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Abstract. Starting with a cube and its symmetry group one can get a set of related 
polyhedra via adding congruent pyramids to its faces. The height and the rotation 
angle of the added pyramids give rise to a two-parameter set of such polyhedra. 
Thereby occur Archimedian solids and their duals, as e.g. an “icosi-tetra deltahe-
dron”, but also starshaped solids. This approach can also be applied when taking 
a regular tetrahedron or a regular pentagon-dodecahedron as start figure. A hy-
percube in ℝ  (an “𝑛-cube”), too, suits as start object and gives rise to interesting 
polytopes (c.f. [1], [2], [3]). 

The cube’s geodesics and (inner) billiards, especially the closed ones, are al-
ready well-known (see [4], [5]). Hereby, a ray’s incoming angle equals its out-
coming angle. There are many practical applications of reflections in a cube’s 
corner, as e.g. the cat’s eye and retroreflectors or reflectors guiding ships through 
bridges. Geodesics on a cube can be interpreted as billiards in the circumscribed 
rhombi-dodecahedron. This gives a hint, how to treat geodesics on arbitrary poly-
hedra. 

Generalising reflections to refractions means that one has to apply Snellius’ 
refraction law saying that the sine-ratio of incoming and outcoming angles is 
constant. Application of this law (or a convenient modification of it) to geodesics 
on a polyhedron will result in trace polygons, which might be called “quasi-geo-
desics”. The concept “pseudo-geodesic”, coined for curves 𝑐 on smooth surfaces 
Φ, is defined by the property of 𝑐 that its osculating planes enclose a constant 
angle with the normals 𝑛 of Φ. Again, this concept can be modified for polyhe-
drons, too. We look for these three types of traces of rays in and on a 3-cube and 
a 4-cube.  

Keywords: Polyhedron, Cube, Geodesic polygon, Billiard polygon, Snellius’ 
Refraction law. 
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1 Introduction: The cube and related polyhedra  

Well, it is not at all necessary to give a description of properties of a cube or “hexahe-
dron”, as it is called by the ancient Greeks. It is “the” space filling polyhedron in Eu-
clidean space, and it also occurs, virtually or as a common set of vertices, at the other 
Platonic solids. Therefore, and roughly speaking, one can say that its symmetry group 
“dominates” that of the other Platonic solids and even those of Archimedian solids. 
Most of the latter are derived from the former by chamfering edges and vertices and 
even the snub cube and snub dodecahedron, too, can be related to the cube. The cube 
“generalizes” the square (which generalizes the segment) with respect to the dimension 
of the Euclidean spaces. The hypercube in 4-space resp. in an 𝑛-space are further gen-
eralizations in that sense. By the way, the projection of a 4-cube in direction of a diag-
onal plane of one of its face-cubes became the logo of the ISGG, see Fig.1. 

 

     
Fig. 1. Series of “cubes” from dimension 1 to 5.  In the images of the 4-cube and the 5-cube some 
characteristic face-cubes are marked with edges or faces in different colors.  

 
In contrast to cutting away corners and edges by a chamfering process one also can add 
congruent pyramids to the faces of a Platonic solid to receive polyhedra with congruent 
faces. In case of a cube we add quadratic right pyramids, the faces of which pass 
through vertices of the cube, see Fig.2.  

 
Fig. 2. Cube with added pyramids. The blue square is interpreted as front and top projection of 
the cube, the dotted square is the base of an attached pyramid in the plane of the cube’s face. 
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Intersecting the 6 congruent pyramids results in a “deltoidal-icositetrahedron”. The rose deltoid 
shows the true size of its faces. 
The rotation angle 𝜑 between the symmetry planes of the pyramid and those of the 
cube’s face is one parameter, the altitude ℎ of the pyramid another one. The adding 
process delivers a two-parameter set of polyhedral with congruent faces. If 𝜑 ≠ 𝜋 2⁄ , 
the faces are, in general, (irregular) quadrangles or pentagons; if 𝜑 = 𝜋 2⁄ , the faces 
are (in general) deltoids.  

 
Fig. 3. Front and top projections of a three-sided double pyramid.  

The twist angle between the two coaxial partial pyramids is 𝜑=30°.  
 

Fig. 4 shows a set of polyhedra with different ratio ℎ: 𝑎, 𝑎 the length of the cube’s edge. 
The polyhedra have, in general, 24 deltoids as faces. Starting with, ℎ > 𝑎 we get a non-
convex form of them. For the second object we put 𝜑 = 𝑎 , and we receive the regular 
octahedron, where 3 deltoids become coplanar and form an equilateral triangle.  
For 0 < ℎ < 𝑎/2 the polyhedra are convex.  

  

   
Fig. 4. Front and top projections of deltahedra derived from a cube by attaching pyramids to its 
faces. Thereby the twist angle of the pyramids is 𝜑 = 𝜋 2⁄ , while their altitude ℎ varies. 
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The third object of the set in Fig. 4, is “the” deltoidal-icositetrahedron, meaning the 
Catalan solid dual to the dual to the rhombicuboctahedron. For this deltahedron we put  
ℎ = 𝑎/2. For  ℎ = 0  we receive the cube itself, where 4 deltoids unite to a face of the 
cube, (fifth object in Fig. 4). For 0 > ℎ > −𝑎/2 the polyhedra are again star shaped, 
(sixth object), and for ℎ = −𝑎/2 it becomes degenerate. 
 
If we would have started with an octahedron and added three-sided right pyramids to 
its triangular faces we would get the same sequence of deltahedra, and, similar, if we 
started with a rhombicuboctahedron, Fig. 5.   
 

              
Fig. 5. 8 pyramids attached to faces of an octahedron or 6 to the square faces of a cuboctahedron 
result in the same set of deltahedra, as when attaching the pyramids to a cube’s faces. 

 
Remark 1: By dualizing the rhombicuboctahedron one gets a single deltoidal-icositet-
rahedron, others are not mentioned in references. The dualizing process replaces each 
polyhedron face by its center to get the vertices of the dual polyhedron.  As long the 
original polyhedron has regular polygons as faces, this process is well-defined. But if 
the polyhedron has irregular faces, deltoids or with no symmetry pentagons with no 
symmetry, the choice of a suitable face center has some arbitrariness and it is not at all 
trivial to find the “right” center, such that the dualizing process becomes involutoric. 
Fig. 5 shows the (incomplete) dualizing of a rhombicuboctahedron (above left) and of 
Miller’s pseudo-rhombicuboctahedron (above right), see e.g. [7].  The latter belongs to 
the family of the Johnson polyhedral and has the Johnson number 𝐽 , c.f. [7] and [8]. 

 

 
Fig. 5. (Incomplete) dualizing of the cuboctahedron and the pseudo-cuboctahedron. The resulting 
two polyhedra are named “deltoidal-icositerahedron” and “pseudo-icosi- tetrahedron”. Both have 
24 congruent deltoids as faces.  
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Remark 2: If we take the twist angle 𝜑 = 0, the attached pyramids pass through the 
edges of the start polyhedron. For a cube as start polyhedron and arbitrary height ℎ we 
receive, in general, a polyhedron with 24 face triangles. For pyramids with height ℎ =
𝑎/2 the resulting polyhedron is the rhombic-dodecahedron, where two face triangles 
become coplanar and form a rhombus. This polyhedron is dual to the cuboctahedron 
and therefore a Catalan solid. Its face planes are the outer symmetry planes of two ad-
jacent cube faces, a property we later will take into consideration. 

2 Reflections and shortest paths   

The reflection law states that “the ray’s incoming angle equals its outcoming angle”. 
We imagine that, at the point 𝑃, where the ray meets the reflecting (hyper-) surface Φ, 
we replace Φ by a planar mirror tangent to Φ and its normal 𝑛. A first and fundamental 
consequence of this consideration is that 𝑃 is a regular point of Φ. 
If Φ is the boundary of two media with different refractivity one applies Snell’s law of 
refraction stating that “the sine ratio of the angles of incoming and outcoming rays is 
constant”, (see e.g. [9]).  
A light ray 𝑟 starting from point 𝐴 passing through point 𝐵 and meeting Φ in between, 
must trace the fastest path from 𝐴 over 𝑃 to 𝐵. If the refractivity on both sides Φ is the 
same or r is reflected at Φ , this fastest path is also the shortest (with respect to Euclid-
ean geometry).  
The shortest path problem connects the topic to the concept of geodesics, a concept of 
differential geometry. For a curve c on a (regular) surface Φ to be the shortest connec-
tion between two points 𝐴, 𝐵 ∈ Φ, the osculating planes of 𝑐 contain the normals 𝑛 of 
Φ along 𝑐. The heuristic imagination that, locally, 𝑐 is reflected at the tangent plane of 
Φ at each point 𝑃 ∈ 𝑐, suits very well to that orthogonality property of geodesics.   
 
We aim at dealing with polyhedra and construct (closed) geodesics on them. E.g. a 
rubber band between two points of adjacent faces will cross the common edge such that 
incoming angle equals the outcoming angle. This means that the trace of the rubber 
band can be interpreted as a reflection path at the (outer) symmetry plane of the two 
faces. Fig. 6 shows such a closed geodesic on a cube passing each face of the cube only 
once. It is also an inner (closed) reflection path, a so-called billiard trace, in the sub-
scribed rhombi-dodecahedron.  
 
The closed geodesic in Fig. 6 is also a closed billiard trace in the subscribed rhombi-
dodecahedron for a starting point on a short diagonal of is rhombic faces. It meets only 
6 of the 12 faces of the rhombi-dodecahedron 
 
The 2-dimensional case, namely the construction of a closed billiard path in a square 
(Fig. 7) gives a hint, how to proceed in higher dimensions. 
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Fig. 6. A closed geodesic (red) of a cube is a planar hexagon with sides  

parallel to face diagonals of the cube. 
. 

                                      
Fig. 7. Closed billiards in a square. Suitable reflections of the square give a rectification of the 
billiard. It occurs a closed billiard automatically, when choosing start- and endpoint on corre-
sponding edges at the same position.  

 
By suitable reflections of the square we get a rectification of the path. By choosing 
start- and endpoint of this rectification on corresponding edges at the same position 
forces the path to become closed. A path meeting all sides of the square and being 
shortest must have sides parallel to the diagonals.  In Fig. 7 the exceptional billiard 
paths through vertices of the square are marked red. A ray meeting a vertex of a face or 
a polyhedron will be excluded from consideration, even though such cases make sense 
as limits.  
 
In the planar case, for the billiard we start from a (regular) point 𝐴 of a side of a polygon. 
In the three-dimensional case we start from an inner point of a face of a polyhedron, 
and, for a hypercube, the starting point can be arbitrarily chosen as inner point of its 
hyperface. The method to receive a closed billiard path is the same as for the square, 
using reflections of the (hyper-) cube at its faces. Fig. 8 shows the shortest closed bil-
liard trace in a cube. 
 
If the trace meets all six face squares of the cube, the partial segments must be parallel 
to three diagonals of the cube, c.f. [4]. Because of three diagonals of the cube are not 
coplanar, the resulting trace hexagon cannot be planar. But it is centric symmetric with 
respect to the cube’s center 
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Fig. 8. Closed billiard trace in a cube meeting each face exactly once.  
The sides of the trace hexagon are parallel to 3 diagonals of the cube.  

3 Geodesics, pseudo- and quasi-geodesics 

In chapter 2 we started with the reflection law and Snell’s refraction law and mentioned 
that, for a (regular) surface in Euclidean 3-space, its geodesics have at each point 𝑃 an 
osculating plane containing the surface normal 𝑛 at 𝑃. A generalization of the concept 
“geodesic” reads as follows, see [10] and Fig. 9: 

 
Definition 1: A curve on a surface in Euclidean 3-space are called a pseudo-geodesic, 
if, at each of its points 𝑃, its osculating plane includes a fixed angle 𝛿 with the surface 
normal 𝑛 at 𝑃. For 𝛿 = 0 this the curve is an ordinary geodesic, for 𝛿 = 𝜋/2 it is an 
asymptotic curve. 
 

 
 

Fig. 9. Sketch to definition 1 of a pseudo-geodesic 𝑐 on a surface Φ.  𝜎…osculating plane 
 at 𝑃 ∈ 𝑐, 𝜏…tangent plane of Φ at 𝑃, 𝑡…tangent of 𝑐,𝑛…normal of Φ at 𝑃, 

 𝑚…main normal of 𝑐,  𝛿 = ∢𝑛𝑚. 
 

A natural extension of Definition 1 considers straight lines, too, as pseudo-geodesic 
curves and we will meet them in faces of a polyhedron. There seem to be several pos-
sibilities, how to proceed at a point 𝑃 of a common edge of two faces and we start with 
describing one following Definition 1, see Fig. 10: 
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Let a convex polyhedron be given. We consider two adjacent faces and a point 𝑃 on 
their common edge 𝑒. As replacement for the tangent plane in the regular case we use 
the outer symmetry plane such that also the replacement of the normal 𝑛 through 𝑃 
becomes well-defined. A ray 𝑔  in the first face 𝜀  with endpoint P shall proceed in 
face 𝜀  as 𝑔  such that the plane 𝛾 ≔ 𝑔 ∨ 𝑔  includes a given angle 𝛿 with the normal 
𝑛. Fig. 10 shows the situation in front- and top-projection, where 𝑒 is a projecting line. 
All possible planes 𝛾 envelop a cone of revolution. Supposing that 𝛿 < ∢𝜀 𝜀  there are 
two solutions 𝑔  to a given ray 𝑔 . If we orient the half lines 𝑔 , 𝑔 , 𝑛 emanating from 
𝑃, the two solutions can be distinguished by the sign of the determinant det(𝑔 𝑔 𝑛). 
 

 
Fig. 10. Front and top projection of two face planes 𝜀 , 𝜀  with the  

two solutions 𝑔 ⊂ 𝜀  to an incoming ray 𝑔 ⊂ 𝜀 .  
 

Intersecting the object depicted in Fig. 10 with a plane parallel to the outer symmetry 
plane 𝜏 of 𝜀 , 𝜀  allows to find the traces of the planes 𝛾 = 𝑔 ∨ 𝑔  as tangents to the 
trace circle of a cone with half apex angle 𝛿. Using the touching point 𝑋 of the trace of 
𝛾 resp.  the angle 𝜉 ≔ ∢𝑋′𝑃′𝑥′ as parameter, the dependence of 𝛼 ( , ; ) ≔ ∢𝑒𝑔  and 
 𝛼 ( , ; ) ≔ ∢𝑒𝑔  can be described with 𝑝 ≔ tan 𝜑 , 𝑞 ≔ tan 𝛿 as follows:  

𝐺 = ± 𝑝. tan 𝜉 , −𝑝, −1 , 𝑖 = 1,2                             (1) 

cos 𝛼 (𝜉) = ( ± 𝑝. tan 𝜉)/ ( ± 𝑝. tan 𝜉) + 𝑝 + 1  .         (2) 

For a given 𝛼  we can exploit equations (2) only numerically. Looking for a better 
practicable modification we remind us to Snell’s refraction law and the fact that the 
construction of a geodesic uses the net of a polyhedron. 
 
Definition 2: A oriented polygon with vertices on edges of a polyhedron Φ and sides in 
faces of Φ is called a quasi-geodesic, if, at each vertex 𝑃, which is an inner point of an 
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edge 𝑒 of Φ, the polygon’s sides 𝑔 , 𝑔   fulfil a “Snell’s refraction condition” with re-
spect to the edge 𝑒.  If the  𝛼 , 𝛼  denote the angles ∢𝑒𝑔 , the following Snell’s condi-
tions 𝑆𝑅𝐶  are convenient: 

(𝑆𝑅𝐶 )   sin 𝛼 : sin 𝛼 =  𝑠 = 𝑐𝑜𝑛𝑠𝑡.  (Snell’s law),  
(𝑆𝑅𝐶 )   𝛼 : 𝛼 =  𝑠 = 𝑐𝑜𝑛𝑠𝑡. ,  
(𝑆𝑅𝐶 )     tan 𝛼 : tan 𝛼 =  𝑠 = 𝑐𝑜𝑛𝑠𝑡.  
 

Obviously, also other simple functions 𝛼 = 𝑓(𝛼 ) might be used. We will focus on 
(𝑆𝑅𝐶 ), as it is easiest to handle. Fig. 11 gives a sketch of the local situation in general 
in the net of a polyhedron, Fig. 12 shows the front and top projection of two face planes 
of a polyhedron. In case of (𝑆𝑅𝐶 ), for any ratio tan 𝛼 : tan 𝛼 =  𝑠 , the enveloped 
cone of the planes 𝛾 = 𝑔 ∨ 𝑔  degenerates into a line 𝑎 normal to edge 𝑒, which can 
be considered as a proper replacement for the normal 𝑛.  
 

 
 

Fig. 11. Sketch to definition 2 of a quasi-geodesic on a polyhedron.  
 

 
Fig. 12. Front and top projection of two face planes 𝜀 , 𝜀  with projecting common edge 𝑒. In 
case of (𝑆𝑅𝐶 ) the planes 𝛾 = 𝑔 ∨ 𝑔  of incoming and outcoming rays pass through a line a.   
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For a cube’s net we find the trace of a quasi-geodesic polygon based on the condition 
(𝑆𝑅𝐶 ) tan 𝛼 : tan 𝛼 =  1/2, see Fig. 13. 
 

        

Fig. 13. Net of a cube with developed geodesic (red) and quasi-geodesic (black). The axono-
metric image of the cube shows a closed geodesic and a closed quasi-geodesic.   

4 Square, Cube, and Hypercube: Closed geodesics and billiards 

In Chapter 2 we discuss the connection between billiards and geodesics. For example, 
in Fig. 7, the (closed) billiard trace in the square is constructed in the same way as the 
closed geodesic on a cube, using the net of the cube. The shortest billiard path in the 
square has sides parallel to the square’s diagonals, and so does the shortest geodesic on 
the cube. The billiard trace in the cube has segments parallel to 3 diagonals and we can 
expect that a closed geodesic on the hypercube in the Euclidean 4-space, which meets 
all 8 face cubes, has similar directed segments. To construct such a geodesic polygon 
we use a “net” of the hypercube in the 3-space of one of its face cubes. Such a net was 
depicted by S. Dali in his famous painting “corpus hypercubicus”. We proceed ana-
logue to the cube case Fig. 13 and label the vertices in the net according to their position 
on the hypercube, see Fig. 14. 

 
Fig. 14. Net of a hypercube with developed shortest closed geodesic (black) together with the 

critical position of a geodesic through vertices of the hypercube (red).  
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Fig. 15. A special geodesic closed polygon on a hypercube. The sides of the polygon are 
 parallel to diagonals of the face cubes of the hypercube. 

In Fig. 14 the diagonals (red) of the cubes symbolize the rectified “critical” geodesic 
passing through vertices of the hypercube, while the black one represents the rectifica-
tion of one of the general shortest closed geodesics. Fig. 15 represents an axonometric 
view of the hypercube with a special case of such a closed geodesic polygon. It meets 
four edges of the hypercube and has therefore only 8 sides instead of the twelve sides 
in the general case. The sides are parallel to diagonals of face cubes, (marked as dotted 
lined star shaped hexagon in Fig. 15). 

5 Conclusion  

The main aim of this article is to give a hint, how to modify the differential geometric 
concept “pseudo-geodesic”, such that it becomes applicable for polyhedra. Thereby a 
new concept “quasi-geodesic” is coined, which is based on generalizations of Snell’s 
refraction law. The idea of interpreting geodesics as billiards in a lower dimensional 
case can be combined with the concept of quasi-geodesics. Here the reader should 
quicken his appetite to further and deeper going research.  

A second aim is a didactical one:  Even though there seems nothing new to be said 
about the cube itself, it is a surprisingly good basic object for generalizations and 
research, too, and one can teach many mathematical concepts based on them. There is 
a rich fundus of materials in references, see e.g. Wikipedia, to satisfy one’s curiosity. 
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