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ABSTRACT 

This paper presents the non-parallel voice conversion (VC) 

system developed at Nagoya University (NU) for the SPOKE 

task of the Voice Conversion Challenge 2018 (VCC2018). The 

goal of this task is to develop VC systems without the 

requirement of parallel training data. The key idea of our system 

is to use a text-to-speech (TTS) voice as a reference voice, 

making it possible to create two parallel training datasets 

between the source and TTS voices and between the TTS and 

target voices. Using these datasets, a cascade VC system is 

developed to convert the source voice into the target voice via 

the TTS voice as a reference. Furthermore, we also propose a 

system selection framework to avoid generating collapsed 

speech waveforms, which are often observed when using less 

accurately converted speech features in the WaveNet 

vocoder.  In VCC2018, our system achieved the second best 

score for similarity (around 70%) and an above-average score 

for naturalness (a mean opinion score around 3.0) among the 

submitted systems. 

1. INTRODUCTION 

Voice conversion (VC) is a generation problem of machine 

learning. Given an input speech and information of a specific 

target, a machine should be able to generate the target speech 

corresponding to the linguistic contents of the given input 

speech. A typical VC application is speaker conversion to 

convert the speaker identity of a source speaker’s voice to that 

of a specified target speaker's voice. For simplicity, we use the 

term VC in this paper to denote speaker conversion. 

Numerous VC approaches have been proposed, such as 

Gaussian mixture model (GMM) [1, 2], frequency warping [3, 

4], deep neural network (DNN) [5-7], and exemplar-based 

approaches [8-10]. The traditional VC framework usually 

requires a parallel speech data of a specific source and target 

speaker pair to construct a mapping function. However, the 

requirement of a parallel corpus causes limitations in practical 

applications. Therefore, many attempts have been made to build 

a flexible VC system without the requirement of a parallel 

corpus. For example, the INCA [11] algorithm is a 

representative method of aligning non-parallel data, which 

iteratively trains a VC function based on the  nearest-neighbors 

alignment between intermediate converted and target voices, 

then generating an updated intermediate voice closer to the 

target voice to obtain better frame wise alignment in each 

iteration. Another approach is to separate the speaker 

information and context information using AutoEncoder [12, 

13]. Furthermore, it also has been proven effective to use a 

speech recognizer to retrieve context information to map source 

and target acoustic features [14, 15]. These nonparallel VC 

techniques have great potential for developing more flexible 

VC systems handling arbitrary speakers, such as many-to-one, 

one-to-many, and many-to-many frameworks [16, 17].  One of 

the practical approaches defining the mapping between 

an arbitrary speaker pair is to use an intermediate speaker as a 

reference [17-19]. 

In this paper, we focus on the SPOKE task of the Voice 

Conversion Challenge 2018 (VCC2018) [20], for which a non-

parallel corpus and corresponding transcripts of source and 

target speakers are provided. The design of the proposed 

Nagoya University (NU) non-parallel VC system is based on 

the assumption that although text-to-speech (TTS) output is not 

natural, it still has sufficient acoustic components as natural 

speech to be used as a reference. Therefore, we can apply the 

TTS output as the middle-layer reference to derive the mapping 

relationship between the non-parallel source and target 

utterances. In addition, we apply the WaveNet vocoder [21-23] 

for speech generation to generate natural speech waveforms. 

However, the mismatch of training features and converted 

features sometimes causes the WaveNet vocoder to suffer from 

collapsed speech waveforms [22]. Therefore, we also introduce 

a system selection technique to select generated utterances 

without the problem of collapsed speech waveforms. 

The rest of this paper is organized as follows. The basic NU 

parallel VC system is described in Section 2. The proposed NU 

non-parallel VC system is introduced in Section 3. The 

experimental results are presented in Section 4. Finally, the 

conclusion is given in Section 5. 

2. BASIC STRUCTURE OF THE NU VC SYSTEM 

In this section, we describe the basic NU parallel VC system. 

Figure 1 shows the overall system, which includes DNN-based 

spectral conversion, analysis-synthesis framework with direct 

waveform modification (DIFFVC) [24] for excitation signal 

transformation, linear fundamental frequency (F0) conversion, 

and speech generation using WaveNet [25]. First, given an 

input speech waveform, speech parameters, including spectral 

features, F0, and aperiodicity features (ap), are extracted using 

WORLD [26, 27] analysis. Then, a frame-based spectral 

conversion procedure is performed using DNN, while the F0 is 

linearly transformed using the statistics of the training data. 

After obtaining the converted F0 and spectral features, an 



analysis-synthesis framework based on direct waveform 

modification is performed to further modify the spectral and 

excitation signals. Finally, given the coded ap, converted F0, 

and converted spectral features, the converted speech waveform 

is generated using the WaveNet vocoder [21-23]. 

2.1. Spectral feature mapping based on DNN 

DNN-based spectral conversion [28, 29] consists of training 

and conversion stages. Given the source static-dynamic feature 

vector ,t t t


    X x x , the conditional probability density 

function of the target static-dynamic feature vector 

,t t t


    Y y y at frame t is given by  

    | , , ;f ,t t t tP  λY X D λ Y X D  ,                  (1) 

where    denotes a Gaussian distribution,  f λ is a 

nonlinear conversion function from the DNN, λ  represents the 

DNN parameters, and D  is the diagonal covariance matrix of 

the training data. In the training stage, the estimation of the 

updated DNN parameters λ̂  is performed as follows:  
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In the conversion stage, given the DNN output, the trajectory of 

the target feature vector is generated by maximum likelihood 

parameter generation (MLPG) [30]. Furthermore, to alleviate 

the over-smoothing effect caused by the averaging factor in the 

model, a global variance (GV) [2] post-filter is applied to the 

converted trajectory. 

2.2. Analysis-synthesis framework 

The main propose of analysis-synthesis framework is to extract 

much matched excitation and spectral features for the WaveNet 

vocoder. To be more specific, the input waveform is first 

filtered according to the difference between converted and 

source spectra using DIFFVC in [24] to modify the spectral 

envelopes. Secondly, we modify the excitation signals after 

obtaining the spectral modified waveform. Specifically, the 

modified waveform is analyzed to extract the modified ap and 

the spectral features, and a frame-based linear transformation of 

the logarithmic F0 is performed by lining up the pitch difference 

between the source and target speakers. After that, the 

converted waveform with converted spectral and excitation 

signals can be generated using the converted F0, the modified 

ap and spectral features, and the WaveNet or WORLD vocoder. 

Moreover, according to our informal listening tests, the quality 

of speech obtained using the WaveNet vocoder as a post-filter 

is slightly higher than that of speech directly synthesized by the 

WaveNet vocoder. Therefore, on the basis of the converted F0, 

the final converted ap and spectral features are extracted from 

the converted waveform generated by WORLD. The final 

converted speech is generated using the WaveNet vocoder on 

the basis of the final converted ap and spectral features and the 

converted F0.  
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Figure 1. Basic NU parallel VC system based on DNN and WaveNet vocoder 
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Figure 2. Conditional WaveNet vocoder architecture 



2.3. WaveNet vocoder 

To generate more natural-sounding speech, in our system, the 

conventional vocoder (ex: WORLD) is replaced by the state-of-

the-art WaveNet vocoder [21-23] to generate the final 

converted waveform. WaveNet [25] is a deep autoregressive 

network capable of directly modeling a speech waveform 

sample-by-sample using the following conditional probability: 
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Y h h ,              (3) 

where n is the sample index, r is the size of the receptive field, 

yn is the current audio sample, and h  is the vector of the 

auxiliary features. In our system, the auxiliary features consist 

of the coded ap, the transformed F0, and the converted spectral 

features. 

Figure 2 shows the structure of the WaveNet vocoder, 

which consists of many residual blocks, each block containing 

a 2  1 convolution dilated causal convolution, a gated 

activation function, and 1 1 convolutions. The dilated causal 

convolution is a convolution with a skipping value filter, which 

enables the network to efficiently operate on a large receptive 

field. The gated activation function is formulated as 

     1 2 1 2

, , , ,tanh f k f k g k g kV V a V V a     Y h Y h , (4) 

where 1V and 2V  are trainable convolution filters,   is the 

convolution operator,  is an element wise multiplication 

operator,   is a sigmoid function, k is the layer index, f and g 

represent the “filter” and “gate”, respectively, and  a   is the 

resolution adjustment function used to duplicate auxiliary 

features to match the resolution of input speech samples. 

Furthermore, the input waveforms are quantized to 8 bits based 

on µ-law encoding and the generated waveforms are restored 

by µ-law decoding. 

3. NU NON-PARALLEL VC SYSTEM  

Figure 3 illustrates the system architecture of the proposed NU 

non-parallel VC system. The main concept is that instead of 

directly aligning the non-parallel source and target features, we 

map the source features to the target features with the assistance 

of reference speech. In addition, we also propose a collapsed 

speech detection technique for system selection. 

3.1. Non-parallel VC with reference speaker 

In the non-parallel spectral feature conversion, we construct the 

cascade VC system, which includes an encoder model to map 

the source features to the reference features and a decoder 

model to map the reference features to the target features. 

Specifically, we generate the reference speech corresponding to 

each of the source and target speakers by TTS to develop the 

parallel corpora. Then, in the training stage, we develop 

encoder models to convert the source speakers into the TTS 

speaker, and decoder models to convert the TTS speaker into 

the target speakers. Specifically, the encoder and decoder 

models are DNN-based spectral conversion models. As shown 

in Fig. 3, the speech spectral features contain speaker-

dependent components (speaker information) and speaker-

independent components (linguistic information). Both the 

encoding process and the decoding process only change the 

speaker-dependent parts.  

In the spectral conversion stage, the system converts the 

source spectral features to the reference spectral features using 

the encoder, and then converts the reference spectral features to 

the target spectral features using the decoder. Moreover, 

although the GV [2] post-filter can improve the perceptual 

speech quality, it also enhances the prediction error. Therefore, 

the GV post-filter is only applied to the final output of the 

decoder.  

3.2. System selection 

Although the quality of speech generated from the WaveNet 

vocoder is usually higher than that generated from a 

conventional vocoder (ex: WORLD), the WaveNet vocoder is 

more sensitive to less accurately converted spectral features 

[22]. As shown in Fig. 4, for the same converted features, the 

WaveNet vocoder sometimes generates collapsed waveform 

segments, while the outputs of the conventional vocoder tend 

to be more stable. This problem is likely caused by the 

mismatch between the target training features and the online 

converted features. Therefore, a collapsed speech detection 

technique is introduced to evaluate the quality of each WaveNet 

generated utterance, and its results are used for the utterance-

based system selection. 

For the detection technique, we find that although the 

waveforms are different, the powers of the generated utterances 

from the WaveNet vocoder and the conventional vocoder are 

very similar. Therefore, the differences of maximum powers 

will become large when the utterance has a collapsed segment, 

particularly in the high-frequency band. In accordance with this 

observation, we then design a detection criterion based on the 

frame-based summations of the power spectrum (denoted as 

P ) and the power of Nyquist frequency components (denoted 

as L ). Given the power sequences 
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Figure 3. NU non-parallel VC system 



where W denotes the utterance generated from the WaveNet 

vocoder, C denotes the utterance generated from the 

conventional vocoder, and T is the number of frames. If both

P  and L are higher than an empirical threshold, the system 

selects the utterance from the conventional vocoder. Moreover, 

we use the differences between maximum powers instead of the 

frame-based power differences because of their stability.  

4. EXPERIMENTAL EVALUATIONS 

In this section, the internal objective evaluations and the 

external subjective tests carried out in VCC2018 are reported. 

4.1. Experimental conditions 

The evaluation corpus was an English speech dataset provided 

by the VCC2018 organizer. The corpus included two subsets, 

HUB and SPOKE. The HUB corpus consisted of four male 

speakers and four female speakers. Two males and two females 

were the source speakers, and the remaining four speakers were 

the target speakers for the parallel VC task (HUB task). Each 

speaker in the HUB set had 81 parallel utterances for training, 

and each source speaker had 35 parallel utterances for testing. 

On the other hand, the SPOKE corpus included another two 

male and two female speakers as the source speakers for the 

non-parallel VC task (SPOKE task). Each speaker in the 

SPOKE set also had 81 parallel utterances for training and 35 

parallel utterances for testing, but the contexts were different 

from those of the HUB corpus. Therefore, the total number of 

source-target pairs in the SPOKE task was 16 (four SPOKE 

source speakers   four HUB target speakers), which included 

four female-to-female (F-F) pairs, four female-to-male (F-M) 

pairs, four male-to-female (M-F) pairs, and four male-to-male 

(M-M) pairs. Furthermore, the VCC2018 organizer also 

provided the transcripts of the corpus. The sampling rate of 

speech signals was set to 22050 Hz and the resolution per 

sample was 16 bits. 

The reference speech used to construct the cascade VC 

system was generated by a concatenative unit-selection TTS 

system, which was trained by around 3000 utterances from a 

single male speaker. Notably, although the linguistic contexts 

were the same, each speaker still had different prosody, such as 

short-pause positions, which resulted in significantly different 

spectral characteristics. To alleviate these acoustic mismatches, 

we controlled the short-pause positions of the TTS voices so 

that they corresponded to those of the individual source and 

target speakers.   

The multi-speaker WaveNet vocoder was trained by the 

data from all speakers of the VCC2018 corpus and speakers 

“bdl” and “slt” of the CMU-ARCTIC [31] corpus. The number 

of training utterances was 81 per speaker in the VCC2018 

corpus and 1132 per speaker in the CMU-ARCTIC corpus. The 

total data length was about three hours. Moreover, the speaker-

dependent WaveNet vocoders were constructed by using the 

training data of each target speaker to update the output layers 

of the multi-speaker WaveNet vocoder.  

The feature extraction and analysis-synthesis framework 

were based on the WORLD vocoder. We used WORLD to 

extract a 513-dimensional spectral envelope, 513-dimensional 

ap, and one-dimensional F0 with 25 ms frame length and 5 ms 

frame shift. The spectral envelope was parameterized into a 34-

dimensional mel-cepstrum, and ap was coded into a two-

dimensional aperiodic component. Joint spectral features were 

constructed by dynamic time warping (DTW) based on the 

corresponding mel-cepstrum. The mel log spectrum 

approximation (MLSA) filter [32] was used as the synthesis 

filter of the DIFFVC process in the analysis-synthesis 

framework. 

Both GMM-based and DNN-based VC were conducted in 

the internal evaluations. The hyperparameters of our feed-

forward neural network were set as follows: four hidden layers 

with 1024 hidden units per layer. The nonlinear activation 

function was rectified linear unit (ReLU) and the optimization 

algorithm was Adam [33]. The weights were randomly 

initialized by Xavier [34] and the biases were initially set to 

zero. The learning rate was 0.0006, the number of training 

epochs was 15, and the utterance mini-batch was used. On the 

other hand, the settings of the baseline GMM were 32 mixtures 

and a full covariance matrix. 

Our WaveNet vocoder consisted of 30 connected residual 

blocks, which included one layer comprising of a dilated causal 

convolution, a gate activated function, and one residual per 

residual block. The total number of dilated causal convolution 

channels was 512, and the dilations of 30 layers were set to 3 

sets of [20, 21, 22, ..., 29]. The 11 convolutions in the residual 

Table 1. MCD scores of source and DNN VC systems w/o 

GV (F: female, M: male). 

 Source OtoO wRTTS wRspk 

F - F 8.27 5.37 5.54 5.73 

F - M 8.46 5.51 5.66 5.67 

M – F 8.46 5.54 5.68 5.67 

M –M 7.89 5.44 5.65 5.63 

Avg. 8.33 5.48 5.64 5.67 

Table 2. MCD scores of source and DNN VC systems w/ 

GV (F: female, M: male). 

 Source OtoO wRTTS wRspk 

F - F 8.27 5.94 6.09 6.11 

F - M 8.46 6.18 6.29 6.24 

M – F 8.46 6.16 6.23 6.18 

M –M 7.89 6.11 6.23 6.21 

Avg. 8.33 6.12 6.22 6.19 

 

 

Figure 4. For the same converted features, the WaveNet 

vocoder generated collapsed waveform (upper right) and 

spectrogram (upper left), and the WORLD vocoder 

generated normal waveform (bottom right) and 

spectrogram (bottom left) are shown. 



block were set to 512 channels, and the number of 11 

convolution channels between the skip-connection and the 

softmax layer was 256. Adam was also used for optimization, 

and its learning rate was initialized as 0.001 with 50% decay 

per 50,000 iterations. The mini-batch size was set to 20,000 

samples and the number of iterations was 200,000. 

4.2. Reference speaker evaluation 

According to the results of [11], the performance when 

choosing parallel data for non-parallel training is almost the 

same as  that for non-parallel data, and it is easy to compare a 

non-parallel training system with a parallel training system 

using only a parallel corpus. Therefore, we evaluated the 

proposed cascade VC system on the basis of the 12 speaker 

pairs formed by the four SPOKE speakers. The objective 

measurement was the mel-cepstrum distance (MCD), which is 

defined as 
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where 
 conv

im  are the mel-cepstral coefficients of converted 

features, 
 tar

im  are the mel-cepstral coefficients of actual target 

features, and i is the dimension of the mel-cepstral coefficients. 

To verify the effectiveness of the proposed cascade VC 

system and the effect of the unnaturalness from TTS-generated 

speech, we first compared the following three DNN based VC 

systems: 

• OtoO: the basic one-to-one parallel VC system. 

• wRTTS:  the proposed cascade VC system with the TTS 

output as the reference speech. 

• wRspk:  the proposed cascade VC system with natural 

speech as the reference speech. 

Specifically, we used the SPOKE speaker rather than the source 

and target speakers as the reference speaker in wRspk. From 

Tables 1 and 2, the MCDs of wRTTS are almost the same as 

those of wRspk; thus, the results show that TTS output already 

contains sufficient acoustic components to be used as the 

reference speech. Furthermore, the MCD differences between 

wRTTS and OtoO are about 0.2 dB, indicating that the 

mismatch between the training and converted reference features 

still causes performance degradation. 

Next, we compared the proposed cascade VC framework 

with the baseline non-parallel VC system (MtoO) provided by 

the VCC2018 organizer [35], which used two speakers and a 

target speaker to train a speaker-independent (many-to-one) 

VC model. We constructed a gender-dependent, male-to-

female, and speaker-independent VC model by using one male 

speaker and TTS output. The evaluation involved cross-

validation of the two male speakers in the SPOKE set. 

Moreover, the baseline system was GMM-based VC; thus, we 

evaluated the performance of both GMM-based and DNN-

based models. As shown in Figs. 5 and 6, the proposed system 

outperforms the MtoO systems for both the GMM-based and 

DNN-based models. To summarize, for the speaker spectral 

conversion, the proposed method achieves a comparable 

performance to the OtoO system and outperforms the baseline 

MtoO system in the objective evaluation. In addition, because 

the potential ability for joint optimization with the WaveNet 

vocoder, we adopted the DNN-based spectral conversion in our 

final submitted system. 

4.3. Evaluation of system selection 

The goal of system selection is to detect utterances with 

collapsed speech segments, and then to replace them by 

utterances without collapsed speech. Therefore, we evaluated 

the system selection by measuring how many collapsed 

utterances had been detected. That is, we assumed collapsed 

speech detection as a verification problem; thus, the 

performance of the detector was measured by the false accept 

and false reject rates. 

For the evaluation dataset, a human subject labeled the 

converted utterances of all source-target pairs in the SPOKE 

task, which were generated by the WaveNet vocoder on the 

 

Figure 5. MCD scores of male-to-female pairs based on 

GMM VC and DNN VC systems w/o GV.  

 

Figure 6. MCD scores of male-to-female pairs based on 

GMM VC and DNN VC systems w/ GV.  
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Figure 7. DET curves of the two detectors. 

Operating point 



basis of the auxiliary features of the converted F0, coded ap, 

and converted spectral feature without the analysis-synthesis 

framework. The number of converted utterances was 560 and 

the number of the labeled collapsed utterances was 47. Two 

detectors were compared: 

• maxMCD:  A voice activity detection system (VAD) was 

first applied to all generated utterances, and then the 

MCDs of WaveNet-generated utterances and WORLD-

generated utterances where calculated. The final score 

was the maximum difference between the WaveNet 

MCDs and WORLD MCDs. 

• maxPOW:  The proposed measurement is the difference 

between the maximum power of the WaveNet-generated 

utterance and the WORLD-generated utterance. 

Figure 7 shows the detection error tradeoff (DET) curves of the 

two detectors. Not only the equal error rate (EER) of maxPOW 

is much lower than that of maxMCD, but also the entire curve 

for maxPOW is lower than that for maxMCD. The results 

indicate that the proposed maxPOW score is a more robust 

measurement of collapsed speech detection than the maxMCD 

score, and we can detect 80% of collapsed utterances with a 

false reject rate of less than 5% for clean utterances. 

4.4. External evaluation results from VCC2018 

The VCC2018 organizer conducted subjective tests on all 

submitted systems for both the HUB task and the SPOKE task. 

The evaluations included naturalness and similarity tests. In the 

naturalness tests, the measurement was the five-point mean 

opinion score (MOS), where “5” stood for “completely natural” 

and “1” stood for “completely unnatural”. In the similarity tests, 

listeners were asked to decide whether or not the converted 

utterances and target utterances were spoken by the same 

person. A four point scale was given to listeners: “definitely the 

same”, “probably the same”, “probably different” and 

“definitely different”. The final similarity scores were the 

percentage of the summation of “definitely the same” and 

“probably the same”.  

For the submitted NU non-parallel VC system, each 

decoder was trained using all the training data of the 

corresponding SPOKE source speaker and TTS outputs, and 

each Decoder was trained using all training data of the 

corresponding HUB target speaker and TTS outputs. Four 

modes of generated speech were used as the candidates in the 

system selection: 

• WN-diff-anasyn: speech generated by the WaveNet 

vocoder on the basis of the converted F0, coded ap, and 

converted spectral features with analysis-synthesis 

framework (f0‘, coded a2, and m3 in Fig.1). 

• WN-diff-anasyn-lpc: speech generated under the same 

conditions as WN-diff-anasyn, but the conditional 

probabilities of the WaveNet vocoder were constraint on 

previous samples by linear predictive coding. 

• WN-diff: speech generated under the same conditions as 

WN-diff-anasyn, but ap and the converted spectral 

features were processed without the last synthesis-

analysis step (a1 and m2 in Fig. 1).  

• WD-diff-anasyn: speech generated under the same 

conditions as WN-diff-anasyn, but with the WaveNet 

vocoder replaced by the WORLD vocoder. 

The priority was set as 1. WN-diff-anasyn, 2. WN-diff-

anasyn-lpc, 3. WN-diff, and 4. WD-diff-anasyn according to 

an unofficial internal evaluation. Specifically, we performed 

collapsed speech detection of all utterances generated by the 

WaveNet vocoder, and then the system selected the final 

submitted files according to the detection results and the 

predefined priority. Furthermore, the detection threshold was 

set on the basis of the operating point from the DET curve in 

Fig. 7 corresponding to a 5% false reject rate and 20% false 

accept rate. The final submitted files contained 3% WN-diff-

anasyn-lpc, 1% WN-diff, and 1% WD-diff-anasyn files. 

Figure 8 shows the overall results and Table 3 demonstrates 

the significance relationships of our system (N17) with others 

in terms of the p-values in the naturalness evaluations.  Our 

system is about third place in the naturalness evaluations and 

second place in the similarity measurements. The average MOS 

of the proposed system is about 3, and the average similarity 

accuracy is about 70%, as described in detail in the following. 

4.4.1. Naturalness 

As shown in Table 4, the MOS scores of the proposed VC 

system are stable for each pair, indicating the effectiveness of 

the proposed system under different conversion conditions. 

Compared with the baseline system (B01), the results of cross-

gender evaluations are consistent with the objective evaluations 

(Figs. 5 and 6), implying that the spectrum prediction of our VC 

system is better than that of the speaker independent GMM VC 

 

Figure 8. Overall summary of evaluation results for 

VCC2018 SPOKE task 

Table 3. p-values of the naturalness evaluation results of 

VCC2018 SPOKE task. 

null hypothesis  Quality is better or worse than N17 

p-value > 0.6 Baseline, N11, N18, N04, N12 

p-value = 0.073 N13 

p-value = 0.016 N05 

p-value < 2-16 Source, Target, N10, N06, N16 

 

 

Submitted systems 



system. However, the proposed VC system exhibited worse 

performance in the intra-gender task, because the baseline 

system used the vocoder-free framework in the intra-gender 

conversion instead of the conventional vocoder framework in 

the inter-gender conversion [35].  To be more specific, the 

results indicate that the WaveNet vocoder still suffers from 

broken excitation signals. Because excitation signals extracted 

by the conventional vocoder usually suffer from serious 

distortion, although we used the WaveNet vocoder for synthesis 

instead of WORLD, the WaveNet vocoder still suffers from 

broken excitation signals extracted from WORLD. In addition, 

we find that our collapsed speech detection technique can only 

detect extremely white noise, whereas the WavNet vocoder 

sometimes generates short impulse noises, and which have a 

significant effect on human auditory perception. Therefore, we 

may improve the quality of converted speech by solving the 

problem of the broken excitation signal so that the WaveNet 

vocoder generates a stable output. 

4.4.2. Similarity 

From the results in Table 5, we find that our VC system 

outperforms the baseline system for both cross-gender and 

same-gender tasks, showing that the WaveNet vocoder can 

retain the characteristic of the target’s timbre better than both 

the WORLD and vocoder free DIFFVC frameworks. 

Nonetheless, although our system achieves an above-average 

accuracy for similarity in cross-gender and F-F pairs, the 

performances of our M-M pairs are seriously degraded. Broken 

excitation signals may also cause performance degradation 

because WORLD often has the difficulty in extracting the 

correct F0 for male speakers. We also find that the WaveNet 

vocoder is more sensitive to incorrectly predicted F0 than 

WORLD, resulting in our M-M and M-F conversion sets 

containing many utterances with scratchy sounds. The scratchy 

sounds usually cause significant blurring of speaker identity, 

particularly in same-gender cases; thus, the M-M set has 

significantly more degradation than other sets of the proposed 

system. Moreover, although the M-F set of our system exhibits 

less degradation than the M-M set in similarity tests, it still 

achieves the worst naturalness performance among the 

conversion sets of our system as shown in Table 4. As a result, 

compensation of the broken extracted F0 or bypassing 

conventional vocoder analysis may be the key to improve both 

the quality and similarity of converted speech. 

5. CONCLUSION 

In this paper, we describe the details of the NU non-parallel VC 

system developed for VCC2018. The main concept is the use 

of TTS outputs as a bridge to connect non-parallel source and 

target speaker utterances. Furthermore, we also propose a 

system selection technique to automatically select the 

collapsed-speech-free utterances from different generated 

conditions and vocoders. Internal experimental results reveal 

that the proposed VC system can achieve comparable spectrum 

prediction accuracy to a parallel VC system as well as the 

effectiveness of the system selection technique. In addition, the 

subjective evaluations provided by the VCC2018 organizer 

demonstrate that our VC system achieves an above average 

performance in both quality and similarity measurements. As 

future work, to further improve the quality of converted speech, 

we intend to study the techniques of robust collapsed speech 

detection and the compensation of unnatural excitation signals. 
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