θ
 EasyChair Preprint
 № 9088

Catalan's Constant is Irrational

Valerii Sopin

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

Catalan's constant is irrational

Valerii Sopin
email: VvS@myself.com

November 13, 2022

Abstract

In mathematics, Catalan's constant G is defined by $$
G=\beta(2)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{2}}=\frac{1}{1^{2}}-\frac{1}{3^{2}}+\frac{1}{5^{2}}-\frac{1}{7^{2}}+\frac{1}{9^{2}}-\cdots,
$$ where β is the Dirichlet beta function. Catalan's constant has been called arguably the most basic constant whose irrationality and transcendence (though strongly suspected) remain unproven. In this paper we show that G is indeed irrational.

Proof

Keeping in mind the Riemann series theorem (also called the Riemann rearrangement theorem), we have

$$
\begin{array}{llllll|l}
\frac{1}{1^{2}} & -\frac{1}{3^{2}} & +\frac{1}{5^{2}} & -\frac{1}{7^{2}} & +\frac{1}{9^{2}} & -\cdots & G \\
& -\frac{2}{3^{2}} & +\frac{2}{5^{2}} & -\frac{2}{7^{2}} & +\frac{2}{9^{2}} & -\cdots & 2 G-\frac{2}{1^{2}} \\
& & +\frac{2}{5^{2}} & -\frac{2}{7^{2}} & +\frac{2}{9^{2}} & -\cdots & 2 G-\frac{2}{1^{2}}+\frac{2}{3^{2}} \\
& & & -\frac{2}{7^{2}} & +\frac{2}{9^{2}} & -\cdots & 2 G-\frac{2}{1^{2}}+\frac{2}{3^{2}}-\frac{2}{5^{2}} \\
& & & & +\frac{2}{9^{2}} & -\cdots & 2 G-\frac{2}{1^{2}}+\frac{2}{3^{2}}-\frac{2}{5^{2}}+\frac{2}{7^{2}} \\
& & & & & & \\
\hline \frac{1}{1} & -\frac{1}{3} & +\frac{1}{5} & -\frac{1}{7} & +\frac{1}{9} & -\cdots &
\end{array}
$$

Notice that the Leibniz formula for π states that

$$
\frac{\pi}{4}=\beta(1)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}=\frac{1}{1}-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\cdots
$$

Moreover, it is easy to see that $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}$ is conditionally convergent. On the another hand, $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{2}}$ is absolutely convergent and we are able to rearrange the terms as we want.

Let's assume the contrary: G is a rational number $\frac{s}{2^{k} t}$, where s and t are odd. Hence, we have

$$
\begin{gathered}
s t G=s t \sum_{n=0,(2 n+1) \nmid t}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{2}}+s t \sum_{m=0}^{\infty} \frac{(-1)^{m t+\lfloor t / 2\rfloor}}{t^{2}(2 m+1)^{2}}= \\
\text { st } \sum_{n=0,(2 n+1) \nmid t}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{2}}+\left((-1)^{\lfloor t / 2\rfloor} 2^{k} G \sum_{m=0}^{\infty} \frac{\left((-1)^{t}\right)^{m}}{(2 m+1)^{2}}\right)=s t \sum_{n=0,(2 n+1) \nmid t}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{2}}+\left((-1)^{\lfloor t / 2\rfloor} 2^{k} G^{2}\right) .
\end{gathered}
$$

In other words, we obtain the following quadratic equation for G :

$$
G^{2}-(-1)^{\lfloor t / 2\rfloor} \frac{s t}{2^{k}} G+(-1)^{\lfloor t / 2\rfloor} \frac{s t}{2^{k}} \sum_{n=0,(2 n+1) \nmid t}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{2}} .
$$

The last is equal to

$$
G^{2}-(-1)^{\lfloor t / 2\rfloor} \frac{s t}{2^{k}} G+(-1)^{\lfloor t / 2\rfloor} t^{2} G \sum_{n=0,(2 n+1) \nmid t}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{2}}
$$

Since $G \neq 0$, we have the next equation

$$
G=(-1)^{\lfloor t / 2\rfloor} \frac{s t}{2^{k}}-(-1)^{\lfloor t / 2\rfloor} t^{2} \sum_{n=0,(2 n+1) \nmid t}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{2}} .
$$

Indeed, we have

$$
\begin{gathered}
G=(-1)^{\lfloor t / 2\rfloor} \frac{s t}{2^{k}}-(-1)^{\lfloor t / 2\rfloor} t^{2}(G+\epsilon), \\
G=(-1)^{\lfloor t / 2\rfloor} t^{2} G-(-1)^{\lfloor t / 2\rfloor} t^{2}(G+\epsilon), \\
G=-(-1)^{\lfloor t / 2\rfloor} t^{2} \epsilon
\end{gathered}
$$

where

$$
\epsilon=-\sum_{m=0}^{\infty} \frac{(-1)^{m t+\lfloor t / 2\rfloor}}{t^{2}(2 m+1)^{2}}=-(-1)^{\lfloor t / 2\rfloor} \frac{G}{t^{2}} .
$$

According to the above, we consider the following quadratic equation for t :

$$
\begin{gathered}
G=(-1)^{\lfloor t / 2\rfloor} \frac{s t}{2^{k}}-(-1)^{\lfloor t / 2\rfloor} t^{2}(G+\epsilon) \\
t^{2}-\frac{s}{2^{k}(G+\epsilon)} t+(-1)^{\lfloor t / 2\rfloor} \frac{G}{(G+\epsilon)}=0 .
\end{gathered}
$$

Since $\frac{s}{2^{k}(G+\epsilon)}>0$ due to $t>1$ (G can not be $\frac{s}{2^{k}}$ for natural s, k : it goes around with the representation $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{2}}$ and, for example, we can apply the above idea for s; note that G is definitely not $\frac{1}{2^{k}}$), we get

$$
\begin{aligned}
t & =\frac{s}{2^{k+1}(G+\epsilon)}\left(1 \pm \sqrt{1-\frac{4(-1)^{\lfloor t / 2\rfloor} G(G+\epsilon)^{2} 2^{2 k}}{(G+\epsilon) s^{2}}}\right)= \\
& =\frac{s}{2^{k+1}(G+\epsilon)}\left(1 \pm \sqrt{1-\frac{(-1)^{\lfloor t / 2\rfloor} G(G+\epsilon) 2^{2 k+2}}{s^{2}}}\right) .
\end{aligned}
$$

Using the Taylor series of $\sqrt{1+x}\left(\frac{G(G+\epsilon) 2^{2 k+2}}{s^{2}}=\frac{4}{t^{2}}\left(1-(-1)^{\lfloor t / 2\rfloor} \frac{1}{t^{2}}\right) \leq \frac{8}{t^{2}} \leq \frac{8}{3^{2}}<1\right)$, we come to

$$
t_{+} \cong \frac{s}{2^{k}(G+\epsilon)}-\frac{(-1)^{\lfloor t / 2\rfloor} G 2^{k}}{s}, t_{-} \cong \frac{(-1)^{\lfloor t / 2\rfloor} G 2^{k}}{s}
$$

where t_{-}is impossible as $G=\frac{s}{2^{k} t}$ and $t \geq 3$.
Substituting $G=\frac{s}{2^{k} t_{+}}$, we derive

$$
t_{+} \cong \frac{s}{2^{k}(G+\epsilon)}-\frac{(-1)^{\lfloor t / 2\rfloor} G 2^{k}}{s}=\frac{s}{2^{k}(G+\epsilon)}-\frac{(-1)^{\lfloor t / 2\rfloor}}{t+}=\frac{t_{+} G}{(G+\epsilon)}-\frac{(-1)^{\lfloor t / 2\rfloor}}{t+}
$$

According to the above, we consider the following quadratic equation for t_{+}:

$$
t_{+}^{2} \frac{\epsilon}{(G+\epsilon)}+(-1)^{\lfloor t / 2\rfloor} \cong 0
$$

Substituting $\epsilon=-(-1)^{\lfloor t / 2\rfloor} \frac{G}{t^{2}}$, we derive

$$
\frac{-G}{(G+\epsilon)}+1 \cong 0
$$

So, on the one hand, $\frac{-G}{(G+\epsilon)}=\frac{-1}{\left(1-(-1)^{\lfloor t / 2]} \frac{1}{t^{2}}\right)}$ is not close to -1 with any accuracy, but, on the other hand, accuracy of \cong (the remainder) in the Taylor expansion is $O\left(1 / t^{4}\right)$. Note that $1 /(1 \pm x)$ and $\sqrt{1 \pm x}$ are different as series. Hence, the last equation can not be fulfilled (two acquired identities, coming from $t_{ \pm}$, are not correct). Q.E.D.
Remark 1. There exists the following integration

$$
\int_{0}^{\infty} \frac{1}{1+x^{2}} \cos (k x) d x=\frac{\pi}{2} e^{-k}
$$

One way to see it is via the Fourier inversion theorem: we know that the Fourier transform of a function has a unique inverse. This carries over to the cosine transform as well. Moreover, the unique continuous function on the positive real axis with Fourier transform $\frac{1}{1+x^{2}}$ is e^{-k}.

Notice that if

$$
I_{n}=\int \frac{x^{n}}{1+x^{2}} d x
$$

then

$$
I_{n+2}+I_{n}=\frac{x^{n}}{n+1}+C
$$

Remark 2. Are all $\left\{1,{ }^{n} \pi \mid n \in \mathbb{N}\right\}$ linearly independent over \mathbb{Q}, where ${ }^{n} x$ is tetration? Meaning none of exponents is an integer (we have not known that $\pi^{\pi^{\pi^{\pi}}}$ (56 digits) is not an integer).

Moreover, at least one of e^{e} and $e^{e^{2}}$ must be transcendental due to W. D. Brownawell.
Remark 3. Is $e+\pi$ irrational?
Note that $(x-e)(x-\pi)=x^{2}-(e+\pi) x+e \pi$. So, at least one of the coefficients $e+\pi$, e must be irrational.

Remark 4. Is $\ln (\pi)$ irrational?
There exists such representation

$$
\frac{\sin (x)}{x}=\prod_{n=1}^{\infty}\left(1-\frac{x^{2}}{n^{2} \pi^{2}}\right)
$$

Let $x=\frac{\pi}{2}$ and then we have the Wallis product formulae for $\frac{\pi}{2}$:

$$
\frac{\pi}{2}=\prod_{n=1}^{\infty} \frac{2 n}{2 n-1} \frac{2 n}{2 n+1}
$$

Taking logarithms of this, we come to

$$
\ln (\pi)=\ln (2)+\sum_{n=1}^{\infty}(2 \ln (2 n)-\ln (2 n-1)-\ln (2 n+1))
$$

Remark 5. Is the Euler-Mascheroni constant γ irrational?

$$
\gamma=\lim _{n \rightarrow \infty}\left(\sum_{m=1}^{n} \frac{1}{m}-\log (n)\right)
$$

Remark 6. Is the Khinchin's constan K_{0} irrational?

$$
K_{0}=\prod_{n=1}^{\infty}\left(1+\frac{1}{n(n+2)}\right)^{\log _{2} n}
$$

References

[1] Ivan Morton Niven, Numbers: Rational and Irrational, Mathematical Association of America, Year: 1961.

