
EasyChair Preprint

№ 1056

Hashing Graph Convolution for Node Classification

Wenting Zhao, Zhen Cui, Chunyan Xu, Chengzheng Li,
Tong Zhang and Jian Yang

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 28, 2019

Hashing Graph Convolution for Node Classification
Anonymous Author(s)

ABSTRACT
Convolution on graphs has aroused great interest in AI due to its

potential applications to non-gridded data. To bypass the influence
of ordering and number of adjacent nodes, the summing/average
diffusion/aggregation is often imposed on local receptive field in
most prior works. However, the collapsing into one node in this way
tends to cause signal entanglements of nodes, which would result
in a sub-optimal feature information and decrease the discriminabil-
ity of nodes. To address this problem, in this paper, we propose a
simple but effective Hashing Graph Convolution (HGC) method
by using global-hashing and local-projection on node aggregation
for the task of node classification. In contrast to the conventional
aggregation with a full collision, the hash-projection can greatly re-
duce the collision probability during gathering neighbor nodes. We
argue the hash-projection based method can better preserve or even
increase original discrepancies of local regions and further obtain
improvement. Another incidental effect of hash-projection is that
the receptive field of each node is normalized into a common-size
bucket space, which not only staves off the trouble of different-size
neighbors and their orders but also makes a graph convolution
run like the standard shape-girded convolution. Considering the
small training samples, also, we introduce a prediction-consistent
regularization term into HGC to constrain the score consistency of
unlabeled nodes in the graph. HGC is evaluated on both transduc-
tive and inductive experimental settings. The extensive experiments
on node classification task demonstrate that hash-projection can
indeed promote the performance and our HGC achieve new state-
of-the-art results on all experimental datasets.

CCS CONCEPTS
•Theory of computation→ Semi-supervised learning;Ma-

chine learning theory; Theory and algorithms for application do-
mains;

KEYWORDS
Graph convolution, Node classification, Hash transform

ACM Reference Format:
Anonymous Author(s). 2019. Hashing Graph Convolution for Node Classi-
fication. In Proceedings of The 28th ACM International Conference on Infor-
mation and Knowledge Management (CIKM ’18). ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/1122445.1122456

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CIKM ’18, November 3-7, 2019, Beijing, China
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9999-9/18/06.
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
As a universal tool, graph has been widely-used to model var-

ious irregular data such as social networks, chemical molecules,
recommendation systems and so on. Advanced by the powerful rep-
resentation capabilities of standard convolution neural networks
(CNNs) on shape-gridded data (e.g., image, video, etc.), the study
of convolution on irregular data is getting increasing attention
in the field of artificial intelligence. More recently, various meth-
ods [2, 11, 28, 31] start to flourish on graph convolution. However,
due to the irregularity and complexity of geometric topology, gen-
eralizing CNN from regular grids to graphs is not a trivial thing.
Since the adjacent vertices of one reference vertex are apparently
orderless and with different quantities, the most existing works
leverage a summing or averaging aggregation scheme on them.
As the number of convolutional layers and local receptive fields
increase, however, collapsing into one node in this way tend to
cause excessive smoothing of the node features in a large range and
lose discriminability information between nodes, which is also a
reason that GCN [16] only employs the direct neighbors for feature
aggregation. A simple example is shown in Figure 1. The verticesv0
and v6 in Figure 1(a) and Figure 1(b) are obviously different. After
the averaging aggregation, their features will have the same result.
That means, such a strategy might confuse those useful information
when one benefits from its high-efficient computation. To address
this problem, the hard sorting method of neighbor vertices was
proposed in the literature [21], in which adjacent nodes are sam-
pled into a fixed number and sorted in weights of edges. In view
of the graph flexibility, the hard sorting is even sensitive to small
disturbances. And redundant information may be incorporated in
the transfer process.

h(N2(v))

h(N1(v))

h(v)v

v

v

Embeddings

PCA(X)

Output

h(v)

V0V0V0 Hash projection

bucket3

bucket1

bucket2

Mapping

V0V0V0 Hash projection

bucket3

bucket1

bucket2

Mapping

V0V0V0 Hash projection

bucket3

bucket1

bucket2

Mapping V0V0V0 Hash projection

bucket3

bucket1

bucket2

Mapping

(a)

h(N2(v))

h(N1(v))

h(v)v

v

v

Embeddings

PCA(X)

Output

h(v)

V0V0V0 Hash projection

bucket3

bucket1

bucket2

Mapping

V0V0V0 Hash projection

bucket3

bucket1

bucket2

Mapping

V0V0V0 Hash projection

bucket3

bucket1

bucket2

Mapping V0V0V0 Hash projection

bucket3

bucket1

bucket2

Mapping

(b)

Figure 1: A toy example. The local receptive fields around
v0 and v6 in (a) and (b) are obviously different. If the simple
average aggregation is computed, i.e., f (v0) = (3 + 2 + 5 + 7 +
4 + 3)/6 = 4, f (v6) = (3 + 6 + 10 + 5 + 5)/5 = 4, their results
are the same. But the hash-aggregation of three buckets are
different with high probability, i.e., f (v0) = [(2 + 5)/2, (4 +
7)/2, 3, 3] = [3.5, 5.5, 3, 3] and f (v6) = [(5 + 5)/2, 0, (3 + 6)/2, 1] =
[5, 0, 4.5, 1].

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

CIKM ’18, November 3-7, 2019, Beijing, China Anonymous Author(s)

5.0 2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0
15

10

5

0

5

10

15

(a) average aggregation

5.0 2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0
15

10

5

0

5

10

15

(b) hash-aggregation

Figure 2: Visualization of average aggregation vs hash-
aggregation on Cora dataset. Only one time aggregation op-
eration is imposed on the original features of one-hopping
neighbors, and then we use principal component analysis to
project the aggregated features into the first 2D space.

Based on the assumption that connected nodes should be similar,
in essence, graph convolution is a smooth strategy, which aggre-
gates the features of neighbors to the reference vertex. GCN [16]
employs the simplest Laplacian smoothing with self-hop while
GAT [28] takes advantage of weighted smoothing. Smoothing is
the key of they both working well. The proper smoothing operation
make features of nodes in same class similar, but over-smoothing
would bring about features of nodes in different class indistinguish-
able. From this we can see that smoothing, as a main means of graph
convolution, can improve the performance, but it also causes some
useful information loss in the process. To remedy this defect, in this
paper, we propose a simple and efficient Hashing Graph Convolu-
tion (HGC) method to encode graph vertices for node classification.
Hash-projection is introduced to normalize vertices of each local
receptive field, which should be the first time to our knowledge.
Due to the good locality preservation property, hash-aggregation
can better preserve the node discrepancies with high probability,
compared to the conventional averaging aggregation. As shown in
Figure 1, we randomly project nodes within receptive field into 3
hash buckets and then average features of all nodes in each bucket.
The hash-aggregation results of v0 and v6 tend to be different with
high probability. Also, this phenomenon is statistically observed in
the real dataset as shown in Figure 2. In visualization of 2D princi-
pal component analysis, the distribution of vertices computed by
hash projection in Figure 2(b) is significantly divergent, compared
to the traditional aggregation in Figure 2(a). From the perspec-
tive of hashing, the prior average aggregation may be viewed as a
particular case of ours with only a single bucket. In other words,
the vertices within one receptive field fully collide into a bucket
for the simple aggregation, and thus the local preservation ability
of original feature space will be largely degraded. Multi-bucket
hash-aggregation can effectively relieve this problem due to the
good preservation of hash theory. Additionally, the probability of
collision is proportional to the cosine distance of the two feature
vectors, which means that nodes with the same label, in general,
have similar features and are more easily projected into the same
bucket. As a result, hashing also can avoid information redundancy
by aggregating similar features into a bucket. Figure 3 exhibits the
process of hash based aggregation and the detailed description for
HGC is in Section 3.

Another incidental effect of hash-aggregation is that the local re-
ceptive field of each node is normalized into a common-size bucket
space, which not only staves off the trouble of different-size neigh-
bors and their orders but also make graph convolution analogical
to the standard shape-girded convolution. The proposed hashing
convolution can be easily incorporated into the prior convolution
framework to boost the performance. Here, we consider the small
portion of training vertices and introduce a regularization term
of positive pointwise mutual information (PPMI) inspired by the
recent work [34]. The regularization term constrains the entire
graph structure by making the convolutional responses on the ad-
jacent matrix as possibly consistent as the PPMI matrix. We assess
our HGC model on both transductive and inductive experimental
settings for node classification task. The extensive experiments
demonstrate that hash-aggregation can indeed boost the perfor-
mance of graph convolution, and meantime the advanced frame-
work can benefit from this point. In transductive learning, HGC has
broken through the general performance level of many methods
and achieved the new state-of-the-art classification performance
with only 20 samples in each class. At the same time, HGC also
outperforms other methods and obtain superior performance in
inductive inference, which testify that HGC can be generalized to
unseen datasets

The remainder of this paper is organized as follows. Section 2
reviews some related works about graph convolution and hash
transformation. Section 3 introduce our HGC model in detail and
give the framework of the network. Section 4 describes the im-
plementation details, reports the performance of and makes some
discussions. Finally, Section 5 summarizes this paper and gives
future research direction.

2 RELATEDWORK
In this section, we briefly retrospect the related work including

graph convolution and hashing methods.
Graph convolution is flourishing in the AI field recently. Niepert

et al. [21] conducts traditional convolution operation by normaliz-
ing the graph to gridded structure, which converts neighborhoods of
key nodes to fixed size as well as impose a order on them. In the pro-
cess of transformation, some useful information may be lost. Then
DGCNN [31] adds disordered graph convolutional layer(DGCL)
based on mixed Gaussian model to avoid the loss of information.
DCNN [2] presents a diffusion-convolution operation providing a
straightforward mechanism for including K-hops neighborhoods
information about each node. GraphSAGE [11] proposes a general
inductive framework and applies several aggregator architectures
to generate embeddings as input to downstream tasks. [28] intro-
duces a masked self-attention layer that implicitly assigns different
weights to different vertices in the neighborhood and obtains some
improvement. GIC [14] leverages Gaussian mixture model (GMM)
to encode local variations and conducts edge-Induced GMM and
vertex-Induced GMM for convolution and pooling operation on
graph, On the other hand, in the light of the Spectral Graph The-
ory [7], the spectral filtering based method has been successfully
applied to the field of graphs. And in graph setting, the Laplacian
eigenvalues provide a notion of frequency [25]. Convolution neu-
ral network (CNN) is firstly generalized to graph in [3] through

Hashing Graph Convolution for Node Classification CIKM ’18, November 3-7, 2019, Beijing, China

Pooling

Pooling Pooling

Pooling

h(N2(v))

h(N1(v))

h(v)v

v

v

Embeddings

PCA(X)

Output

h(v)

V0V0V0 Hash projection

bucket3

bucket1

bucket2

Mapping

V0V0V0 Hash projection

bucket3

bucket1

bucket2

Mapping V0V0V0 Hash projection

bucket3

bucket1

bucket2

Aggregation

𝑣6:1

𝑣9:5

𝑣8:6
𝑣10:5

𝑣7:3

𝑣6: 1

𝑣9: 5

𝑣10: 5

𝑣8: 6

𝑣7: 3

𝑣0:3

𝑣1:2

𝑣2:5

𝑣4:4 𝑣3:7

𝑣5:3

𝑣0:3

𝑣1:2

𝑣2:5

𝑣4:4
𝑣3:7

𝑣6:1

𝑣9:5

𝑣8:6
𝑣10:5

𝑣7:3

𝑣5:3

Concat(V0,)

HGC(X, P)HGC(X, P)

HGC(X, A)

FC

FCHGC(X, A)
𝓛𝒄

𝓛𝒓𝒆𝒈

Softmax

Softmax

𝓛𝒄 + 𝜆𝓛𝒓𝒆𝒈

b2

b1

Concat(*)V0V0 Hash-projection

b3

b1

b2

Aggregation

b3

V0

b2

b1

Concat(*)V0V0 Hash-projection

b3

b1

b2

Aggregation

b3

V0

b2

b1

Concat(V0,b1,b2,b3)V0V0 Hash projection

b3

b1

b2

Aggregation

b3

V0

Figure 3: The process of hash based aggregation in 1-hop neighborhood. The neighbor nodes are hashed into 3 buckets, and
then the node features in the 3 buckets are respectively aggregated, and the features in the reference node v0 itself and the 3
buckets are concatenated together.

Laplacian eigenvalue decomposition, but the matrix computation
is expensive and it is non-localized filters. To overcome these prob-
lems, the work [12] attempts to spatially localize through parame-
terizing the spectral filters with smooth coefficients. On this basis,
ChebyNet [9] realizes fast localized spectral filter using Cheby-
shev polynomial approximation, which significantly reduces the
computational complexity. Further, GCN [16] simplifies the filter
to a linear function of first-order in the case of ensuring that the
model ability isn’t declined. Lately literatures [6, 18, 19, 34] have
made some improvements on these foundations and obtain some
gains, in which FastGCN [6] interprets GCN from the perspective
of integral transformation and further accelerate GCN by samples
vertex in each layer. And DGCN [34] devises a dual graph convolu-
tional neural network method to jointly consider local and global
information.

Hashing is mainly leveraged for feature dimensionality reduction
and information retrieval. Feature Hashing [1] applies a hash trans-
form to reduce dimension for collaborative filtering of spam, give
an unbiased estimate formulation of the hash kernel. The work [8]
constructs a sparse projection matrix through hashing and local
densification and gives a matching lower bound on the sparsity for
a large class of projection matrices. Hashing significantly improved
the efficiency of calculation by means of a sparse projection into a
lower dimensional space for very high dimensional setting [24]. In
addition, hash transformation is widely used in the similarity search
field due to its huge search cost. Due to similarity preserving [30],
learning to hash has been applied to a wide-range of applications
such as large scale object retrieval [13], image classification [23]
and detection [27], and so on. In this work, our purpose is not to
study concrete hashing methods, but introduce hashing into graph
convolution, which should be first time to our knowledge.

3 OUR APPROACH
Let G (V, E) denote an undirected/directed graph, where V

represents a set of vertices with the number |V| = n and E is a set
of edges. According to the adjacency relation in E, we can define
the corresponding adjacent matrix A ∈ Rn×n of the graph G. If
(vi ,vj) ∈ E, we set Ai j = 1, otherwise Ai j = 0. When edges has
different weights,Ai j may be assigned to a real value. Besides, each
vertex might have a feature description with a d-dimension vector
x ∈ Rd . At this time, the features of all vertices, i.e., the graph
features, could be stacked by rows into a feature matrix X ∈ Rn×d .

To state conveniently, we use Xi · or xi to denote the feature of the
i-th vertex.

3.1 Hashing Graph Convolution
Given the node setV = {v1,v2, · · · ,vn } of a graph, we seek for

the hash functions h(·) to project the nodes into b different hash
buckets B = {B1,B2, · · · ,Bb }. We expect the hash functions can
map those similar vertices into the same bucket with high probabil-
ity, which means good local preservation ability. Afterwards, we
need to represent local receptive fields of the irregular graph. In
the standard convolution performing on images, the receptive field
may be sophisticatedly defined as a local square space region, so
convolution filtering on regular structures are operable easily. In
contrast, each vertex of graph usually contains different neighbor
numbers and these neighbor nodes are unordered apparently. Due
to the high-degree flexibility of graph, one often uses the neighbor-
hoods to define receptive field. Formally, given a reference vertex
vi , we can infer all its s-hopping reachable vertices, and denote the
vertex set as Ns (vi). When s = 2, the vertex set N2(vi) consists
of the one-nearest neighbors starting vi , i.e., the direct adjacent
relationship. If s = 1, we letN1(vi) = {vi }. Here we call the vertex
set Ns (vi) as the s-scale receptive field. Moreover, the receptive
field could be recursively derived as follows

Ns+1(vi) = {vl |vj ∈ N
s (vi) and vl ∈ N1(vj)}, (1)

where s = 1, 2, · · · , S and S is the maximum scale of receptive field.
In the above definition of receptive fields, the intersection of two
receptive fields might be nonempty, i.e., Ns ∩ Ns+1 , null. One
may take their set difference,Ns+1 ← Ns+1 −Ns . In fact, it is not
necessary for this according to our experiences.

Next, we induce the total formulation of hashing convolution
filtering on one center vertex vi , formally,

C ∗ G(vi) = f (xi ; x̃2i ; · · · ; x̃
S
i), (2)

s .t ., x̃si = д([̃x
s
i→B1

; · · · ; x̃si→Bb]), (3)

x̃si→Bk = F si→Bk

∑
vj ∈Ns (vi),
h(vj)∈Bk

ws
i jxj , (4)

s = 2, · · · , S ; k = 1, 2, · · · ,b .

where ws
i j is the weight between vertex vi and vj at the s-scale

receptive field, f ,д are non-linear functions to be solved, [· ; · · · ; ·]
means the concatenation of features, and F si→Bk

is the normaliza-
tion factor.

CIKM ’18, November 3-7, 2019, Beijing, China Anonymous Author(s)

Pooling

Pooling Pooling

Pooling

b2

b1

h(N2(v))

h(N1(v))

h(v)v

v

v

Embeddings

PCA(X)

Output

h(v)

V0V0V0 Hash projection

bucket3

bucket1

bucket2

Mapping

V0V0V0 Hash projection

bucket3

bucket1

bucket2

Mapping V0V0V0 Hash projection

bucket3

bucket1

bucket2

Aggregation

𝑣6:1

𝑣9:5

𝑣8:6
𝑣10:5

𝑣7:3

𝑣6: 1

𝑣9: 5

𝑣10: 5

𝑣8: 6

𝑣7: 3

𝑣0:3

𝑣1:2

𝑣2:5

𝑣4:4 𝑣3:7

𝑣5:3

𝑣0:3

𝑣1:2

𝑣2:5

𝑣4:4
𝑣3:7

𝑣6:1

𝑣9:5

𝑣8:6
𝑣10:5

𝑣7:3

𝑣5:3
Concat(V0,)

Concat(V0,b1,b2,b3)V0V0V0 Hash projection

bucket3

bucket2

MappingV0V0 Hash projection

b3

b1

b2

Aggregation

b3

V0

HGC(X, P)HGC(X, P)

HGC(X, A)

FC

FCHGC(X, A)
𝓛𝒄

𝓛𝒓𝒆𝒈

Softmax

Softmax

𝓛𝒄 + 𝜆𝓛𝒓𝒆𝒈

Figure 4: The overall framework of HGC-based network.

Term x̃si→Bk : in the above Eqn. (4), it aggregates all the s-
hopping neighbor vertices falling into the k-th hash buckets w.r.t.
the reference vi . Different from the convention aggregation, the
hash-aggregation partitions those vertices within a receptive field
into b different buckets. According to the Johnson-Lindenstrauss
lemma [15], the embedded hashing projection on the vertex set can
preserve up to a certain multiplicative factor of the original space.
The detailed definition of the hash function h(·) will be introduced
in Section 3.3. It is worth noting that the hash function is globally
defined for all vertices of the graph but the hash-aggregation is
only imposed on a few neighbor vertices. The global definition
makes sure the hash-projection consistency of local convolution
on different reference vertices. The local hash-aggregation may
reduce the collision probability due to the number of neighbors is
small (i.e., the connection edges are usually sparse). The weighting
scalar ws

i j may be chosen as the s-hopping reachable probability
of random walks from vertex vi to vertex vj . In a simple way, we
may also setws

i j = 1 ifvi andvj just satisfies the s-hop reachability,
otherwise 0. The factor F is used to eliminate effect of different
hash-projected vertex numbers, and is defined as

F si→Bk
= 1/

��{vj |vj ∈ Ns (vi) and h(vj) ∈ Bk }
�� . (5)

Term x̃si : in Eqn. (3), it collects all buckets’s features at the s-scale
receptive field. Here, we concatenate them and then project into a
low-dimension feature space by using the function д. Concretely,
the function д : Rd×b → Rd is defined as a fully-connected layer
with the non-linear activation unit ReLU. Other strategies may be
selected for this function.

Function f : in Eqn. (2), it maps the features of S receptive fields
(include the reference vertex itself) to a low dimension space. Simi-
lar to the function д, we concatenate them and then project into a
pre-specified dimension space by using a fully-connected layer and
the ReLU unit.

3.2 Pooling
In node classification, we do not need to massacre vertices, i.e.,

graph coarsening. That means, the pooling should be vertex-wise

diffusion on local region, such that the high-level semantic infor-
mation can be abstracted from the graph. Formally, we perform the
pooling on the S-scale receptive field w.r.t. one vertex vi as

P(G(vi)) = P({xj |vj ∈ Ns (vi), s = 1, · · · , S}), (6)

where the pooling operation P is usually defined as “max” or
“mean". In practice, their performances have little difference on
graph convolution, but the “mean" pooling is more stable than
“max". Thus, here we choose the average operation on all neighbor
vertices during pooling. The detailed HGC network prediction pro-
cess including pooling operation has been explained in Algorithm 1.

3.3 Hash Learning
For the hash function h(·), we attempt to learn the dynamic

hashing by using data-dependency. Those similar features should
be projecting into the same bucket with high probability. That
means, the locality property in the original feature space will be
largely preserved in the transformed space. Concretely, we build
hash-projection on the features of vertices. Formally, the hashing
function consists of b projecting parameters {w1, · · · ,wb } and the
biases {c1, · · · , cb },

h(x) = argmaxk {w1x + c1, · · · ,wkx + ck , · · · ,wbx + cb }, (7)

where wk may be understood as the hyperplane. When taking
random projection, the hash function h(·) usually satisfies the lo-
cality preserving property, P(h(xi) = h(xj)) ∝ exp{− ∥x1−x2 ∥

2

σ 2 },
according to the theory of local sensitive hashing [10]. Due the
asymptotic theoretical guarantees for hash projection, the above
hash-aggregation could be preserve the discrepancy well. In con-
trast to the straightforward average aggregation collapsing all ver-
tices within a receptive field into a vertex, the hashing convolution
encodes the discrepancy of vertices better. Moreover, based on the
hashing theory [29], the collision probability for two vertices is
given by

P(h(xi) = h(xj)) ∝

[
1 −

cos−1(xTi xj)
π

]b
. (8)

Hashing Graph Convolution for Node Classification CIKM ’18, November 3-7, 2019, Beijing, China

the probability of collision is proportional to the cosine distance of
the two feature vectors, whichmeans that nodes with the same label,
in general, have similar features and are more easily projected into
the same bucket. As a result, hashing also can avoid information
redundancy by aggregating similar features into a bucket. With the
increase of value of b, the false collisions will be reduce largely. In
other words, those non-neighbor or dissimilar vertices falls into
the same bucket with a lower probability. However, a large b also
decreases the collision probability of those similar vertices. More
importantly, for one local convolution, the filtered vertex number is
far less than the total number of graph vertices due to the sparsity.
Thus, the number b of buckets may be chosen a small value to
achieve the satisfactory performance. In the hashing learning, we
also put these parameters {wk , ck } into the entire network and
jointly optimize them.

3.4 Loss with Regularizer
In the graph G, given the training and validation node sets

Vtr ,Vval ∈ V , whose vertices have been labeled, the aim is to
estimate those unlabeled vertices of the test set Vte ∈ V . The
validation set is used to tune the model parameters, when learning
on the training set. Suppose the final convolution output Y ∈ Rn×c
is formally

ŶA = conv(V,X,A,Θ), (9)

where the inputs consist of graph verticesV , graph feature X and
adjacency matrix A, and Θ is the model parameters to be learnt.
Then we use the cross-entropy loss only on the training setVtr ,

Lc =
1
|Vtr |

∑
vi ∈Vtr

(Yi j == 1) ln ŶA
ij . (10)

The hyperparameters of our model are decided by the validation
setVval .

However, a main limit is that a small portion of vertices are
annotated as the training set. Thus, in the semi-supervised sce-
nario, our aim is to use labeled vertices as well as graph structure
to train model for good generalization ability. The straightforward
way is using the graph Laplacian matrix Ł = D−1/2AD−1/2 as a
regularization term, which utilizes the implicit assumption that
connected vertices in graph are likely to have the same label. How-
ever, this assumption has been actually used in the above graph
convolution by neighbor aggregation. Also, as argued in the liter-
ature [34], graphic edges need not reflect the similarity of nodes,
instead they might contain additional information. To this end,
we employ a global consistency constraint through positive point-
wise mutual information (PPMI) [4, 17], as used in [34]. Giving
any one reference vertex vi , the co-occurrence frequency Fi j w.r.t.
vertex vj may be calculated through random walks with the tran-
sition probability p(s(t + 1) = vj |s(t) = vi) = Ai j/

∑
j Ai j . After

obtaining the frequency matrix F ∈ Rn×n , we derive the PPMI
matrix P = max{log

(
F/(1T F1)

F/(F11T)⊙F/11T F

)
, 0}, where the division and

log operations are the elementwise calculation. Pi j represents the
estimated probability of vertex vi occurred in the context P ·j .

Since the PPMI matrix P indicates the co-occurrence relation-
ships of nodes, we may take it as the weight matrix to feed into
the hashing convolution in Eqn. (2)∼(4). That is, we may initialize

wi j in Eqn.(4) with the PPMI vaule Pi j and then perform graph
convolution. Formally, we can obtain the final convolution output:
ŶP = conv(V,X, P,Θ). We use the output ŶP to specifically con-
strain those unlabeled vertices, so that ŶA ≃ ŶP as used in [34].
Therefore, the optimized objective function with the regularization
term is formulated as

L = Lc +
λ

|V|C

∑
vi ∈V

| |ŶAi · − Ŷ
P
i · | |, (11)

where λ is the balance factor between the labeled training vertices
and graph structure. C is the number of classes. Note that Ŷi · is a
probability vector of the vertex vi after a softmax operation.

The framework of HGC employed by experiments is shown
in Figure 4. Due to the existence of the regularization term, our
framework is a dual stream network. As we discussed above, the
adjacency matrix A and PPMI matrix P characterize different graph
topology structure respectively. In other words, the connection of
the graph is different, so two different structures of the graph are
input into the network. The network is consisted with two hashing
graph convolution layers followed by pooling layer and one fully
connected layer with a softmax layer. An important difference from
work [34] is that our dual stream network does not share network
parameters.

Algorithm 1: HGC for node classification algorithm

Input: node features matrix X ∈ Rn×d ; adjacency matrix
A ∈ Rn×n ; receptive fild scale S ; the number of layers
L; non-linearity functions f ,д; hash function h;

Output: the predicted labels of nodes Y ∈ Rn×c ;
1 for v ∈ V do
2 Bk ← argmax{h(xv)} ;
3 end
4 for vi ∈ V do
5 z0i = x0 ;
6 for l = 1, 2, · · · ,L do
7 xi = zli ;
8 for s = 1, 2, · · · , S do
9 for k = 1, 2, · · · ,b do

10 x̃si→Bk = aggregation(xj) ;
11 s.t. vj ∈ Ns (vi),h(vj) ∈ Bk ;
12 end
13 x̃si = д([̃x

s
i→B1

; · · · ; x̃si→Bb])
14 end
15 zli = f (xi ; x̃2i ; · · · ; x̃

S
i) ;

16 zli = Pooling{Concat(zli)},vj ∈
S⋃
s
Ns (vi) ;

17 end
18 Yi = argmax{softmax{fc(zLi)}}
19 end

4 EXPERIMENTS
In the section, we carry out extensive experiments and assess the

performance of our HGC model on both transductive and inductive

CIKM ’18, November 3-7, 2019, Beijing, China Anonymous Author(s)

Table 1: Summary of graph datasets used in experiments.

Dataset Graphs Nodes Edges Features Classes Label rate Type Task

Cora 1 2708 5429 1433 7 0.052 Citation Transductive
Citeseer 1 3327 4732 3703 6 0.036 Citation Transductive
Pubmed 1 19717 44338 500 3 0.003 Citation Transductive
NELL 1 65755 266144 61278 210 0.008 Knowledge Graph Transductive
PPI 24 56944 818716 50 121(multi-label) - Protein-Protein Interaction Inductive

settings for node classification task. Transductive learning is the
general semi-supervised learning, which training samples and test
samples share graph topology structure. Inductive learning is gen-
eralizing the training model to unseen samples, i.e. test samples and
training samples are on different graphs. The experimental results
demonstrated our HGC model indeed outperforms other methods.
We first outline the datasets and experimental setups, then compare
our results with state-of-the-arts and make some analysis, after
which ablation study will be held.

4.1 Datasets
The global properties of all datasets have been summarized in

Table 1, and details are as follows.

• Citation graph. The Cora dataset consists of 2708 machine
learning papers divided into one of seven classes. each node
represents a document, and node features are bag-of-words
representation of documents indicating the absence/presence
of the corresponding word from the dictionary. The dictio-
nary consists of 1433 unique words. If an article cites another
article, an undirected link/edge in added between them, a
total of 5429 edges. Similar to the Cora dataset, Citeseer
contains 3327 papers and every one belongs to one of six
classes. Node features are also bag-of-words representation
with 3037 unique words. There exists 4732 edges between
the nodes. Also, as citation network, Pubmed is a larger
dataset containing 19717 papers and 44338 edges. Instead
of binary value, the node features have real-values entries
indicating Term Frequency-Inverse Document Frequency
(TF-IDF) of the corresponding word from a dictionary. We
adopt the dataset preprocessed in work [33], and follow its
data partitioning rules. There are only 20 samples in each
class for training. A total of 500 samples are used for vali-
dation and 1000 samples are used for testing. Label rate has
been reported in Table 1.
• Knowledge graph. NELL is a dataset extracted from the
knowledge graph introduced in [5]. Node are connected
by directed, labeled relation edges. Every edge is described
by a triplet (eh , r , et), eh and et represent two entities/nodes,
r denotes the relation/edges between them. We follow the
pre-processing scheme as presented in [16, 33]. The triplet
(eh , r , et) is splitted into two edges (eh , r1) and (r2, et). Fi-
nally, a graph with 65766 nodes and 266144 edges is obtained.
The node features are extended by unique sparse one-hot
representation. According to the work [34], 500 samples

constitute training set. 105 and 969 samples are used for
validation and test set.
• PPI. PPI is a protein-protein interaction dataset including 24
graphs, each corresponds to a human tissue [35]. The task
is classifying protein functions according to gene ontology.
We perform the same preprocessed method as work [11, 28].
Each node has 50 features contain information about motif
gene sets, positional gene sets and immunological signa-
tures and gene ontology sets are treated as labels, collected
from the Molecular Signatures Database [26]. The dataset
is exploited in inductive inference and is a multi-label prob-
lem. 20 graphs, 2 graphs and 2 graphs are used for training,
validation and testing respectively.

4.2 Experimental Setups
Transductive learning. For the transductive learning, a two-

layer HGC model is applied as other baseline methods for fairly
comparison. Each convolution layer is followed by a pooling layer,
and then outputs a predictive result through a fully connected
layer and an output layer with softmax. The network structure can
be simply represented as Input − C(128) − P(mean) − C(256) −
P(mean) − F C(128) −Output(so f tmax), where C, P and FC de-
note convolution, pooling and fully connected layer. “128” and “256”
represent the number of channels output by convolution or fully
connected layer. P(mean) represents the “mean” operation used
in the pooling layer. Dropout rate is set to 0.5 in the convolution
and full connected layers, and rectified linear unit (ReLU) unit is
leveraged as nonlinear activation function thereof. The receptive
filed is set to 3 for citation and NELL datasets. We adopt Momen-
tum optimizer to train HGC with 500 epochs, learning rate of 0.05,
and momentum of 0.9. The regularizer coefficient λ is a temporal
weighted function. As L is much larger than LReд , the maximum
is set as around 100.

Inductive learning. For inductive learning , we follow the
settings in GAT [28]. A three-layer HGC model is applied. The
network structure can be simply represented as Input − C(128) −
P(mean)−C(256)−P(mean)−C(512)−P(mean)−Output(siдmoid).
Each convolution layer is followed by an exponential linear unit
(ELU) nonlinearity function. Due to the large training set and graph
structure is not shared among training and test set, thus the dropout
rate is set to 0. The receptive filed is set to 2. In order to be able to
converge faster, we adopt Adam optimizer to train the model for 800
epochs, learning rate is also 0.05. The batch size is set to 2. Since the
structure is different between testing set and training set, a small
weight with 0.01 is given to LReд . This task on PPI dataset is a

Hashing Graph Convolution for Node Classification CIKM ’18, November 3-7, 2019, Beijing, China

multi-label classification with 121 labels, and sigmoid activation is
utilized in output layer. The micro-F1 score is computed as accuracy.

The buckets number b is in the range (5, 8) for all datasets.
In Section 4.4, we perform ablation study about the convolution
layer number L and the receptive filed S , and some analysis have
been made on how to choose the regularizer coefficient λ and the
number of buckets b for the hash-projection.

Table 2: Comparisons with state-of-the-art methods for
transductive setting.

Method Cora Citeseer Pubmed NELL

DeepWalk [22] 67.2% 43.2% 65.3% 58.1%
Planetoid [33] 75.7% 64.7% 77.2% 61.9%
Chebyshev [9] 81.2% 69.8% 74.4% -
GCN [16] 81.5% 70.3% 79.0% 66.0%
MoNet [20] 81.7% - 78.8% -
GAT [28] 83.0% 72.5% 79.0% -
DGCN [34] 83.5% 72.6% 80.0% 74.2%

HGC(Ours) 85.2% 74.3% 81.5% 78.0%

4.3 State-of-the-art Comparison.
Transductive learning. For transductive setting, we com-

pare the performance of our HGC model against a several of the
state-of-the-art works: DeepWalk [22], Planetoid [33], Chebyshev [9],
GCN [16], MoNet [20], GAT [28] and DGCN [34]. Note all these
results coming from the related literatures. Table 2 reports the cor-
responding results, which clearly indicate that our HGC approach
achieve the new state-of-the-art performance and obtain a remark-
able improvement on these four datasets. DeepWalk and Planetoid
predict the node’s label by the way of generating the node em-
beddings, which is less accurate than other methods using graph
convolution. GCN is a first-order approximation of Chebyshev and
has realized relatively high results. Compared to GCN, our HGC
method attains the results of 85.2% vs 81.5% on Cora dataset, and
74.3% vs 70.3% on Citeseer dataset, which are 3.7% and 4.0% higher
than GCN. Also, 2.5% and 3.9% are raised on the Pubmed and NELL
dataset. We attribute this gain to the hash-aggregation, due to the
good locality property, which can better preserve the node dis-
crepancies with high probability in contrast to the conventional
averaging aggregation. Meanwhile, the regularizer item also play
a key role. MoNet is a general framework employing Gaussian
mixture model, GCN can be regarded as a special case of it, and
their classification accuracy is similar. GAT and DGCN utilize the
attention mechanism and global information respectively based on
the basis of GCN, and both lead to performance gains. Compared
to GAT, the HGC model still achieves superior performance and
obtains 2.2%, 1.8% and 2.5% improvements on Cora, Citeseer and
Pubmed datasets respectively. Although our HGC draws on the
global consistency constraint used in DGCN through the positive
pointwise mutual information matrix, there is still a marked im-
provement in our outcomes in contrast to DGCN. Specifically, 85.2%

vs 83.5% on Cora dataset, 74.3% vs 72.6% on Citeseer dataset, 81.5%
vs 80.0% on Pubmed dataset and 78.0% vs 74.2% on NELL dataset.
In particular, HGC is 3.8% higher than DGCN on NELL dataset.
This may be ascribed to the large categories number and the high
degree of some nodes, which is suitable for hash-projection to play
to its advantages. This is a strong evidence that hash-projection
is an effective aggregation method, which keep the discriminative
information between different classes of nodes as much as possible
while smoothing similar nodes. Notably, the performance of some
recent works have been at a similar level, and our HGC method has
improved by or so 2% in the case of using only 20 training samples
per class, which further verifies the effectiveness of HGC.

Table 3: Comparisons with state-of-the-art methods for in-
ductive setting. The number in parentheses (∗) denotes the
number of convolution layer in the network.

Method Micro-F1

Random [11] 39.6%
MLP [11] 42.2%
GraphSAGE-GCN [11] 50.0%
GraphSAGE-mean [11] 59.8%
GraphSAGE-LSTM [11] 61.2%
GraphSAGE-pool [11] 60.0%
JK-Dense-LSTM (2L) [32] 97.6%
JK-Dense-LSTM (3L) [32] 96.9%
GAT [28] 97.3%

HGC (2L) 98.2%
HGC (3L) 98.6%

Inductive learning. For inductive learning, we mainly com-
pare HGC with JK-Net [32], GAT [28] and GraphSAGE [11] in the
case of supervision. GraphSAGE [11] performs sampling and ag-
gregation operations at each layer to generate node embeddings
as input to downstream tasks. GAT [28] assigns a weight to each
neighbor of a node to measure their contribution during the ag-
gregation process. JK-Net [32] uses a jump connection structure
and adaptive neighborhood aggregation scheme. The other two
baselines introduced in GraphSAGE [11]: Random (random clas-
sifer), MLP (logistic regression feature-based classifier). Due to the
multi-label classification problem, micro-F1 score is calculated to
measure the performance of the model, and the results are reported
in Table 3. We can observe that HGC, JK-Net and GAT a significant
improvement over GraphSAGE. One possible reason may be that
the network structure is different according to GAT. To fairly eval-
uate the benefits of hash-projection, we employ the same number
of convolution layer as GAT, i.e. three layers with [128, 256, 512]
features in each layer. At the same time, we also apply two-layer
HGC model with [256, 512] features computed in each layer to
compare with JK-Net. The receptive field of both settings are set
to 2 due to memory limitations. As shown in Table 3, HGC can
be able to improve by a margin of 1.3% w.r.t. GAT. The result of
HGC is still higher than JK-Net with a relatively small margin. The

CIKM ’18, November 3-7, 2019, Beijing, China Anonymous Author(s)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Degree

0

100

200

300

400

500

600

Th
e

nu
m

be
r o

f n
od

es

485

583
553

389

281

131
82

57
25 26 14 18 5 6 6 7 8 3 5 0

Cora

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Degree

0

200

400

600

800

1000

1200

1400

Th
e

nu
m

be
r o

f n
od

es

1352

805

444

241
142114

60 33 23 31 19 18 3 3 10 6 4 3 2 1

Citeseer

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Degree

0

2000

4000

6000

8000

Th
e

nu
m

be
r o

f n
od

es

9094

3357

1584
914

642 491 422 317 303 265 229 226 194 192 167 135 133 117 98 74

Pubmed

Figure 5: The distribution of degree on citation datasets.

excited gains indicate that the hash-projection is also effective for
the inductive setting and can work well when structure information
is not involved in the training set. The HGCmodel has the potential
to be extend to more general situation.

4.4 Ablation Study
In this section, we explore and analyze how different hyperpa-

rameter settings affect classification accuracy. We mainly analyze
from the following aspects:

• the number of convolution layers L.
• the size of receptive field S .
• the number of hash buckets b and the value of regularizer
coefficient λ.
• the effect of hash-projection on model ability.

For the comparison between the number of the convolution
layer, we set the other hyper-parameters be the same. As illustrated
in Table 4, for the transductive setting, we can observe that the
classification accuracy of stacking 2 convolution layers is higher
than the other two over citation datasets. When L = 1, the exper-
imental results are similar to L = 3. The reason may be that the
receptive field scale is set to 3, even only one convolution layer,
the information of the hash aggregating neighbors is sufficient. But
also only low-level features have been extracted with one convolu-
tion layer, as a result, the performance is not so good. And for the
three-layer convolution, in fact, the receptive field and the number
of layers are set relative larger, which may cause excessive fusion
of node information and ultimately leads to poor classification. For
inductive learning, note that we set the receptive filed S = 2, and
the accuracy of L = 1 is significant lower than the other two cases.
In the absence of structural information in training, only one layer
of convolution can not extract more useful features

When comparing the scale of the receptive fields, the number
of convolution layers is 2 for transductive while 3 for inductive. The
receptive field size S = 1 means that only the information of the
node itself is used, and HGC degenerates to an MLP network. There-
fore, the performance is not desirable for both transductive and
inductive settings. As more information is aggregated, the accuracy
of S = 3 is generally superior to S = 2 for citation datasets. This
again verifies the importance of local neighborhood information,
which is also an crucial property in traditional convolutional neural
networks. Due to the complexity of the calculation and memory

constraints, experiments aren’t carried out when S ≥ 4, but we con-
clude that the larger receptive field may incorporate information
from many other categories of nodes, which is not conducive to
the final identification.

Table 4: Comparisons on the layer number L and the size of
receptive field S .

L, S Cora Citeseer Pubmed PPI

Layer Num
L = 1 82.3% 72.9% 79.6% 89.2%
L = 2 85.2% 74.3% 81.5% 98.0%
L = 3 83.9% 71.7% 79.5% 98.6%

Rcep Size
S = 1 60.4% 61.1% 77.1% 54.9%
S = 2 84.4% 73.3% 80.4% 98.6%

S = 3 85.2% 74.3% 81.5% -

Analysis about the number of hash buckets b and the value
of regularizer coefficient λ. The degree of the node obeys the long
tail distribution, i.e., the degree of most nodes is small. We also
demonstrate this in Figure 5, which visualizes the number of nodes
in range (0, 20) of degree over three citation datasets. We can found
that the number of nodes drops sharply first and then tends to be
flat on small values as the degree increases. Obviously, the average
degree of citation network is also small according to Table 1. Thus
the value of buckets b should be a relative small value. Further, we
think a small b helps to eliminate ambiguity and produces more
discriminative features through hash-aggregation, However, the
features will be excessively refined, over-fitting may occur as the b
increases, which will lead to decreased accuracy. We can the see
the change of accuracy when b is in range (1, 10) from Figure 7.
Classification effect is not good and unstable where b is small or
large. And the accuracy is relatively stable and obtain the maximum
when b is in range (5, 8) over three citation datasets. Returning to
Figure 5, in fact, we can observe that the value of b corresponds to
the range of degree, where the degree is relatively large and the
number of nodes is also relatively large. Within this range, our HGC
model can obtain superior performance. For the value of regularizer
coefficient λ, we follow the work [34] to determine the value of
regularizer coefficient λ, which is a temporal weight function. At

Hashing Graph Convolution for Node Classification CIKM ’18, November 3-7, 2019, Beijing, China

(a) Original data 6 4 2 0 2 4 6

5

0

5

10

15

(b) GCN prediction (c) Ours HGC prediction

Figure 6: Visualization of prediction results on Cora dataset: Original data vs GCN vs HGC (Ours).

2 4 6 8 10
The number of buckets

72

74

76

78

80

82

84

Ac
cu

ra
cy

83.3 83.4

84.9
84.4

85 85.2

84.3
84.8

84.1 84.3

73.2
73.6

72
72.4

72.8

73.7
74.3

73.5 73.4
73

78.3

80.7 80.9

79.9
80.6

81.1 81
81.5

80.1
80.9

Cora

Pubmed

Citeseer

Figure 7: Comparisons on the number of buckets b.

the beginning λ = 0, then λ gradually increases with the epochs
increasing. The specific λ depends on the values of L and LReд .
However, for inductive learning, testing set and training set have
different graph structures, and the structural constraint is less ef-
fective and can even be counterproductive, degrading performance.
So a small weight is given to the regularizer.

HGC model can be treated as “GCN” when removes the reg-
ularizer and hash-projection. “GCN + hashing” is HGC model
with the regularizer removed, and “HGC - hashing” means that
hash-projection is removed. In order to measure the effect of hash-
projection, we conduct two sets of experiments:“GCN” vs “GCN +
hashing” and “HGC - hashing” vs HGC. The corresponding results
have been presented in Table 5. We can see that “ GCN + hash-
ing ” and HGC both have a remarkable gain compared to GCN
and “HGC - hashing” on all four datasets. This again adequately
proves that hash-projection can preserve discriminative informa-
tion than conventional averaging/sum aggregation. Meantime, the
hash-projection is flexible to be embedded in other models.

Also, Figure 6 shows the visual results on Cora dataset. Fig-
ure 6(a) is the original unprocessed data projected into 2D space
through principal component analysis. It can be seen that the sam-
ples of all classes are mixed together. After training by GCN and
our method HGC, the visualization results are shown in Figure 6(b)
and Figure 6(c) respectively. We can observe that the classification

boundary of HGC is clearer than GCN, the separation distance
between different classes is relatively large, and the classification
effect is better.

Table 5: The verification of hash-projection.

Method Cora Citeseer Pubmed PPI

GCN 81.2% 70.6% 78.4% 97.6%
GCN + hashing 82.9% 71.9% 79.2% 98.3%

HGC - hsahing 83.3% 73.2% 78.3% 97.3%
HGC 85.2% 74.3% 81.5% 98.6%

5 CONCLUSION
In this paper, we present a simple and effective hashing graph

convolution method for node classification task. To our knowledge,
we first time introduce hashing into graph convolution. Due to
the good locality property, hashing aggregation can better pre-
serve the node discriminative information and reduce the feature
confusion caused by constantly aggregating neighborhood informa-
tion. Another, hash projects the local receptive field of each node
into a common-size bucket space, and makes graph convolution
analogical to the standard shape-girded convolution. Meantime
extensive experiments on both transductive and inductive learn-
ing have demonstrated that HGC is superior to the previous work
and we achieve state-of-the-art performances in all datasets. In
the future, we would like to extend our hash transform into more
applications to graph.

REFERENCES
[1] JoshAttenberg, ADasgupta, J Langford, A Smola, and KWeinberger. 2009. Feature

hashing for large scale multitask learning. In ICML.
[2] James Atwood and Don Towsley. 2016. Diffusion-convolutional neural networks.

In NIPS. 1993–2001.
[3] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2013. Spectral

Networks and Locally Connected Networks on Graphs. ICLR (2013).
[4] John A Bullinaria and Joseph P Levy. 2007. Extracting semantic representations

from word co-occurrence statistics: A computational study. Behavior research
methods 39, 3 (2007), 510–526.

[5] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R Hr-
uschka, and Tom M Mitchell. 2010. Toward an architecture for never-ending
language learning. In Twenty-Fourth AAAI Conference on Artificial Intelligence.

CIKM ’18, November 3-7, 2019, Beijing, China Anonymous Author(s)

[6] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: Fast Learning with Graph
Convolutional Networks via Importance Sampling. In International Conference
on Learning Representations. https://openreview.net/forum?id=rytstxWAW

[7] Fan RK Chung. 1997. Spectral graph theory. Number 92. American Mathematical
society.

[8] Anirban Dasgupta, Ravi Kumar, and Tamás Sarlós. 2010. A sparse johnson:
Lindenstrauss transform. In Proceedings of the forty-second ACM symposium on
Theory of computing. ACM, 341–350.

[9] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. In NIPS.
3844–3852.

[10] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. 1999. Similarity search in
high dimensions via hashing. In Vldb, Vol. 99. 518–529.

[11] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NIPS. 1024–1034.

[12] Mikael Henaff, Joan Bruna, and Yann LeCun. 2015. Deep convolutional networks
on graph-structured data. arXiv preprint arXiv:1506.05163 (2015).

[13] Hervé Jégou, Matthijs Douze, Cordelia Schmid, and Patrick Pérez. 2010. Ag-
gregating local descriptors into a compact image representation. In CVPR. IEEE
Computer Society, 3304–3311.

[14] Jiatao Jiang, Zhen Cui, Chunyan Xu, and Jian Yang. 2019. Gaussian-Induced Con-
volution for Graphs. In Proceedings of the Thirty-Third Conference on Association
for the Advancement of Artificial Intelligence (AAAI).

[15] William B Johnson and Joram Lindenstrauss. 1984. Extensions of Lipschitz
mappings into a Hilbert space. Contemporary mathematics 26, 189-206 (1984), 1.

[16] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. ICLR (2016).

[17] Omer Levy and Yoav Goldberg. 2014. Neural word embedding as implicit matrix
factorization. In NIPS. 2177–2185.

[18] Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper insights into graph
convolutional networks for semi-supervised learning. In Thirty-Second AAAI
Conference on Artificial Intelligence.

[19] Qimai Li, Xiao-Ming Wu, Han Liu, Xiaotong Zhang, and Zhichao Guan. 2019.
Label Efficient Semi-Supervised Learning via Graph Filtering. In Conference on
Computer Vision and Pattern Recognition. https://arxiv.org/abs/1901.09993

[20] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda,
andMichael M Bronstein. 2017. Geometric deep learning on graphs andmanifolds
using mixture model cnns. In CVPR. 5115–5124.

[21] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning
convolutional neural networks for graphs. In ICML. 2014–2023.

[22] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 701–710.

[23] Jorge Sánchez and Florent Perronnin. 2011. High-dimensional signature com-
pression for large-scale image classification. In CVPR 2011. IEEE, 1665–1672.

[24] Qinfeng Shi, James Petterson, Gideon Dror, John Langford, Alex Smola, Alex
Strehl, and Vishy Vishwanathan. 2009. Hash kernels. In Artificial intelligence and
statistics. 496–503.

[25] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre
Vandergheynst. 2013. The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular domains.
IEEE Signal Processing Magazine 30, 3 (2013), 83–98.

[26] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. LINE: Large-scale Information Network Embedding. InWWW (WWW ’15).
1067–1077. https://doi.org/10.1145/2736277.2741093

[27] Andrea Vedaldi and Andrew Zisserman. 2012. Sparse kernel approximations for
efficient classification and detection. In CVPR. IEEE, 2320–2327.

[28] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[29] Jun Wang, Sanjiv Kumar, and Shih-Fu Chang. 2012. Semi-supervised hashing for
large-scale search. IEEE Transactions on Pattern Analysis and Machine Intelligence
34, 12 (2012), 2393–2406.

[30] Jingdong Wang, Ting Zhang, Nicu Sebe, Heng Tao Shen, et al. 2018. A survey on
learning to hash. IEEE transactions on pattern analysis and machine intelligence
40, 4 (2018), 769–790.

[31] Bo Wu, Yang Liu, Bo Lang, and Lei Huang. 2017. DGCNN: Disordered Graph
Convolutional Neural Network Based on the Gaussian Mixture Model. arXiv
preprint arXiv:1712.03563 (2017).

[32] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. 2018. Representation learning on graphs
with jumping knowledge networks. arXiv preprint arXiv:1806.03536 (2018).

[33] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. 2016. Revisiting
Semi-supervised Learning with Graph Embeddings. In Proceedings of the 33rd
International Conference on International Conference onMachine Learning - Volume
48 (ICML’16). 40–48.

[34] Chenyi Zhuang and Qiang Ma. 2018. Dual Graph Convolutional Networks for
Graph-Based Semi-Supervised Classification. In Proceedings of the 2018 World

Wide Web Conference on World Wide Web. WWW, 499–508.
[35] Marinka Zitnik and Jure Leskovec. 2017. Predictingmulticellular function through

multi-layer tissue networks. Bioinformatics 33, 14 (2017), i190–i198.

https://openreview.net/forum?id=rytstxWAW
https://arxiv.org/abs/1901.09993
https://doi.org/10.1145/2736277.2741093

	Abstract
	1 Introduction
	2 Related Work
	3 Our Approach
	3.1 Hashing Graph Convolution
	3.2 Pooling
	3.3 Hash Learning
	3.4 Loss with Regularizer

	4 Experiments
	4.1 Datasets
	4.2 Experimental Setups
	4.3 State-of-the-art Comparison.
	4.4 Ablation Study

	5 Conclusion
	References

