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Abstract

Let n = 2α−1pβ−1 be a positive integer, where α, β > 1 and p is a

prime satisfying p < 2(α−1−
lnα
ln 2

) − 1. Let k > 2 be a prime such that
2k−1 is a Mersenne prime and σk(n) =

∑
d|n d

k be the sum of the kth

power of positive divisors of n. Continuing the work of Chu [4], we
prove that n divides σk(n) if and only if and only n is an even perfect
number 6= 2k−1(2k − 1) for all k 6 31.

1 Introduction and Main Results

A positive integer n is said to be perfect number if it satisfies the equation

σ(n) = 2n. The study of perfect numbers dates back to antiquity with

Euclid being the first to prove a notable result that every number of the

form n = 2α−1p, where p = 2α − 1 is a Mersenne prime is an even perfect

number. Euler later proved that an even integer n is perfect if and only

if it is of the form n = 2α−1p, where p = 2α − 1 is a Mersenne prime.

Only 51 even perfect numbers have ever since been discovered and it still

remains unknown whether infinitely many even perfect numbers exist. It is
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also unknown whether any odd perfect numbers exist, though computations

suggest that the smallest odd perfect number should be greater than 101500

[9] and have at least 9 distinct prime divisors [8]. The study of perfect

numbers has been generalized in various forms, noticeably in the context

of k-perfect numbers, which are defined as integers n satisfying the relation

σ(n) = kn for some integer k > 2. Numerous results on k-perfect numbers

have been established and we refer the reader here [10, 3] for related results.

Mathematicians have continued to establish meaningful relations between a

positive integer n and its kth divisor function σk(n) :=
∑

d|n d
k, often resulting

in beautiful mathematical results. For instance, Cai et al [1] proved that n is

a solution to the equation σ2(n)−n2 = 3n if and only if n is a product of two

Fibonacci primes. Cai et al [2] proved that infinitely many twin primes exists

if and only if the equation σ2(n)−n2 = 2n+ 5 has infinitely many solutions.

Besides the relation of equality, generalizations for divisibility of σk(n) by n

have been considered as well. Florian et al [7] proved that n divides σk(n)

infinitely often for any k > 2. Divisibility of σk(n) by n is particularly of

interest when n = 2α−1pβ−1, where α, β ∈ Z+ and p is a prime. In such a

case, the divisibility of σk(n) by n for k = 3 or 5 has been known to occur if

and only if n is a perfect, provided p < 3 · 2α−1− 1 . Jiang [6] considered the

case k = 3 and proved the following

Theorem 1.1. . Let n = 2α−1pβ−1, where α, β > 1 and p is an odd prime.

Then n|σ3(n) if and only if n is an even perfect number 6= 28.

Chu [4] recently noticed that Theorem 1.1 could not be extended to k =

5 or 7 since there are non-perfect values of n for which n|σk(n) in those cases.

For example σ5(22) ≡ 0 (mod 22) and σ7(86) ≡ 0 (mod 86) even though 22

and 86 are not perfect. However by restricting p to satisfy the inequality

p < 3 · 2α−1 − 1, Chu [4] proved the following Theorem for the case k = 5.

Theorem 1.2. Let n = 2α−1pβ−1, where α, β > 1 and p < 3 · 2α−1 − 1 is an

odd prime. Then n|σ5(n) if and only if n is an even perfect number 6= 496.

Chu [4] made a generalization of Theorem 1.2 in form of the following

Conjecture.



Divisibility of σk(n) by even perfect numbers 3

Conjecture 1.3. . Let k > 2 be a prime such that 2k − 1 is a Mersenne

prime.If n = 2α−1pβ−1, where α, β > 1 and p < 3 · 2α−1 − 1 is an odd prime,

then n|σk(n) if and only if n is an even perfect number6= 2k−1(2k − 1).

Interestingly, Chu [4] proved that Conjecture 1.3 holds when β = 2 as

stated below.

Theorem 1.4. . Let k > 2 be a prime such that 2k − 1 is a Mersenne prime.

If n = 2α−1p, where α > 1 and p < 3 · 2α−1− 1 is an odd prime, then n|σk(n)

if and only if n is an even perfect number 6= 2k−1(2k − 1).

The technique used to prove Theorem 1.2 could not be extended to prove

Conjecture 1.3 for k > 5. In this paper, we extend Chu’s [4] results by

proving Conjecture 1.3 for all k 6 31 and p < 2(α−1− lnα
ln 2

) − 1 as stated in the

following theorem

Theorem 1.5. Let k 6 31 be an odd prime such that 2k − 1 is a Mersenne

prime.If n = 2α−1pβ−1, where α, β > 1 and p < 2(α−1− lnα
ln 2

) − 1 is an odd

prime, then n|σk(n) if and only if n is an even perfect number 6= 2k−1(2k−1).

We structure our paper in the following way. Section 1 provides an in-

troduction on the subject of our investigation leading up to the statement of

the main results. In Section 2, we outline the necessary results for proving

our main result and finally prove our main results in Section 3.

2 Preliminaries

Lemma 2.1. Let k > 2 be a prime such that 2k − 1 is a Mersenne prime.

Let n = 2α−1pβ−1, where α, β > 1 and p is an odd prime. If n|σk(n), then β

is even,

2α−1 |
(pβk − 1

pk − 1

)
and

pβ−1 |
(2αk − 1

2k − 1

)
.
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Chu [4] provides an elementary proof of Lemma 2.1.

Lemma 2.2. Let n = 2α−1pβ−1 be a positive integer, 2v||β and n|σk(n),

where α, β > 1 and p is an odd prime..

(a) If p ≡ 1 (mod 4), then α− 1 6 v.

(b) If p ≡ 3 (mod 4) and 2s−1||(p+ 1), then α 6 v + s− 1.

See ([4] Lemma 8 and Lemma 17) for proofs of Lemma 2.2 (a) and (b)

respectively.

Lemma 2.3. Let Φm(q) be the mth cyclotomic polynomial of q, where m, q ∈
Z+ . Let p be a prime divisor of Φm(2) such that pt|Φm(2) for some t ∈ Z+.

Then t 6 2 for all p < 6.75× 1015.

See [5] for proof of Lemma 2.3

Lemma 2.4. Let k, s, p, α be positive integers such that 2s−1||(p + 1) and

p < 2(α−1− lnα
ln 2

) − 1. Then the following inequalities hold.

(a) 2α−1 − 1 > αk for all α > k + 2.

(b) 2α−s > α.

Proof. (a) We have

(2.1) 2α−1 − 1 =
k−1∑
i=0

α−1Ci >
α−1C2 + α−1Cα−3 = (α− 1)(α− 2)

Since the sequence
{ k

k + 1

}∞
k=1

is strictly increasing, it follows that

(2.2)
(k + t+ 1)

(k + t+ 2)
>

k

(k + t)

for all t > 1. Inequality (2.2) can be written as
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(2.3) (k + t+ 1)(k + t) > (k + t+ 2)k

Substituting α = k + t+ 2 into (2.3) yields

(2.4) (α− 1)(α− 2) > αk

Combining inequalities (2.4) with (2.1) yields 2α−1 − 1 > αk.

(b) Since 2s−1||(p + 1), we have 2s−1 − 1 6 p < 2(α−1− lnα
ln 2

) − 1. It follows

that 2s−1 < 2(α−1− lnα
ln 2

), or equivalently 2α−s > α.

3 Proof of Theorem 1.5

We start by proving the forward direction, that is if n is an even perfect

number6= 2k−1(2k − 1), then n divides σk(n). Suppose n is perfect. Then

n = 2α−1p where α and p = 2α − 1 are primes. It immediately follows from

the power of p in n that β − 1 = 1. To show that n|σk(n), we need to show

that

2α−1 |
(pβk − 1

pk − 1

)
and pβ−1 |

(2αk − 1

2k − 1

)
.

We notice from the binomial expansion

2αk − 1 = (2α − 1)
k−1∑
i=0

kCi(2
α − 1)k−i−1

that (2α − 1) divides 2αk − 1. Since n 6= 2k−1(2k − 1), then p 6= 2k − 1 and

since both 2α − 1 and 2k − 1 are primes, gcd(2α − 1, 2k − 1) = 1. Since

p = (2α− 1) divides 2αk− 1, (2k− 1) - (2α− 1) and β− 1 = 1, it follows that

pβ−1 |
(2αk − 1

2k − 1

)
.

It remains to show that 2α−1 divides
(pβk − 1

pk − 1

)
. Since β − 1 = 1 and p =

2α − 1, we notice from the binomial expansion
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(pβk − 1

pk − 1

)
=
(p2k − 1

pk − 1

)
= 1 + (2α − 1)k = 2α

k−1∑
i=0

kCi(2
α)k−i−1(−1)i.

that 2α−1 divides
(pβk − 1

pk − 1

)
.

Now we turn our attention to proving that if n = 2α−1pβ−1 and n|σk(n), then

n is an even perfect number6= 2k−1(2k − 1) . We start by noting that the

case β = 2 is the case of Theorem 1.4 and has been fully addressed. Thus

we only prove the case β > 2.

We proceed by considering the cases p ≡ 1 (mod 4) and p ≡ 3 (mod 4)

separately.

3.1 The case p ≡ 1 (mod 4)

Proposition 3.1. Let n = 2α−1pβ−1, where α > 1, β > 2 are integers and

p ≡ 1 (mod 4) is prime satisfying p < 3 · 2α−1 − 1. Let k 6 31 be an odd

prime such that 2k − 1 is a Mersenne prime. Then n - σk(n).

Proof. We proceed by contradiction. Suppose n | σk(n), then it follows from

Lemma 2.1 that pβ−1 |
(2αk − 1

2k − 1

)
. Suppose β = 2vβ1, where gcd(2, β1) = 1.

It follows from Lemma 2.2(a) that α − 1 6 v , from which we get 2v − 1 >

2α−1 − 1. It follows that

(3.1) pβ−1 > p2
v−1 > p2

α−1−1

If α > k + 2, it follows from Lemma 2.4(a) that 2α−1 − 1 > αk, from which

we get

(3.2) p2
α−1−1 > pαk > 5αk >

(2αk − 1

2k − 1

)
The second inequality in (3.2) follows from the fact that p ≡ 1 (mod 4).

Joining inequalities (3.1) and (3.2) yields pβ−1 >
(2αk − 1

2k − 1

)
which is a con-

tradiction.
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Thus we must have α 6 k+2. Since k 6 31, we have α 6 33. By hypothesis,

we have p < 3 · 2α−1 − 1, which together with α 6 33 yields

(3.3) p < 3 · 2α−1 − 1 6 3 · 232 − 1 < 1.29× 1010.

Inequality (3.3) implies p < 6.75×1015. By Lemma 2.3, we have β−1 6 2 or

β 6 3. Since β is even and β > 1, we have β = 2 which is a contradiction.

3.2 The case p ≡ 3 (mod 4)

Proposition 3.2. Let n = 2α−1pβ−1 where p ≡ 3 (mod 4) is prime,

2s−1||(p + 1), p < 2(α−1− lnα
ln 2

) and α > 1, β > 2, s > 2 are positive integers.

Let k 6 31 be an odd prime such that 2k − 1 is a Mersenne prime. Then

n - σk(n).

Proof. We proceed by contradiction. Suppose n | σk(n), then it follows from

Lemma 2.1 that pβ−1 |
(2αk − 1

2k − 1

)
.

Suppose β = 2vβ1, where gcd(2, β1) = 1. Since 2s−1||(p + 1), it follows from

Lemma 2.2(b) that α− s 6 v− 1 , from which we get 2v−1 > 2α−s. It follows

that

(3.4) pβ−1 > p2
v−1

> p2
α−s

> 2(s−2)(2α−s)

Since p < 2(α−1− lnα
ln 2

) and 2s−1||(p + 1), it follows from Lemma 2.4(b) that

2α−s > α.

If s− 2 > k, then (s− 2)(2α−s) > αk and it follows that

(3.5) 2(s−2)(2α−s) > 2αk >
(2αk − 1

2k − 1

)
Joining inequalities (3.4) and (3.5) yields pβ−1 >

(2αk − 1

2k − 1

)
which is a con-

tradiction.
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If s − 2 6 k, then α − s > α − k − 2. Thus 2α−s > 2α−k−2, from which it

follows that

(3.6) 2(s−2)(2α−s) > 22α−s > 22α−k−2

Of all the values k 6 31, 2k − 1 is prime for k values 3, 5, 7, 13, 17, 19 and 31.

It can be proved by induction that the inequality

(3.7) 2α−k−2 > αk

holds for all k 6 31 and α > 44. Joining inequalities (3.4), (3.6) and (3.7)

yields

pβ−1 > 22α−k−2

> 2αk >
(2αk − 1

2k − 1

)
for all α > 44

which is a contradiction.

For the case α < 44, it follows from p < 2(α−1− lnα
ln 2

) − 1 that p < 238 <

6.75 × 1015. By Lemma 2.3, it follows that β − 1 6 2 or β 6 3. Since β is

even and β > 1, we have β = 2 which is a contradiction.
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