systems; cf. [5]) of the first-order signature Σ ∪
{D} with unary truth predicate D,2 any Σ-matrix A being traditionally
identified with the couple 〈A, DA〉.

2.2.1. Equality determinants for matrices

According to [10], an equality determinant for a Σ-matrix A is any Υ ⊆
Fm1

Σ such that any a, b ∈ A are equal, whenever, for each υ ∈ Υ, υA(a) ∈
DA iff υA(b) ∈ DA.

3. Abstract propositional languages and calculi

A(n) (abstract) Σ-[propositional ]language is any triple of the form L =
〈FmL,=L,VarL〉, where FmL is a set, whose elements are called L-formulas,
=L : hom(Fmω

Σ,Fmω
Σ) → (FmL)FmL , preserving compositions and diagonal-

ity, any Σ-substitution σ being naturally identified with =L(σ), unless any
confusion is possible, and VarL : FmL → ℘ω(Vω) (the language subscript
is normally omitted, unless any confusion is possible) such that, for ev-
ery Φ ∈ FmL and any Σ-substitutions σ and ς such that (σ�VarL(Φ)) =
(ς�VarL(Φ)), it holds that σ(Φ) = ς(Φ).

Then, elements/subsets of RuL , (℘ω(FmL)×FmL) are referred to as
L-rules/calculi, any L-rule R = 〈Γ,Φ〉 being normally written in the con-
ventional fraction either displayed Γ

Φ or non-displayed Γ/Φ form, Φ/any
element of Γ being called the/a conclusion/premise of R, rules of the form
Φ/Ψ, where Ψ ∈ Γ, being said to be inverse to R. As usual, L-rules
without premises are called L-axioms and are identified with their conclu-
sions, calculi consisting of merely axioms being said to be axiomatic. In
general, any function f with domain FmL (including Σ-substitutions) but
VarL determines the equally-denoted function with domain RuL as follows:
for any R = 〈Γ,Φ〉 ∈ RuL, we set f(R) , 〈f [Γ], f(Φ)〉, whereas putting

2In general, [Σ-matrices are denoted by Calligraphic letters (possibly, with indices),
their underlying] algebras [viz., Σ-reducts] being denoted by [corresponding] Fraktur let-
ters (possibly, with [same] indices [if any]), their carriers being denoted by corresponding
Italic letters (with same indices, if any).
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VarL(R) , (VarL(Φ) ∪
⋃

VarL[Γ]) ∈ ℘ω(Vω). (In this way, RuL actually
forms a Σ-language.)

Next, an L-logic is any closure operator C on FmL that is structural
in the sense that, for every Σ-substitution σ and all Γ ⊆ FmL, it holds
that σ[C(Γ)] ⊆ C(σ[Γ]). This is said to satisfy an L-rule Γ/Φ, whenever
Φ ∈ C(Γ). Then, an L-logic C ′ is said to be an extension of C, provided
C ⊆ C ′. In that case, an L-calculus C is said to axiomatize C ′ relatively to
C, provided C ′ is the least extension of C satisfying each rule in C.

Further, an L-rule Γ/Φ is said to be derivable in an L-calculus C, if
there is a C-derivation of it, i.e., a proof of Φ (in the conventional proof-
theoretical sense) by means of axioms in Γ (as hypotheses) and rules in the
set SIΣ(C) , {σ(R) | R ∈ C, σ ∈ hom(Fmω

Σ,Fmω
Σ)} of all substitutional Σ-

instances of rules in C. The extension CnC of the diagonal Σ-logic relatively
axiomatized by C is called the consequence of C and said to be axiomatized
by C, in which case it is inductive and satisfies any L-rule iff this is derivable
in C. (Conversely, any inductive L-logic is axiomatized by the set of all L-
rules satisfied in it to be identified with the logic, in which case inductive L-
logics become actually particular cases of L-calculi.) An S ⊆ Fmω

Σ is said to
be C-closed, if, for every (Γ/Φ) ∈ SIΣ(C), it holds that (Γ ⊆ S) ⇒ (Φ ∈ S),
in which case CnC(∅) ⊆ S.

3.1. Hilbert-style calculi

The Σ-language HΣ with first component Fmω
Σ, the diagonal second com-

ponent and the third component Var is called the Hilbert-style/sentential
Σ-language, HΣ-rules/axioms/calculi/logics being traditionally referred to
as (Hilbert-style/sentential) Σ-rules/axioms/calculi/logics (cf., e.g., [4]).

From the model-theoretic point of view, any Σ-rule Γ/φ is viewed as the
first-order basic Horn formula (

∧
Γ) → φ under the standard identification

of any Σ-formula ψ with the first-order atomic formula D(ψ) we follow
tacitly.

Given any class M of Σ-matrices, we have the Σ-logic CnM of/defined
by it, given by

CnM(X) , (Fmω
Σ ∩

⋂
{h−1[DA] ⊇ X|A ∈ M, h ∈ hom(Fmω

Σ,A)}),

for all X ⊆ Fmω
Σ. (Due to [4], this is well known to be inductive, whenever

both M and all members of it are finite.)
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A Σ-matrix A is said to be �-disjunctive/implicative, where � is a (pos-
sibly, secondary) binary connective of Σ, whenever, for all a, b ∈ A, it holds
that ((a ∈ / 6∈ DA)|(b ∈ DA)) ⇔ ((a �A b) ∈ DA), in which case it is
Y�-disjunctive, where (x0 Y� x1) , ((x0 � x1) � x1).

3.1.1. Disjunctive sentential logics

Throughout the rest of the paper, unless otherwise specified, Y is supposed
to be any (possibly, secondary) binary connective of Σ.
Lemma 3.1. Let M be a class of Y-disjunctive Σ-matrices. Then, the logic
of M is Y-multiplicative, and so Y-disjunctive.
Proof: Consider any (X∪Y ∪{ψ}) ⊆ Fmω

Σ, any φ ∈ CnM(X∪Y ), any A ∈
M and any h ∈ hom(Fmω

Σ,A) such that (h(φ)YA h(ψ)) = h(φYψ) 6∈ DA, in
which case h(φ) 6∈ DA and h(ψ) 6∈ DA, forA is Y-disjunctive, and so h(ϕ) 6∈
DA, for some ϕ ∈ (X ∪Y ), in which case h(ϕYψ) = (h(φ)YA h(ψ)) 6∈ DA,
and so (φYψ) ∈ CnM(X∪(Y Yψ), as required. Finally, Lemma 2.1(iv)⇒(i)
completes the argument, for CnM clearly satisfies (2.3), (2.5) and (2.6).

Given a Σ-rule Γ/φ and a Σ-formula ψ, put ((Γ/φ)Yψ) , ((ΓYψ)/(φY
ψ)). (This notation is naturally extended to Σ-calculi member-wise.)
Theorem 3.2. Let C be an inductive Σ-logic. Then, C is Y-disjunctive iff
(2.3), (2.5) and (2.6) (as well as (2.7)) hold and, for any axiomatization
C of C, every (Γ ` φ) ∈ SIΣ(C) and each ψ ∈ Fmω

Σ, it holds that (φYψ) ∈
C(Γ Y ψ).
Proof: By Corollary 2.1(i)⇔(iv) and the structurality of C, with using
(2.3) and the induction on the length of C-derivations.

Let σ+1 be the Σ-substitution extending [xi/xi+1]i∈ω.
Corollary 3.3. Let C be an inductive Y-disjunctive logic, C a Σ-calculus
and A ⊆ C an axiomatic Σ-calculus. Then, the extension C ′ of C relatively
axiomatized by C′ , (A ∪ (σ+1[C \A] Y x0)) is Y-disjunctive.
Proof: Then, C being inductive, is axiomatized by a finitary Σ-calculus
C′′, in which case C ′ is axiomatized by the finitary Σ-calculus C′′ ∪ C′,
and so is inductive. Moreover, C ′, being an extension of C, inherits (2.3),
(2.5), (2.6) and (2.7) held for C. Then, we prove the Y-disjunctivity of
C ′ with applying Theorem 3.2 to both C and C ′. For consider any Σ-
substitution σ and any ψ ∈ Fmω

Σ. First, consider any φ ∈ A. Then,
by the structurality of C ′ and (2.3), we have (σ(φ) Y ψ) ∈ C ′(∅). Now,
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consider any (Γ ` φ) ∈ (C \ A). Let ς be the Σ-substitution extending
(σ�(Vω \ V1)) ∪ [x0/(σ(x0) Y ψ)], in which case (ς ◦ σ+1) = (σ ◦ σ+1), and
so, by (2.7) and the structurality of C ′, we eventually get C ′(σ[σ+1[Γ] Y
x0] Y ψ) = C ′((ς[σ+1[Γ]] Y σ(x0)) Y ψ) ⊇ C ′(ς[σ+1[Γ]] Y (σ(x0) Y ψ)) =
C ′(ς[σ+1[Γ] Y x0]) ⊇ C ′(ς(σ+1(ϕ) Y x0)) = C ′(ς(σ+1(ϕ)) Y (σ(x0) Y ψ)) ⊇
C ′((ς(σ+1(ϕ)) Y σ(x0)) Y ψ) = C ′(σ(σ+1(ϕ) Y x0) Y ψ), as required.

3.1.2. Implicative sentential logics

Throughout the rest of the paper, unless otherwise specified, B is supposed
to be any (possibly, secondary) binary connective of Σ.

A Σ-logic C is said to be B-implicative, whenever it has Deduction
Theorem (DT, for short) with respect to B in the sense that:

(ψ ∈ C(Γ ∪ {φ})) ⇒ ((φB ψ) ∈ C(Γ), (3.1)

for all (Γ∪{φ, ψ}) ⊆ Fmω
Σ, as well as satisfies both the Modus Ponens rule:

x0 x0 B x1

x1
, (3.2)

and Peirce Law axiom (cf. [6]):

(((x0 B x1) B x0) B x0). (3.3)

(Clearly, the logic of any class of B-implicative Σ-matrices is B-implicative.)
As it is well-known, C satisfies the following axioms:

x0 B (x1 B x0) (3.4)
(x0 B x1) B ((x1 B x2) B (x0 B x2)) (3.5)

whenever it has DT with respect to B and satisfies (3.2).

Lemma 3.4. Any B-implicative Σ-logic is YB-disjunctive.

Proof: With using Lemma 2.1(ii)⇒(i). First, (2.3) is by (3.2) and (3.1).
Next, (2.5) is by (3.2) and (3.3)[x1/x0]. Further, by (3.2), (3.3) and (3.5),
we have x0 ∈ C({x0 YB x1, x1 B x0}), in which case, by (3.1), we get
(x1 YB x0) ∈ C(x0 YB x1), and so (2.6) holds. Finally, consider any (Γ ∪
{φ, ψ}) ⊆ Fmω

Σ and any ϕ ∈ C(Γ ∪ {φ}), in which case, by (3.1), we have
(φBϕ) ∈ C(Γ), and so, by (3.2) and (3.5), we get ψ ∈ C(Γ∪{φYBψ,ϕBψ}).
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Hence, by (3.1), we eventually get (ϕ YB ψ) ∈ C(Γ ∪ {φ YB ψ}). Thus, C
is singularly-YB-multiplicative, as required.

By I
[PL]
B we denote the Σ-calculus constituted by (3.2), (3.4) and (3.5)

[as well as (3.3)]. Recall the following well-known observation proved by
induction on the length of (IB ∪A)-derivations:
Lemma 3.5. Let A be an axiomatic Σ-calculus. Then, CnIB∪A has DT
with respect to B.

Combining Lemmas 3.4 and 3.5, we eventually get:
Theorem 3.6. Let A be an axiomatic Σ-calculus. Then, CnIPL

B ∪A is B-
implicative, and so YB-disjunctive.
Corollary 3.7. Let A ∪ {ϕ, φ, ψ} be an axiomatic Σ-calculus and v ∈
(Vω \ (

⋃
Var[{ϕ, φ, ψ}])). Then, the following hold:

(i) the Σ-axiom
(φ YB ψ) B ϕ (3.6)

is derivable in IPL
B ∪A, whenever the Σ-axioms:

φ B ϕ, (3.7)
ψ B ϕ (3.8)

are so;
(ii) the Σ-axiom

ϕB (φ YB ψ) (3.9)

is derivable in IPL
B ∪A iff the Σ-axiom

(φB v) B ((ψ B v) B (ϕB v)) (3.10)

is so.
Proof: In that case, by Theorem 3.6, CnIPL

B ∪A is B-implicative and YB-
disjunctive. In particular, by (2.2) with Z = ∅, (3.1) and (3.2), Σ-axioms:

φB (φ YB ψ), (3.11)
ψ B (φ YB ψ), (3.12)
(φB ξ) B ((ψ B ξ) B ((φ YB ψ) B ξ)), (3.13)

where ξ ∈ Fmω
Σ, are derivable in IPL

B ∪ A. In this way, (3.2), (3.7), (3.8)
and (3.13) with ξ = ϕ imply (3.6). Thus, (i) holds.
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Next, assume (3.9) is derivable in IPL
B ∪ A. Then, by (3.1), (3.2) and

(3.13) with ξ = v, (3.10) is derivable in IPL
B ∪A. The converse is by (3.2),

(3.11), (3.12) and (3.10)[v/(φ YB ψ)]. Thus, (ii) holds, as required.

3.2. Gentzen-style calculi

Given any (α[∪β]) ⊆ ω, elements of Seq[β`]α
Σ , {〈Γ,∆〉 ∈ ((Fmω

Σ)∗)2 |
(dom ∆) ∈ α [& (dom Γ) ∈ β]} are called α-conclusion [ β-premise] Σ-se-
quents. (In this connection, “[purely] single/multi” stands for “(2/ω)[\1]”,
respectively.) Any sequent 〈Γ,∆〉 is normally written in the conventional
form Γ ` ∆. This is said to be injective, whenever both Γ and ∆ are so.
Likewise, it is said to be disjoint, whenever ((img Γ) ∩ (img ∆)) = ∅. For
any Φ = (Γ ` ∆) ∈ Seq[β`]α

Σ , set Var(Φ) , (
⋃

Var[img(Γ,∆)]) ∈ ℘ω(Vω)
and σ(Φ) , ((σ ◦ Γ) ` (σ ◦ ∆)) ∈ Seq[β`]α

Σ , where σ is a Σ-substitution.
In this way, Seq[β`]α

Σ forms a Σ-language S
[β`]α
Σ , called the α-conclusion

[ β-premise] Gentzen-style/sequent Σ-language, S
[β`]α
Σ -rules/axioms/calcu-

li/logics being referred to as α-conclusion [ β-premise] (Gentzen-style/seq-
uent) Σ-rules/axioms/calculi/logics.

The following multi-conclusion sequent ∅-rules are said to be struc-
tural :

Reflexivity x0 ` x0

Cut Λ,Γ ` ∆, x0 Γ, x0 ` ∆,Θ
Λ,Γ ` ∆,Θ

Enlargement Γ ` ∆
x0,Γ ` ∆

Γ ` ∆
Γ ` ∆, x0

Contraction x0, x0,Γ ` ∆
x0,Γ ` ∆

Γ ` ∆, x0, x0
Γ ` ∆, x0

Permutation Λ, x0, x1,Γ ` ∆
Λ, x1, x0,Γ ` ∆

Γ ` ∆, x0, x1,Θ
Γ ` ∆, x1, x0,Θ

where Λ,Γ,∆,Θ ∈ V ∗
ω , Enlargement, Contraction and Permutation being

referred to as basic structural.
Given two (purely) multi-conclusion [{purely} multi-premise] Σ-sequ-

ents Φ = (Γ ` ∆) and Ψ = (Λ ` Θ), we have their sequent disjunc-
tion/implication:

(Φ ]Ψ) , (Γ,Λ ` ∆,Θ) ∈ Seq[(ω{\1})`](ω(\1))
Σ /

(Φ A Ψ) , {φ,Γ ` ∆ | φ ∈ (img Θ)}



11

∪ {Γ ` ∆, ψ | ψ ∈ (img Λ)} ∈ ℘ω(Seq[(ω{\1})`](ω(\1))
Σ ).

Then, given any X ∈ ℘〈ω〉(Seq[(ω{\1})`](ω(\1))
Σ ), set (Φ A X) , (

⋃
{Φ A Ψ |

Ψ ∈ X} ∈ ℘〈ω〉(Seq[(ω{\1})`](ω(\1))
Σ ). A (purely) multi-conclusion [{purely}

multi-premise] sequent Σ-calculus G is said to be 〈deductively〉 multiplica-
tive, provided, for every (purely) multi-conclusion [{purely} multi-premise]
sequent Σ-rule X/Φ 〈derivable〉 in G and each multi-conclusion Σ-sequent
Ψ, the rule (X ]Ψ)/(Φ]Ψ) is derivable in G. With using induction on the
length of G-derivations, it is routine checking that G is multiplicative iff it
is deductively so.

Theorem 3.8 (cf. the proof of Theorem 4.2 of [9]). Let G be a 〈multiplica-
tive〉 (purely) multi-conclusion [ {purely} multi-premise] sequent Σ-calculus
with basic structural rules and Cut〈/Reflexivity〉 and (X ∪ {Φ,Ψ}) ⊆
Seq[(ω{\1})`](ω(\1))

Σ . Then,

Ψ ∈ CnG(X ∪ {Φ}) ⇐ 〈/⇒〉(Φ A Ψ) ⊆ CnG(X).

From the model-theoretic point of view, any Σ-sequent Γ ` ∆ is treated
as the first-order basic clause

∨
(¬[img Γ]∪(img ∆)) of the signature Σ∪{D}

under the notorious identification of any Σ-formula ϕ with the first-order
atomic formula D(ϕ), any sequent Σ-rule being interpreted as implication
of its premises (under the natural identification of any finite set X of first-
order formulas with

∧
X we follow tacitly as well) and its conclusion. (In

this way, sequent disjunction/implication corresponds to the usual disjunc-
tion/implication.) This fits the standard matrix interpretation of sequents
equally adopted in [9] and [10] and going back to [11].

4. Basic disjunctive calculi

4.1. The Hilbert-style calculus

By DY we denote the Σ-calculus constituted by the following Σ-rules:

D1 D2 D3 D4

x0 Y x0
x0

x0
x0 Y x1

(x0 Y x1) Y x2

(x1 Y x0) Y x2

(x0 Y (x1 Y x2)) Y x3

((x0 Y x1) Y x2) Y x3
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Lemma 4.1. Let C ⊇ DY be a Σ-calculus, R = (Γ/φ) a Σ-rule and v ∈
(Vω \Var(R)). Suppose R Y v is derivable in C. Then, so is R itself.
Proof: First, for every ψ ∈ Γ, by D2[x0/ψ, x1/φ], we have (ψ Y φ) ∈
CnC(ψ), and so we get (Γ Y φ) ∈ CnC(Γ). Then, applying (R Y v)[v/φ],
by the structurality of CnC, we conclude that (φ Y φ) ∈ CnC(Γ). Finally,
D1[x0/φ] completes the argument.

Applying Lemma 4.1 to both D3 and D4, we immediately get:
Corollary 4.2. The following rules are derivable in DY:

x0 Y x1

x1 Y x0
, (4.1)

x0 Y (x1 Y x2)
(x0 Y x1) Y x2

. (4.2)

Now, we are in a position to prove the derivability of other useful rules
in DY.
Proposition 4.3. The following rules are derivable in DY:

(x0 Y x1) Y x2

x0 Y (x1 Y x2)
, (4.3)

(x0 Y x0) Y x1

x0 Y x1
, (4.4)

x0 Y x2

(x0 Y x1) Y x2
. (4.5)

Proof: First, in view of Corollary 4.2, (4.3) is by the following CnDY -
derivation:

1. (x0 Y x1) Y x2 — hypothesis;
2. (x1 Y x0) Y x2 — D3: 1;
3. x2 Y (x1 Y x0) — (4.1)[x0/(x1 Y x0), x1/x2]: 2;
4. (x2 Y x1) Y x0 — (4.2)[x0/x2, x2/x0]: 3;
5. (x1 Y x2) Y x0 — D3[x0/x2, x2/x0]: 4;
6. x0 Y (x1 Y x2) — (4.1)[x0/(x1 Y x0), x1/x0]: 5.

Then, in view of Corollary 4.2, (4.4) is by the following CnDY -derivation:
1. (x0 Y x0) Y x1 — hypothesis;
2. x0 Y (x0 Y x1) — (4.3)[x1/x0, x2/x1]: 1;
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3. (x0 Y x1) Y x0 — (4.1)[x1/(x0 Y x1)]: 2;
4. ((x0 Y x1) Y x0) Y x1 — D2[x0/((x0 Y x1) Y x0)]: 3;
5. (x0 Y x1) Y (x0 Y x1) — (4.3)[x0/(x0 Y x1), x1/x0, x1/x2]: 4;
6. (x0 Y x1) — D1[x0/(x0 Y x1)]: 5.

Finally, in view of Corollary 4.2, (4.5) is by the following CnDY -derivation:
1. x0 Y x2 — hypothesis;
2. (x0 Y x2) Y x1 — D2[x0/(x0 Y x2)]: 1;
3. x0 Y (x2 Y x1) — (4.3)[x1/x2, x2/x1]: 2;
4. (x2 Y x1) Y x0 — (4.1)[x1/(x2 Y x1)]: 3;
5. x2 Y (x1 Y x0) — (4.3)[x0/x2, x2/x0]: 4;
6. (x1 Y x0) Y x2 — (4.1)[x0/x2, x1/(x1 Y x0)]: 5;
7. (x0 Y x1) Y x2 — D3[x0/x1, x1/x0]: 6.

Corollary 4.4. Let R = (Γ/φ) be a Σ-rule, ψ ∈ Fmω
Σ, σ ∈ hom(Fmω

Σ,
Fmω

Σ) and v ∈ (Vω \ Var(R)). Suppose R Y v is derivable in DY. Then, so
is σ(R Y v) Y ψ.
Proof: Then, by Corollary 4.2(4.2) and Proposition 4.3(4.3), (2.7) holds
for C , CnDY . Let ς ∈ hom(Fmω

Σ,Fmω
Σ) extend (σ�(Vω \ {v}))∪ [v/(σ(v) Y

ϕ)], in which case σ(R) = ς(R), for v 6∈ Var(R). Then, using (2.7) and the
structurality of C, we eventually get C(σ[ΓYv]Yϕ) = C((σ[Γ]Yσ(v))Yϕ) =
C(σ[Γ] Y (σ(v) Y ϕ)) = C(ς[Γ] Y ς(v)) = C(ς[Γ Y v]) ⊇ C(ς(φ Y v)) =
C(ς(φ)Yς(v)) = C(σ(φ)Y(σ(v)Yϕ)) = C((σ(φ)Yσ(v))Yϕ) = C(σ(φYv)Yϕ),
as required.
Theorem 4.5. CnDY is Y-disjunctive.
Proof: With using Theorem 3.2. First, by D1, D2 and Corollary 4.2(4.1),
(2.3), (2.5) and (2.6) hold for C , CnDY .

Next, consider any σ ∈ hom(Fmω
Σ,Fmω

Σ), any ϕ ∈ Fmω
Σ and any

i ∈ (5 \ 1). The case, when i 6∈ 3, is due to Corollary 4.4 well-applicable
to Di. Otherwise, we have Var(Di) = Vi 63 xi. Then, by Proposition
4.3(4.4)/(4.5), Di Y xi is derivable in DY. Let ς ∈ hom(Fmω

Σ,Fmω
Σ) extend

(σ�Vω\{i}) ∪ [xi/ϕ], in which case ς(Di) = σ(Di), and so, by the struc-
turality of C, we eventually conclude that (σ(Di) Y ϕ) = (ς(Di) Y ς(xi)) =
ς(Di Y xi) is derivable in DY, as required.

The following auxiliary observation has proved quite useful for reducing
the number of rules of calculi to be constructed in Section 6 according to
the universal method to be elaborated in Section 5:
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Proposition 4.6. Let φ, ψ, ϕ ∈ Fmω
Σ, v ∈ (Vω \ (

⋃
Var[{φ, ψ, ϕ}])) and

C ⊇ DY a Σ-calculus. Then, the rules Rl = ((φ Y v)/(ϕ ∨ v)) and Rr =
((ψYv)/(ϕ∨v)) are both derivable in C iff the rule R = (((φYψ)∨v)/(ϕ∨v))
is so.

Proof: First, assume R is derivable in C. Then, the derivability of Rl in
C is by the following CnC-derivation:

1. φ Y v — hypothesis;
2. v Y φ — (4.1)[x0/φ, x1/v]: 1;
3. (v Y φ) Y ψ — D2[x0/(v Y φ), x1/ψ]: 2;
4. v Y (φ Y ψ) — (4.3)[x0/v, x1/φ, x2/ψ]: 3;
5. (φ Y ψ) Y v — (4.1)[x0/v, x1/(φ Y ψ)]: 4;
6. ϕ Y v — R: 5.

Likewise, the derivability of Rr in C is by the following CnC-derivation:
1. ψ Y v — hypothesis;
2. (ψ Y v) Y φ — D2[x0/(ψ Y v), x1/φ]: 1;
3. φ Y (ψ Y v) — (4.1)[x0/(ψ Y v), x1/φ]: 2;
4. (φ Y ψ) Y v — (4.2)[x0/φ, x1/ψ, x2/v]: 3;
5. ϕ Y v — R: 4.

Conversely, assume both Rl and Rr are derivable in C. Then, the deriv-
ability of R in C is by the following CnC-derivation:

1. (φ Y ψ) Y v — hypothesis;
2. φ Y (ψ Y v) — (4.3)[x0/φ, x1/ψ, x2/v]: 1;
3. ϕ Y (ψ Y v) — Rl[v/(ψ Y v)]: 2;
4. (ψ Y v) Y ϕ — (4.1)[x0/ϕ, x1/(ψ Y v)]: 3;
5. ψ Y (v Y ϕ) — (4.3)[x0/ψ, x1/v, x2/ϕ]: 4;
6. ϕ Y (v Y ϕ) — Rr[v/(v Y ϕ)]: 5;
7. (v Y ϕ) Y ϕ — (4.1)[x0/ϕ, x1/(v Y ϕ)]: 6;
8. v Y (ϕ Y ϕ) — (4.3)[x0/v, x1/ϕ, x2/ϕ]: 7;
9. (ϕ Y ϕ) Y v — (4.1)[x0/v, x1/(ϕ Y ϕ)]: 8;

10. ϕ Y v — (4.4)[x0/(ϕ Y ϕ), x1/v]: 9.

4.2. Single- versus multi-conclusion sequent calculi

Let Gα
Y, where α ⊆ ω, be the α-conclusion sequent Σ-calculus constituted

by structural α-conclusion sequent rules and the following α-conclusion
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sequent Σ-rules:

Gl Gr

Γ, x0 ` ∆ Γ, x1 ` ∆
Γ, (x0 Y x1) ` ∆

Γ ` Ω, xk

Γ ` Ω, (x0 Y x1)

where k ∈ 2 and Γ,∆,Ω ∈ V ∗
ω such that (dom ∆), ((dom Ω) + 1) ∈ α.

The set Fmω
Y is defined in the obvious almost standard recursive manner

as the least S ⊆ Fmω
Σ such that Vω ⊆ S and (φ Y ψ) ∈ S, for all φ, ψ ∈ S.

Lemma 4.7. Let ψ ∈ Fmω
Y and v ∈ Var(ψ). Suppose 1 ∈ α. Then, v ` ψ

is derivable in Gα
Y.

Proof: By induction on construction of ψ. For consider the following
complementary cases:

1. ψ ∈ Vω.
Then, Var(ψ) = {ψ} 3 v, in which case ψ = v, and so the Reflexivity
axiom completes the argument.

2. ψ 6∈ Vω.
Then, ψ = (ϕ0 Y ϕ1), for some ϕ0, ϕ1 ∈ Fmω

Y, in which case v ∈
Var(ψ) = (

⋃
k∈2 Var(ϕk)), and so v ∈ Var(ϕk), for some k ∈ 2.

Hence, by induction hypothesis, v ` ϕk is derivable in Gα
Y. In this

way, Gr completes the argument.
Corollary 4.8. Let φ, ψ ∈ Fmω

Y. Suppose Var(φ) ⊆ Var(ψ) and 1 ∈ α.
Then, φ ` ψ is derivable in Gα

Y.

Proof: By induction on construction of φ. For consider the following
complementary cases:

1. φ ∈ Vω.
Then, Var(ψ) ⊇ Var(φ) = {φ}, in which case φ ∈ Var(ψ), and so
Lemma 4.7 completes the argument.

2. φ 6∈ Vω.
Then, φ = (ϕ0 Yϕ1), for some ϕ0, ϕ1 ∈ Fmω

Y, in which case Var(ψ) ⊇
Var(φ) = (

⋃
k∈2 Var(ϕk)), and so Var(ψ) ⊇ Var(ϕk), for each k ∈ 2.

Hence, by induction hypothesis, ϕk ` ψ is derivable in Gα
Y, for every

k ∈ 2. Thus, Gl completes the argument.
Let τY : Seqω

Σ → Seq2
Σ be defined as follows:

τY(Γ ` ∆) ,

{
Γ ` ∆ if∆ = ∅,
Γ ` (Y∆) otherwise,
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for all (Γ ` ∆) ∈ Seqω
Σ, in which case:

σ(τY(Γ ` ∆)) = τY(σ(Γ ` ∆)). (4.6)

Lemma 4.9. For every R ∈ G
ω[\1]
Y , τY(R) is derivable in G

2[\1]
Y .

Proof: Consider the following exhaustive cases:

1. R is either Gl or the Reflexivity axiom or a left-side basic structural
rule or a Cut with ∆ = ∅.
Then, τY(R) is a substitutional Σ-instance of a rule in G

2[\1]
Y , and so

is derivable in it.
2. R is either Gr or a right-side basic structural rule.

Then, τY(R) is of the form

Λ ` φ
Λ ` ψ

,

where Λ ∈ V ∗
ω and φ, ψ ∈ Fmω

Y, while Var(φ) ⊆ Var(ψ), in which case
Corollary 4.8 and Cut complete the argument.

3. R is a Cut with ∆ 6= ∅.
Then, τY(R) is as follows:

Λ,Γ ` (φ Y x0) Γ, x0 ` ψ
Λ,Γ ` ψ

,

where φ , (Y∆) ∈ Fmω
Y and ψ , (Y(∆,Θ)) ∈ Fmω

Y, in which case
Var(φ) ⊆ Var(ψ), and so, by Corollary 4.8, φ ` ψ is derivable in
G

2[\1]
Y , and so is Γ, φ ` ψ, by basic structural rules. Hence, by Gl, the

rule (Γ, x0 ` ψ)/(Γ, (φ Y x0) ` ψ) is derivable in G
2[\1]
Y . Thus, Cut

completes the proof.

Using induction on the length of (Gω[\1]
Y ∪A)-derivations, by (4.6) and

Corollary 4.9, we immediately get:

Corollary 4.10. Let (A ∪ {Φ}) ⊆ Seqω[\1]
Σ . Suppose Φ is derivable in

G
ω[\1]
Y ∪A. Then, τY(Φ) is derivable in G

2[\1]
Y ∪ τY[A].3

3Although the converse holds as well, because Φ and τY(Φ) are interderivable in the
[purely] multi-conclusion calculus including the [purely] single-conclusion one, this point
is no matter for our further argumentation.
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5. Main universal constructions

Fix any finite Y-disjunctive Σ-matrix A with a finite equality determinant
Υ 3 x0. Given any X ⊆ Vω, put Υ[X] , {υ(x) | υ ∈ Υ, x ∈ X}.

First, consider any complex 〈Υ,Σ〉-type in the sense of [10], that is, a
couple of the form 〈υ, F 〉, where υ ∈ Υ and F ∈ Σ of arity n ∈ (ω \ 1)
such that either n 6= 1 or υ(F (x0)) 6∈ Υ. Then, according to the con-
structive proof of Theorem 1 of [10], there are some λT (υ, F ), ρT (υ, F ) ∈
℘ω((Υ[Vn]∗)2) with injective elements such that:

A |= 〈∀xi〉i∈n((υ(F (xi)i∈n) `) ↔ λT (υ, F )), (5.1)
A |= 〈∀xi〉i∈n((` υ(F (xi)i∈n)) ↔ ρT (υ, F )). (5.2)

Then, l , |λT (υ, F ))| ∈ ω and r , |ρT (υ, F ))| ∈ ω. Take any bijections
L : l → λT (υ, F ) and R : r →T ρ(υ, F ). By induction on any (j/k) ∈
((l/r) + 1)), define (Λj/Ξk) ∈ ℘ω(Seqω

Σ) as follows. In case (j/k) = 0,
put (Λj , {υ(F (xi)i∈n) `})/(Ξk , {` υ(F (xi)i∈n)}). Otherwise, set
(Λ/Ξ)j/k , ((L/R)j/k A (Λ/Ξ)(j/k)−1)). Then, in view of (5.1)/(5.2), by
induction, we conclude that (A |= 〈∀xi〉i∈n((img((L/R)�((l/r)\ (j/k)))) →
(Λ/Ξ)j/k). In particular, every element of (λ(υ, F ) , Λl)/(ρ(υ, F ) , Ξr)
is true in A.

Example 5.1. When υ = x0 and F = Y, in which case Y is a pri-
mary connective of Σ, one can always take λT (υ, F ) = {x0 `;x1 `} and
ρT (υ, F ) = {` x0, x1} to satisfy (5.1) and (5.2), in which case λ(υ, F ) =
{(x0 Y x1) ` x0, x1} and ρ(υ, F ) = {x0 ` (x0 Y x1);x1 ` (x0 Y x1)}, and so
their elements are derivable in Gω

Y.

In this way, let A′ be the set of all elements of λ(υ, F ) ∪ ρ(υ, F ), for
all complex 〈Υ,Σ〉-types 〈υ, F 〉 but 〈x0,Y〉, in case Y ∈ Σ is primary.

Next, let A′′ be the set containing, for each nullary c ∈ Σ and every
υ ∈ Υ, the axiom (υ(c) `)/(` υ(c)), whenever this is true in A.

Further, let A′′′ be the finite set of all those elements of ((Υ)∗)2, which
are both injective, disjoint and true in A.

Finally, every element of A , (A′ ∪A′′ ∪A′′′) is true in A. Moreover,
A is finite, whenever Σ is so.

Lemma 5.2. Any multi-conclusion Σ-sequent is true in A iff it is derivable
in Gω

Y ∪A.
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Proof: The “if” part is by the fact that every element of A is true in A,
while any Y-disjunctive Σ-matrix (in particular, A) is a model of Gω

Y.
Conversely, consider any complex 〈Υ,Σ〉-type 〈υ, F 〉, following the no-

tations adopted above. Then, every element of (Λ/Ξ)l/r, being in A, unless
υ = x0 and F = Y, is derivable in Gω

Y ∪A, in view of Example 5.1. There-
fore, by downward induction on any (j/k) ∈ ((l/r)+1), in view of Theorem
3.8, we conclude that the rule

img((L/R)�((l/r) \ (j/k)))
(Λ/Ξ)j/k

is derivable in Gω
Y ∪A, and so is

(λ/ρ)T (υ, F )
(υ(F (xi)i∈n `)/(` υ(F (xi)i∈n)

when taking (j/k) = 0. Moreover, Gω
Y ∪A is clearly multiplicative. In this

way, in view of the structurality of the consequence of any calculus, taking
basic structural rules into account, we see that all rules with premises of the
multi-conclusion Σ-calculus S(0,0)

A,T given by Definition 1 of [10] are derivable
in Gω

Y∪A. And what is more, in view of the structurality of the consequence
of any calculus, taking basic structural rules and the Reflexivity axiom into
account, we see that all axioms of S(0,0)

A,T are derivable in Gω
Y∪A too. Finally,

Theorem 2 of [10], according to which any multi-conclusion Σ-sequent,
being true in A, is derivable in S(0,0)

A,T , completes the argument.

Given any B ⊆ Seqω
Σ, set B\1 , ((B ∩ Seqω\1

Σ ) ∪ {(σ+1 ◦ Γ) ` x0 | Γ ∈
(Fmω

Σ)∗, (Γ `) ∈ B}) ⊆ Seqω\1
Σ . Clearly, elements of A\1 are true in A, for

those of A are so.
Lemma 5.3. Any purely multi-conclusion Σ-sequent is derivable in Gω

Y ∪A

iff it is derivable in G
ω\1
Y ∪A\1.

Proof: The “if” part is by Lemma 5.2, for elements of A\1 are true in A.
Conversely, consider any Φ = (Γ ` ∆) ∈ Seqω\1

Σ and any Gω
Y ∪ A-

derivation D of it of length n ∈ ω. Take any ϕ ∈ (img ∆) 6= ∅. Then, in
view of left-side basic structural rules, 〈〈Di ] (` ϕ)〉i∈n,Φ〉 is a Cn

G
ω\1
Y ∪A\1

-

derivation of Φ, as required.
Combining Lemmas 5.2 and 5.3, we first get:
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Corollary 5.4. Any purely multi-conclusion Σ-sequent is true in A iff it
is derivable in G

ω\1
Y ∪A\1.

And what is more, we also have:
Corollary 5.5. Any purely single-conclusion Σ-sequent is true in A iff
it is derivable in G

2\1
Y ∪ τY[A\1].

Proof: The “if” part is by the fact that A, being a Y-disjunctive model
of A\1, is then a model of G

2\1
Y ∪ τY[A\1]. The converse is by Corollaries

4.10, 5.4 and the diagonality of τY�Seq2
Σ.

Given an axiomatic [finite] purely single-conclusion sequent Σ-calculus
G, we have the [finite] Hilbert-style Σ-calculus (G↓) , {(img Γ)/ϕ | (Γ `
ϕ) ∈ G}. Conversely, given a Hilbert-style Σ-calculus C, we have the ax-
iomatic purely single-conclusion sequent Σ-calculus (C↑) , {(Γ ` ϕ) ∈
Seq2\1

Σ | ((img Γ)/ϕ) ∈ C}, in which case (C↑↓) = C. SetH , ((DY∪(τY[A]∩
Seq0`(2\1)

Σ )↓)∪ (σ+1[(τY[A]∩Seq(ω\1)`(2\1)
Σ )↓]Yx0)∪{(σ+1[img Γ]Yx0)/x0 |

Γ ∈ (Fmω
Σ)∗, (Γ `) ∈ τY[A]}). This is finite, whenever Σ is finite, for A is

finite in that case.
Theorem 5.6. The logic of A is axiomatized by H.
Proof: First of all, recall that C , CnDY is Y-disjunctive (cf. Theorem
4.5), in which case, in particular, it satisfies (2.3), (2.5), (2.6) and (2.7),
and so, for any Γ ∈ ℘ω(Fmω

Σ), any extension of C satisfies (σ+1[Γ]Yx0)/x0

iff it satisfies (σ+1[σ+1[Γ]] Y x0)/(x1 Y x0). Therefore, C ′ , CnH is equally
axiomatized by C′ , (DY ∪ (C ∩ Fmω

Σ) ∪ (σ+1[C \ Fmω
Σ] Y x0)), where C ,

(τY[A\1]↓).
Next, A, being a Y-disjunctive model of A\1, is so of τY[A\1], and so of

C, and so of C′, in view of Lemma 3.1.
Conversely, consider any Σ-rule R = (X/ϕ) true in A. Take any

bijection Γ : |X| → X. Then, the purely single-conclusion Σ-sequent
Φ , (Γ ` ϕ) is true in A, and so is derivable in G

2\1
Y ∪ τY[A\1], in view

of Corollary 5.5. On the other hand, by Corollary 3.3, C ′ is Y-disjunctive.
Let S be the set of all rules satisfied in C ′ (viz., derivable in H, i.e., in
C′), in which case C ⊆ S, and so τY[A\1] ⊆ T , (S↑). Therefore, in view
of the structurality and Y-disjunctivity of C ′, T is (G2\1

Y ∪ τY[A\1])-closed.
Hence, T contains all those purely single-conclusion Σ-sequents, which are
derivable in G

2\1
Y ∪ τY[A\1] (in particular, Φ). Thus, R ∈ (T↓) = S, as

required.
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5.1. Implicative case

Here, A is supposed to be a finite B-implicative Σ-matrix with equality
determinant Υ 3 x0, in which case it is Y-disjunctive, where Y , YB is not
primary, and so is properly covered by the above discussion.

Let τB : Seqω\1
Σ → Fmω

Σ be defined as follows: by induction on the
length of the left side Γ of any (Γ ` φ) ∈ Seqω\1

Σ , set:

τB(` φ) , φ,

τB(ψ,Γ ` φ) , (ψ B τB(Γ ` φ)),

where ψ ∈ Fmω
Σ.

Example 5.7. When υ = x0 and F = B, in which case B is a pri-
mary connective of Σ, one can always take λT (υ, F ) = {` x0;x1 `} and
ρT (υ, F ) = {x0 ` x1} to satisfy (5.1) and (5.2), in which case λ(υ, F ) =
{x0, (x0 B x1) ` x1} and ρ(υ, F ) = {` (x0 B x1), x0;x1 ` (x0 B x1)},
and so elements of both τB[τY[λ(υ, F )]] = {x0 B ((x0 B x1) B x1)} and
τB[τY[ρ(υ, F )]] = ({(3.4), (3.3)}[x0/x1, x1/x0]) are derivable in IPL

B , in view
of Theorem 3.6, (3.1) and (3.2).

In this way, let A′
[ 6B] be the set of all elements of λ(υ, F ) ∪ ρ(υ, F ),

for all complex 〈Υ,Σ〉-types 〈υ, F 〉 [but 〈x0,B〉, in case B ∈ Σ is primary].
Then, set A[ 6B] , (A′

[ 6B] ∪A′′ ∪A′′′) and I[ 6B] , (IPL
B ∪ τB[τY[A′

[ 6B]\1]]).

Theorem 5.8. The logic of A is axiomatized by I 6B.

Proof: First of all, note that, in view of Example 5.7, C , CnI 6B is equally
axiomatized by I, and is Y-disjunctive, by Theorem 3.6.

Next, A, being an B-implicative (in particular, Y-disjunctive) model of
A\1, is so of τY[A\1], and so of I.

Conversely, consider any Σ-rule R = (X/ϕ) true in A. Take any bijec-
tion Γ : |X| → X. Then, the purely single-conclusion Σ-sequent Φ , (Γ `
ϕ) is true in A, and so is derivable in G

2\1
Y ∪τY[A\1], in view of Corollary 5.5.

Let S be the set of all rules satisfied in C (viz., derivable in I 6B, i.e., in I), in
which case I ⊆ S, and so, by (3.2), τY[A\1] ⊆ T , (S↑). Therefore, in view
of the structurality and Y-disjunctivity of C, T is (G2\1

Y ∪ τY[A\1])-closed.
Hence, T contains all those purely single-conclusion Σ-sequents, which are
derivable in G

2\1
Y ∪ τY[A\1] (in particular, Φ). Thus, R ∈ (T↓) = S, as

required.
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6. Applications and examples

Here, we consider applications of the previous section, tacitly following
notations adopted therein.

6.1. Disjunctive and implicative positive fragments of the clas-
sical logic

Here, we deal with the signature Σ(⊃)
+[01] , ({∧,∨}[∪{⊥,>}](∪{⊃})). By

D
(⊃)
2[01] we denote the Σ(⊃)

+[01]-algebra such that D
(⊃)
2[01]�Σ+[01] is the [bounded]

distributive lattice given by the chain 2 ordered by inclusion (and ⊃D⊃
2[01]

is the ordinary classical implication). Then, the logic of the ∨-disjunctive
(and ⊃-implicative) D(⊃)

2[01] , 〈D(⊃)
2[01], {1}〉 with equality determinant Υ =

{x0} (cf. Example 1 of [10]) is the Σ(⊃)
+[01]-fragment of the classical logic.

Throughout the rest of this subsection, it is supposed that Σ ⊆ Σ(⊃)
+,01 and

A = (D(⊃)
2,01�Σ), in which case A′′′ = ∅.

First, in case Σ = {⊃}, both A′
6⊃ and A′′ are empty, and so is A6⊃. In

this way, we have the following well-known result:
Corollary 6.1. The {⊃}-fragment of the classical logic is axiomatized by
IPL
⊃ .

Likewise, in case Σ = {∨}, both A′ and A′′ are empty, and so is A. In
this way, we get:
Corollary 6.2. The {∨}-fragment of the classical logic is axiomatized by
D∨.

Next, let Σ = Σ+. Then, A′′ = ∅, while one can take λT (x0,∧) =
{x0, x1 `} and ρT (x0,∧) = {` x0;` x1} to satisfy (5.1) and (5.2), in which
case λ(x0,∧) = {(x0 ∧ x1) ` x0; (x0 ∧ x1) ` x1} and ρ(x0,∧) = {x0, x1 `
(x0 ∧ x1)}, and so A = A′ = {(x0 ∧ x1) ` x0; (x0 ∧ x1) ` x1;x0, x1 `
(x0 ∧ x1)}. Thus, we get:
Corollary 6.3. The Σ+-fragment of the classical logic is axiomatized by
the calculus PC+ resulted from D∨ by adding the following rules:

C1 C2 C3

(x1 ∧ x2) ∨ x0
x1 ∨ x0

(x1 ∧ x2) ∨ x0
x2 ∨ x0

x1 ∨ x0;x2 ∨ x0

(x1 ∧ x2) ∨ x0
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It is remarkable that the calculus PC+ consists of seven rules, while
that which was found in [2] has nine rules. This demonstrates the practi-
cal applicability of our generic approach (more precisely, its factual ability
to result in really “good” calculi to be enhanced a bit more by replac-
ing appropriate pairs of rules/premises with single ones upon the basis of
Proposition 4.6 and rules Ci, i ∈ (4\1), whenever it is possible, to be done
below tacitly — “on the fly”).

Likewise, let Σ = Σ⊃
+. Then, A′′ = ∅, and so, taking Corollary 3.7(ii)

and Example 5.1 into account, we have the following well-known result:
Corollary 6.4. The Σ⊃

+-fragment of the classical logic is axiomatized by
the calculus PC⊃+ resulted from IPL

⊃ by adding the following axioms:

(x0 ∧ x1) ⊃ xi x0 ⊃ (x1 ⊃ (x0 ∧ x1))
xi ⊃ (x0 ∨ x1) (x0 ⊃ x2) ⊃ ((x1 ⊃ x2) ⊃ ((x0 ∨ x1) ⊃ x2))

where i ∈ 2.
Finally, let Σ = Σ[⊃]

+,01, in which case A′ is as above, while A′′ = {`
>;⊥ `}, and so [taking Corollary 3.7(ii) into account] we get:

Corollary 6.5. The Σ[⊃]
+,01-fragment of the classical logic is axiomatized

by the calculus PC[⊃]
+,01 resulted from PC

[⊃]
+ by adding the following rules:

> ⊥ ∨ x0

x0
[⊥ ⊃ x0]

6.2. Miscellaneous four-valued expansions of Belnap’s logic

From now on, it is supposed that Σ ⊇ Σ∼,+[01] , (Σ+[01] ∪ {∼}), where ∼
is unary, (A�Σ∼,+[01]) = DM4[01], where (DM4[01]�Σ+[01]) , D2

2[01], while
∼DM4[01]〈i, j〉 , 〈1− j, 1− i〉, for all i, j ∈ 2, in which case we use the
following standard notations going back to [1]:

t , 〈1, 1〉, f , 〈0, 0〉, b , 〈1, 0〉, n , 〈0, 1〉,

and A , 〈A, {b, t}〉, in which case it is ∨-disjunctive, while Υ = {x0,∼x0}
is an equality determinant for it (cf. Example 2 of [10]), whereas A′′′ = ∅.
(Since the logic B4[01] of A�Σ∼,+[01] is the [bounded version of] Belnap’s
logic, the logic of A is a four-valued expansion of B4.)

First, let Σ = Σ∼,+, in which case A′′ = ∅, while the case of the com-
plex 〈Υ,Σ〉-type 〈x0,∧〉 is as in the previous subsection, whereas others but



23

〈x0,∨〉 are as follows. First of all, one can take λT (∼x0,∨) = {∼x0,∼x1 `}
and ρT (∼x0,∨) = {` ∼x0;` ∼x1} to satisfy (5.1) and (5.2), in which case
λ(∼x0,∨) = {∼(x0 ∨ x1) ` ∼x0;∼(x0 ∨ x1) ` ∼x1} and ρ(∼x0,∨) =
{∼x0,∼x1 ` ∼(x0 ∨ x1)}. Likewise, one can take λT (∼x0,∧) = {∼x0 `
;∼x1 `} and ρT (∼x0,∧) = {` ∼x0,∼x1} to satisfy (5.1) and (5.2), in
which case λ(∼x0,∧) = {∼(x0 ∧x1) ` ∼x0,∼x1} and ρ(∼x0,∧) = {∼x0 `
∼(x0 ∧ x1);∼x1 ` ∼(x0 ∧ x1)}. Finally, one can take λT (∼x0,∼) =
{x0 `} and ρT (∼x0,∼) = {` x0} to satisfy (5.1) and (5.2), in which case
λ(∼x0,∼) = {∼∼x0 ` x0} and ρ(∼x0,∼) = {x0 ` ∼∼x0}. In this way,
we get:
Corollary 6.6. B4 is axiomatized by the calculus B resulted from PC+

by adding the following rules as well as the inverse to these:

NN ND NC

x1 ∨ x0∼∼x1 ∨ x0

(∼x1 ∧ ∼x2) ∨ x0

∼(x1 ∨ x2) ∨ x0

(∼x1 ∨ ∼x2) ∨ x0

∼(x1 ∧ x2) ∨ x0

The calculus B has 13 rules, while the very first axiomatization of B4

discovered in [8] (cf. Definition 5.1 and Theorem 5.2 therein) has 15 rules,
“two rules win” being just to the advance of the present study with regard
to [2] (cf. the previous subsection).

Now, let Σ = Σ∼,+,01, in which case A′ is as above, while A′′ =
{>;∼⊥;⊥ `;∼> `}, and so we get:
Corollary 6.7. B4,01 is axiomatized by the calculus B01 resulted from
B ∪ PC+,01 by adding the following axiom and rule:

∼⊥ ∼> ∨ x0

x0

6.2.1. The classical expansion

Here, it is supposed that Σ = Σ',+[01] , (Σ∼,+[01] ∪ {¬}), where ¬ is
unary, while ¬A〈i, j〉 , 〈1− i, 1− j〉, for all i, j ∈ 2. Then, one can take
λT (x0,¬) = {` x0} and ρT (x0,¬) = {x0 `} to satisfy (5.1) and (5.2), in
which case λ(x0,¬) = {¬x0, x0 `} and ρ(x0,¬) = {` x0,¬x0}. Likewise,
one can take λT (∼x0,¬) = {` ∼x0} and ρT (∼x0,¬) = {∼x0 `} to satisfy
(5.1) and (5.2), in which case λ(∼x0,¬) = {∼¬x0,∼x0 `} and ρ(∼x0,¬) =
{` ∼x0,∼¬x0}. Thus, we get:
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Corollary 6.8. The logic of A is axiomatized by the calculus CB[01] re-
sulted from B[01] by adding the following rules:

N1 N2 N3 N4

(¬x1 ∧ x1) ∨ x0
x0

x0 ∨ ¬x0
(∼¬x1 ∧ ∼x1) ∨ x0

x0
∼x0 ∨ ∼¬x0

6.2.2. The bilattice expansions

Here, it is supposed that Σ = Σ∼/',2:+[01] , (Σ∼/',+[01]∪{u,t}[∪{0,1}]),
where u and t (knowledge conjunction and disjunction, respectively) are
binary [while 0 and 1 are nullary], whereas

(〈i, j〉(u/t)A〈k, l〉) , 〈(min /max)(i, k), (max /min)(j, l)〉,

for all i, j, k, l ∈ 2 [while 0A , n and 1A , b].
First, let Σ = Σ∼,2:+, in which case A′′ = ∅. Then, one can take

λT (x0,u) = {x0, x1 `} and ρT (x0,u) = {` x0;` x1} to satisfy (5.1)
and (5.2), in which case λ(x0,u) = {(x0 u x1) ` x0; (x0 u x1) ` x1} and
ρ(x0,u) = {x0, x1 ` (x0 u x1)}. Likewise, one can take λT (x0,t) = {x0 `
;x1 `} and ρT (x0,t) = {` x0, x1} to satisfy (5.1) and (5.2), in which case
λ(x0,t) = {(x0 t x1) ` x0, x1} and ρ(x0,t) = {x0 ` (x0 t x1);x1 ` (x0 t
x1)}. Next, one can take λT (∼x0,u) = {∼x0,∼x1 `} and ρT (∼x0,u) = {`
∼x0;` ∼x1} to satisfy (5.1) and (5.2), in which case λ(∼x0,u) = {∼(x0 u
x1) ` ∼x0;∼(x0 u x1) ` ∼x1} and ρ(∼x0,u) = {∼x0,∼x1 ` ∼(x0 u x1)}.
Finally, one can take λT (∼x0,t) = {∼x0 `;∼x1 `} and ρT (∼x0,t) = {`
∼x0,∼x1} to satisfy (5.1) and (5.2), in which case λ(∼x0,t) = {∼(x0 t
x1) ` ∼x0,∼x1} and ρ(∼x0,t) = {∼x0 ` ∼(x0t∼x1);∼x1 ` ∼(x0tx1)}.
Thus, we get:

Corollary 6.9. The logic of A is axiomatized by the calculus BL resulted
from adding to B the following rules as well as the inverse to these:

KC KD NKC NKD

(x1 ∧ x2) ∨ x0

(x1 u x2) ∨ x0

(x1 ∨ x2) ∨ x0

(x1 t x2) ∨ x0

(∼x1 ∧ ∼x2) ∨ x0

∼(x1 u x2) ∨ x0

(∼x1 ∨ ∼x2) ∨ x0

∼(x1 t x2) ∨ x0

Likewise, let Σ = Σ∼,2+,01, in which case A′ is as above, while A′′ =
({⊥ `;>} ∪ {∼i0 `;∼i1 | i ∈ 2}), and so we have:
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Corollary 6.10. The logic of A is axiomatized by the calculus BL01 re-
sulted from adding to BL ∪B01 the following axioms and rules:

∼i1
∼i0 ∨ x0

x0

where i ∈ 2.
Finally, when Σ = Σ',2:+[01], we have:

Corollary 6.11. The logic of A is axiomatized by the calculus CB∪BL[01].

6.2.3. Implicative expansions

Here, it is supposed that ⊃ ∈ Σ, while

(a ⊃A b) ,

{
b if π0(a) = 1,
t otherwise,

for all a, b ∈ 22, in which case A is ⊃-implicative.
First, let Σ = (Σ∼,+ ∪ {⊃}). Clearly, one can take λT (∼x0,⊃) =

{x0,∼x1 `} and ρT (∼x0,⊃) = {` x0;` ∼x1} to satisfy (5.1) and (5.2),
in which case λ(∼x0,⊃) = {∼(x0 ∧ x1) ` x0;∼(x0 ∧ x1) ` ∼x1} and
ρ(∼x0,⊃) = {x0,∼x1 ` ∼(x0 ∧ x1)}. Therefore, taking Corollary 3.7(ii)
and Example 5.1 into account, we get:
Corollary 6.12. The logic of A is axiomatized by the calculus B⊃ resulted
from PC⊃+ by adding the following axioms:

∼∼x0 ⊃ x0 x0 ⊃ ∼∼x0

∼(x0 ∨ x1) ⊃ ∼xi ∼x0 ⊃ (∼x1 ⊃ ∼(x0 ∨ x1))
∼xi ⊃ ∼(x0 ∧ x1) (∼x0 ⊃ x2) ⊃ ((∼x1 ⊃ x2) ⊃ (∼(x0 ∧ x1) ⊃ x2))

∼(x0 ⊃ x1) ⊃ ∼ixi x0 ⊃ (∼x1 ⊃ ∼(x0 ⊃ x1))

where i ∈ 2.
It is remarkable that B⊃ is essentially the calculus Par introduced in

[7] but regardless to any semantics. In this way, the present study provides
a new (and quite immediate) insight into the issue of semantics of Par first
being due to [9] but with using the intermediate equivalent (via τ⊃ ◦ τ∨
and the diagonal mapping) purely multi-conclusion sequent calculus GPar
actually introduced in [7] and then studied semantically in [9].
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Likewise, in case Σ = (Σ∼,+,01 ∪ {⊃}), we have:

Corollary 6.13. The logic of A is axiomatized by the calculus B⊃
01 re-

sulted from B⊃ ∪ PC⊃+,01 by adding the following axioms:

∼⊥ ∼> ⊃ x0

Now, let (Σ = (Σ∼,2:+ ∪ {⊃}). Then, we have:

Corollary 6.14. The logic of A is axiomatized by the calculus BL⊃ re-
sulted from B⊃ by adding the following axioms:

(x0 u x1) ⊃ xi x0 ⊃ (x1 ⊃ (x0 u x1))
xi ⊃ (x0 t x1) (x0 ⊃ x2) ⊃ ((x1 ⊃ x2) ⊃ ((x0 t x1) ⊃ x2))
∼(x0 u x1) ⊃ ∼xi ∼x0 ⊃ (∼x1 ⊃ ∼(x0 u x1))
∼xi ⊃ ∼(x0 t x1) (∼x0 ⊃ x2) ⊃ ((∼x1 ⊃ x2) ⊃ (∼(x0 t x1) ⊃ x2))

where i ∈ 2.

Likewise, when (Σ = (Σ∼,2:+,01 ∪ {⊃}), we have:

Corollary 6.15. The logic of A is axiomatized by the calculus BL⊃
01 re-

sulted from BL⊃ ∪B⊃
01 by adding the following axioms:

∼i1 ∼i0 ⊃ x0

where i ∈ 2.

Further, let Σ = (Σ',+[01] ∪ {⊃}). Then, taking (3.2) and Corollary
(3.7)(i) into account, we have:

Corollary 6.16. The logic of A is axiomatized by the calculus CB⊃
[01]

resulted from B⊃
[01] by adding the axioms N2, N4 and the following ones:

∼i¬x1 ⊃ (∼ixi ⊃ x0),

where i ∈ 2.

Finally, when Σ = (Σ',2:+[01] ∪ {⊃}), we have:

Corollary 6.17. The logic of A is axiomatized by the calculus CB⊃ ∪
BL⊃

[01].
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