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Abstract—The paper considers an approach to partial eigen-
value assignment in second-order descriptor systems via propor-
tional plus derivative plus output feedback controller. It is shown
that the problem is closely related to a so-called second-order
Sylvester matrix equation. This study presents an approach to
partial the eigenstructure assignment for the descriptor system
where an algorithm is presented for calculated the output feed-
back matrix by equation de Sylvester. Two complete parametric
methods for the proposed approach to partial eigenstructure
assignment problems are presented. Both methods give simple
complete parametric expressions for the feedback gains and the
closed-loop eigenvector matrices. The first one mainly depends on
a series of singular value decompositions. The second one utilizes
the system’s factorization and allows the closed-loop eigenvalues
to be set undetermined and sought via specific optimization
procedures. The theorems are presented using the Sylvester
equations. Two algorithms are implemented using the Sylvester
equation, and examples are presented with their conclusions.

Keywords: Descriptor System, Second-order system,
Sylvester equation.

I. INTRODUCTION

Second-order linear systems capture the dynamic behavior
of many natural phenomena, and have found applications in
many fields, such as vibration and structural analysis, space-
craft control and robotics control and, hence, have attracted
much attention , [1], [2], [3], [4], [5].
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The solution of a generalized Sylvester equation associated
to a linear descriptor system and subject to some rank and
regional pole-placement constraints. Under the hypothesis of
strong-detectability of the descriptor system, a sequence of co-
ordinate transformations is proposed such that the considered
problem can be solved through a Sylvester equation associated
to a detectable reduced-order normal system [6].

The control of the following second-order descriptor dy-
namical linear system:

Mẍ+Dẋ+Nx = Bu (1)
y0 = C0x

y1 = C1ẋ

y2 = C2ẋ

where x ∈ Rn and u ∈ Rm are the state vector and
the control vector, respectively, and M,D,N ∈ Rn×n, and
B ∈ Rn×m, C0, C1, C2 ∈ Rp×n are the system coefficient
matrices. In certain applications, the matrices M,D, and N
being called the mass matrix, the structural damping matrix
and the stiffness matrix, respectively. These coefficient matri-
ces satisfy the following assumptions.

Assumption 1.1: A1: rank(M) = q, 0 < q ≤ n, rank(B) =
m, and rank(C0) = rank(C1) = rank(C2) = p.

Concerning the control of the second-order linear system
(1) most of the results are focused on stabilization (see, for
example, pole assignment [1], [2], and partial pole assignment
[3], [4]. Furthermore, many theoretical results for second-order
systems have been developed via the corresponding extended
first-order descriptor state space model.

Eigenstructure assignment is a very important problem in
linear control systems design, the solution of a generalized
Sylvester equation associated with a linear descriptor system
where the proposed results are motivated from its use for
designing minimal-order observers and for computing output
feedback control laws by a particular technique in [6], [7],
[8]. The design degree of freedom provided by eigenstructure
assignment is utilized to minimize the condition number of
the closed-loop system. The article present in section II the
problem formulation, in section III present the solution to
problem SSE, in section IV present the solution to problem
ESA, in section V present the eigenstructure assignment and
the section VI the conclusions.
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II. PROBLEM FORMULATION
For the second-order descriptor dynamical system (1), by

choosing the following control law:

u(t) = −F0y0(t)− F1y1(t)− F2y2(t) (2)

with F0, F1, F2 ∈ Rp×n. It obtain the closed-loop system as
follows:

(M +BF2C2)ẍ+ (D +BF1C1)ẋ+ (N +BF0C0)x = 0

(3)

System (3) can be written in the first-order state-space form

Ecż = Acz; (4)

with

Ec =

[
In 0
0 (M +BF2C2)

]
and

Ac =

[
0 I

−(N +BF0C0) −(D +BF1C1)

]
(5)

, We here require the closed-loop matrix pair (Ec;Ac) to
be nondefective, that is, the Jordan form of the matrix pair
(Ec;Ac) possesses a diagonal form. Further, following the pole
assignment theory for first-order descriptor linear systems,
under the controllability of system (1), n+q finite eigenvalues
can be assigned to the closed-loop system (4), (5). Therefore,
the desired Jordan form of the matrix pair (Ec;Ac) takes the
form

Λ = diag(λ1, λ2, . . . , λn+q) (6)

where λi, i = 1, 2, . . . n + q, are clearly the eigenvalues of
the matrix pair (Ec;Ac). Based on lemma in [14] we have the
following lemma (2.1)

Lemma 2.1: Let Ec, Ac be given by (4), (5) , and by (6)
Then, the following hold. 1) There exist matrices V1, V2 ∈
Rn×n+q satisfying

Ac

[
V1
V2

]
= Ec

[
V1
V2

]
Λ (7)

if and only if

(M +BF2C2)V1Λ2 + (D +BF1C1)V1Λ + (8)
(N +BF0C0)V1 = 0

and

V2 = V1Λ (9)

2) There exist matrices V∞, V
′

∞ ∈ Rn×q satisfying

Ec

[
V

′

∞
V∞

]
= 0, and, rank(

[
V

′

∞
V∞

]
) = n− q (10)

if and only if V
′

∞ = 0 and consider the matrix M1 = (M +
BF2C2)

M1V∞ = 0 rank(V∞) = n− q (11)

III. SOLUTION TO PROBLEM SSE

Consider the following linear time-invariant descriptor sys-
tem

Eẋ(t) = Ax(t) +Bu(t); y(t) = Cx(t) (12)

where E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and rankE =
q ≤ n. Assume that the matrix pencil(λE−A) is nonsingular,
i.e., rank(λE −A) = n.

Proposition 3.1: [9] The system (12) is controllable at
infinity if and only if

rank[E,B] = rank[E,A,B] (13)

Proposition 3.2: [9] The system 12 is C-controllable if and
only if condition (13) is satisfied together with

rank[λE −A,B] = rank[E,A,B],∀λ ∈ C. (14)

Proposition 3.3: [9] The system (12) is I-controllable if and
only if[

E 0 0
A E B

]
= rank[E,A,B] + rankE. (15)

Proposition 3.4: [9] The system (12) is S-controllable if
and only if both the conditions (14) and (15) are satisfied.

Letting

W = F1C1V λ+ F0C0V =[
F0C0 F1C1

] [ V
V Λ

]
(16)

then (8) becomes

(M +BF2C2)V Λ2 +DV Λ +NV = (17)
BF1C1V Λ + (BF0C0)V

(M +BF2C2)V Λ2 +DV Λ +NV = BW (18)

Denote

V =
[
v1 v2 · · · vq

]
(19)

W =
[
w1 w2 · · · wq

]
(20)

We can convert the second-order Sylvester matrix equation
(18) into the following column form:

(λ2i (M +BF2C2) + λiD +N)vi = Bwi i = 1, 2, · · · , q.
(21)

The equations in (21), can be further written in the following
form:

Πi

[
vi
wi

]
= 0 i = 1, 2, · · · , q. (22)

where

Πi =
[
λ2iM + λiD +N −B

]
, i = 1, 2, · · · , q. (23)

This states that
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[
vi
wi

]
∈ KerΠi i = 1, 2, · · · , q. (24)

The following algorithm produces two sets of constant
matrices Ti and Ui, i = 1, 2, · · · , q, to be used in the
representation of the solution to the matrix equation (18), the
following simple procedure can also be used and is based in
[14].

Algorithm new P1

Solving Ti and Ui, i = 1, 2, · · · , q,
Step 1) Through applying SVD to the matrix Πi, i =

1, 2, · · · , q , obtain two sets of matrices Pi ∈ Cn×n and
Qi ∈ Cn+m×n+m, i = 1, 2, · · · , q, satisfying

PiΠiQi =

[
diag(σ1, σ2, · · · , σq) 0

0 0

]
, i = 1, 2, · · · , q. (25)

where, σi > 0, i = 1, 2, · · · , q , are the singular values of
Πi

q = rank
[
λ2(M +BF2C2) + λD +N B

]
, (26)

Step 2) Obtain the matrices Ti ∈ Rn×n+m−q and Ui ∈
Rm×n+m−q , i = 1, 2, · · · , q, by partitioning the matrix Qi as
follows

Qi =

[
∗ Ti
∗ Ui

]
, i = 1, 2, · · · , q. (27)

As a result of (25) and (27), the matrices Ti ∈ Rn×n+m−q

and Ui ∈ Rm×n+m−q , i = 1, 2, · · · , q, obtained through
Algorithm P1 satisfy

Πi

[
Ti
Ui

]
= 0,

rank

[
Ti
Ui

]
= n+m− q i = 1, 2, · · · , q. (28)

Therefore, the columns of
[
Ti
Ui

]
form a set of basis for

kerΠi. i. The previous deduction clearly yields the following
result, where the theorem 3.1 is based in [14].

Theorem 3.1: Let (1) S-controllability with the condition
(26), and the conditions (14) and (15) are satisfied.
Ti ∈ Rn×n+m−q and Ui ∈ Rm×n+m−q , i = 1, 2, · · · , q, be

obtained via Algorithm new P1. Then, all the matrices V and
W satisfying the second-order Sylvester matrix equation (18)
can be parameterized by columns as follows

[
vi
wi

]
=

[
Ti
Ui

]
fi i = 1, 2, · · · , q. (29)

fi ∈ Rn+m−q , i = 1, 2, · · · , q, are a set of arbitrary parameter
vectors.
Regarding the S-controllability of (1), we have the following
basic result which is a general extension of the well-known
PHB criterion [10].

Lemma 3.1: The second-order dynamical system (1), is S-
controllable if and only if

rank
[
λ2i (M +BF2C2) + λiD +N B

]
= n, ∀λ ∈ C. (30)

The solution for this case depends on a pair of polynomial
matrices T (λ) ∈ Rn×n+m−q and U(λ) ∈ Rm×n+m−q ,
satisfying

[
λ2i (M +BF2C2) + λiD +N

]
T (λ) = BU(λ). (31)

In the case where (1), is regular, that is, det(λ2i (M+BF2C2)+
λiD+N) is not identically zero, the aforementioned equation
can be written as[
λ2i (M +BF2C2) + λiD +N

]−1
B = T (λ)U−1(λ). (32)

which can be viewed as the right factorization of the
following transfer function

G(λ) =
[
λ2i (M +BF2C2) + λiD +N

]−1
B.

For simplicity, we also call (31) the factorization of (1), where
the theorem 3.2 is based in [14]

Theorem 3.2: Let (1), be S-controllable, and T (λ) ∈
Rn×n+m−q and U(λ) ∈ Rm×n+m−q satisfy the factorization
(31). Then, the following hold.

1) The matrices V and W given by (19), (20)[
vi
wi

]
=

[
T (λi)
U(λi)

]
fi i = 1, 2, · · · , q. (33)

satisfy the second-order Sylvester matrix equation (18) for
fi ∈ Cn+m−q , i = 1, 2, · · · , q,

2) When

rank

[
T (λi)
U(λi)

]
= n+m− q i = 1, 2, · · · , q. (34)

The factorization (31) performs a fundamental role in the
solution (33). When (1), is regular and λi, i = 1, 2, · · · , q, are
chosen to be different from the zeros of det(λ2M + λD +
N ),M1 = (M +BF2C2) we can take{

T (λi) = Adj(λ2M1 + λD +N)B
U(λi) = det(λ2M1 + λD +N)Im

For general numerical algorithms solving such factoriza-
tions, one can refer to [12], [13]. The following simple
procedure can also be used and is based in [14].

Algorithm new P2 (new coprime factorization)
Step 1) Under the S-controllability of system (1), find a

pair of unimodular matrices P (λ) and Q(λ) , of appropriate
dimensions, satisfying

P (λ)
[
λ2M1 + λD +N B

]
Q(λ) =

[
In 0

]
Step 2) Obtain the pair of polynomial matrices T (λ) ∈

Rn×m and U(λ) ∈ Rm×m by partitioning the unimodular
matrix Q(λ)

Q(λ) =

[
∗ T (λ)
∗ U(λ)

]
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It is worth pointingout that the pair of polynomial matrices
T (λ) ∈ Rn×m and U(λ) ∈ Rm×m

satisfying the right factorization (31) obtained from the
Algorithm new P2 are coprime

rank

[
T (λ)
U(λ)

]
= m ∀λ ∈ C (35)

IV. SOLUTION TO PROBLEM ESA

Following from the results in Section III, we can obtain
the following two theorems regarding the solution to Problem
ESA. Where the theorems 4.1 and 4.2 is based in [14].

Theorem 4.1: Let ni i = 1, 2, · · · , n + q be given by , and
the condition (26), and
Ti ∈ Rn×n+m−q and Ui ∈ Rm×n+m−q , i = 1, 2, · · · , n+q,

be given by Algorithm P1. Then, the following hold.
1) Problem ESA has solutions if and only if there exist

a group of parameters fi ∈ Cn+m−q i = 1, 2, · · · , n + q,
satisfying the following constraints.

Constraint Co1 : fi = f̄j if λi = λ̄j .
Constraint C2a : detVc 6= 0, with

Vc =

[
T1f1 T2f2 · · · Tn+qfn+q 0
λ1T1f1 λ2T2f2 · · · λn+qTn+qfn+q V∞

]
(36)

2) When this condition is met, all the solutions to problem
ESA are given by

V =
[
T1f1 T2f2 · · · Tn+qfn+q

]
(37)

and [
F0C0 F1C1

]
=[

U1f1 U2f2 · · · Un+qfn+q W∞
]
V −1c (38)

where fi ∈ Rn+m−q , i = 1, 2, · · · , n + q, are arbitrary
parameter vectors satisfying Constraints Co1 and C2a and
W∞ ∈ Cm×(n−q is an arbitrary parameter matrix.

Theorem 4.2:
Let (1), be S-controllable, and T (λ) ∈ Rn×m and U(λ) ∈

Rm×m be a pair of polynomial matrices satisfying the right
factorization (31) and condition (34). Then

1) Problem ESA has solutions if and only if there exist a
group of parameters fi ∈ Cm i = 1, 2, · · · , n + q, satisfying
Co1 and Constraint C2b: detVcb 6= 0 with

Vcb =[
T (λ1)f1 T (λ2)f2 · · · T (λn+q)fn+q 0
λ1T (λ1)f1 λ2T (λ2)f2 · · · λn+qT (λn+q)fn+q V∞

]

(39)

2) When this condition is met, all the solutions to problem
ESA are given by

V =
[
T (λ1)f1 T (λ2)f2 · · · T (λn+q)fn+q

]
(40)

and [
F0C0 F1C1

]
=[

U(λ1)f1 U(λ2)f2 · · · U(λn+q)fn+q W∞
]
V −1cb (41)

where fi ∈ Rm, i = 1, 2, · · · , n + q, are arbitrary parameter
vectors satisfying Constraints Co1 and C2b and W∞ ∈
Cm×(n−q) is an arbitrary parameter matrix.

V. PROBLEM EIGENSTRUCTURE ASSIGNMENT:APPROACH

Strong stability can be interpreted in terms of the closed-
loop system’s self-structure: 1. Asymptotic stability is equiv-
alent to that all finite poles are inside the left semi plane
of the complex plane. 2.The absence of impulsive modes
is equivalent to having q finite poles in a closed-loop. 3.
Regularity is guaranteed if the system is free from impulsive
modes. Based on this interpretation, necessary and sufficient
conditions for the existence of S-stabilizable output feedback
are established from a set of generalized coupled Sylvester
equations, [6], [7], [8].

A. Eigenstructure by equation Sylvester

The system (3) can be written in the first-order state-space
form (4) and (5). Thus for obtained the Output feedback K
σ(Ed, Ad +BdKCd) ∈ C−, is used the Silvester equation in
[8], [7].

Consider the following linear time-invariant descriptor sys-
tem in [8], [7].

Edẋ(t) = Adx(t) +Bdu(t) (42)
y(t) = Cdx(t)

The Sylvester equations in [8], [7].

AdVd − EdVdHV = −BdWd, σ(HV ) ∈ C− (43)
PdAd −HPPdEd = −UdCd, σ(HP ) ∈ C− (44)

The theorem 5.1 is based in [14], [8].
Theorem 5.1: Let (1), be S-controllable, and Vd ∈ R2n×p

and Wd ∈ Rm×p satisfy the equation (43). Then, the following
hold.

1) The matrices Vd and Wd given by (45),

[
Ad − λiEd Bd

] [ vi
wi

]
= i = 1, 2, · · · , q. (45)

satisfy Sylvester matrix equation (43) for, i = 1, 2, · · · , q,
2) When

rank(

[
Vi
Wi

]
) = m i = 1, 2, · · · , q. (46)

hold, (45) gives all the solutions.
Proof Based in [7], [8].
The following basic procedure is proposed to calculate the

feedback controller that stabilizes the closed loop system,
when m+p > q. Closed loop eigenvalues are positioned arbi-
trarily close to the set ; they are symmetric sets of pre-specified
eigenvalues. The (Ed, Ad, Bd, Cd) system is considered to be
strongly controllable and strongly detectable.
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Algorithm S1

Step 1: Choose an array HP ∈ <q−p×q−p such that
σ(HP ) = ΛP ∈ C− and Sylvester’s equation (44) is solved to
find a matrix
Pd ∈ <n+q−p×n+q such that

rank

([
PdEd

Cd

])
= q (47)

Step 2: Sylvester’s equation (43) is solved, for some
HV ∈ <p×p matrix such that σ(HV ) = ΛV ∈ C− taking
into account that the matrix Vd taking into account that
rank (EdVd) = p (or Ker (PdEd) = Ker (Ed) ⊕ Im (Vd),
where ⊕ represents the direct sum).

Step 3: By construction, the matrix Vd must verify that rank
(CdVd) = p and the matrix K can be calculated by:

K = Wd(CdVd)−1 (48)

◦

In step 1, under the condition that the system is strongly
observable (detectable). As will be seen later, degrees of
freedom existing in the choice of Vd, can also be used to
guarantee obtaining K such that KCdVd = Wd in [8].

B. Example

Consider a simple linear dynamical system (1) in [14]

M =

 1 0 0
0 1 0
0 0 0


D =

 2.5 −0.5 0
−0.5 2.5 −2

0 −2 2


N =

 10 −5 0
−5 25 −20
0 −20 20

 B =

 1 0
0 0
0 1


Considered the system in (4), (5) Ed =

[
In 0
0 M

]
;

Ad =

[
0 In
−N −D

]
;

Bd =

[
0
B

]
Cd =

[
1 0 0 0 0 0
0 1 1 0 0 0

]
C0 =

[
1 0 1
0 1 1

]
; C1 =

[
1 0 0
0 1 1

]
C2 =

[
1 0 0
0 1 0

]
.

Considered the system in the equations (7), (8)

Ed =

[
In 0
0 M

]
; Ad =

[
0 In
−N −D

]
;

Bd =

[
0
B

]
Cd =

[
1 0 0 0 0 0
0 1 1 0 0 0

]
Algorithm S1
Resolved the equation (43) for calculate the matrices Wd,

Vd, satisfies the equation (46) and the matrix K, such that
KCdVd = Wd:

Vd =


0.1095906 0.0695801
0.0973067 0.0550873
0.1567901 0.1249138
−0.3287717 −0.2783205
−0.2919201 −0.2203492
−0.4703702 −0.4996553


Wd =

[
0.91971790.9480201
0.8327670.8379183

]
K =

[
−36.816339 19.498243
−30.793252 16.558322

]
λ1 = −3, λ2 = −4, λ3 = −1.0795178 + 6.1019018j,

λ4 = −1.0795178− 6.1019018j, λ5 = −4.4381969.

C. Numerical algorithm

We first present an approach to the general solutions for
F0, F1 and F2. Let Q denote the matrix that its rows are
comprised of orthonormal basis vectors of the null space, we
have

[F0, F1, F2] = V Q (49)

where the parametric matrix V is to be determined based in
the sylvester equation (43).

The matrices F0, F1 and F2 must also implement some
given eigenvalues assignment.

The theorem 5.2 is based in , [8] [11] .
Theorem 5.2: Let (1), be S-controllable, and Vd ∈ R2n×p

and Wd ∈ Rm×p satisfy the equation (43). Then, the following
hold.

1) The matrices Vd and Wd given by (50),

[
Ad − λiEd Bd

] [ vi
wi

]
= i = 1, 2, · · · , q. (50)

satisfy Sylvester matrix equation (43) for, i = 1, 2, · · · , q,
2) When

rank(

[
Vi
Wi

]
) = m i = 1, 2, · · · , q. (51)

3) F0, F1, F2 is such that it satisfies

(M +BF2C2)q̈(t) + (D +BF1C1)q̇(t) +

(N +BF0C0)q(t) = 0 (52)

Proof Based in [7], [8], and [11].
The following basic procedure is proposed to calculate the

feedback controller that stabilizes the closed loop system,
when m+p > q. Closed loop eigenvalues are positioned arbi-
trarily close to the set ; they are symmetric sets of pre-specified
eigenvalues. The (Ed, Ad, Bd, Cd) system is considered to be
strongly controllable and strongly detectable.

Algorithm Z1 Input: M , D, N , B, C0, C1, C2 Output:
F0, F1, F2

Step (1) Compute the left null space Q of the coefficient
matrix in Equation (49).

Step (2) Compute vi, wi, i =, 01, 2 by Equations (43), (50),
(51) to form V0, V1, V2 and W0,W1,W2.

Step(3) With the matrices W0, W1, W2, V0, V1, V2, satisfies
the equation (50),(51) and the matrix F0, F1,F2 such that
F2C2V2 = W2, F1C1V1 = W1, and F0C0V0 = W0,
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Step (4) Substitute V back into Equation (49) with (52) to
give F0, F1, F2.
◦

D. Example

Consider a simple linear dynamical system (1) in [14]

M =

 1 0 0
0 1 0
0 0 0

 D =

 2.5 −0.5 0
−0.5 2.5 −2

0 −2 2


N =

 10 −5 0
−5 25 −20
0 −20 20

 B =

 1 0
0 0
0 1

.

Considered the system in (4), (5) Ed =

[
In 0
0 M

]
; Ad =[

0 In
−N −D

]
; Bd =

[
0
B

]
C0 =

[
1 0 0 1
0 0 0 1

]
; C1 =

[
1 0 0 0
0 1 0 0

]
C2 =

[
1 0 0 1
0 1 0 1

]
.

Considered the system in the equations (4), (5)

Ed =

[
In 0
0 M

]
; Ad =

[
0 In
−N −D

]
;

Bd =

[
0
B

]
Cd =

[
1 0 0 0 0 0
0 1 1 0 0 0

]
C0 =

[
1 0 1
0 1 1

]
;

C1 =

[
1 0 0
0 1 1

]
; C2 =

[
1 0 0
0 1 0

]
.

Algorithm Z1
Step (1) Compute the left null space Q of the coefficient

matrix in Equation (21).
Step (2) Compute vi, wi, i =, 01, 2 by Equations (43), (50),

(51) to form V0, V1, V2 and W0,W1,W2.
Step(3) With the matrices W0, W1, W2, V0, V1, V2, satisfies

the equation (50),(51) and the matrix F0, F1,F2 such that
F2C2V2 = W2, F1C1V1 = W1, and F0C0V0 = W0,

Step (4) Substitute V back into Equation (49) with (52) to
give F0, F1, F2.

V0 = V1 = V2 =


0.1095906 0.0695801
0.0973067 0.0550873
0.1567901 0.1249138
−0.3287717 −0.2783205
−0.2919201 −0.2203492
−0.4703702 −0.4996553


W0 = W1 = W2 =

[
0.9197179 0.9480201
0.832767 0.8379183

]
F0 =

[
51.199353 −50.054933
42.823231 −41.616079

]
where the eigenvalues are
λ1 = −3, λ2 = −4, λ3 = −1.9669794 + 4.0571187j,

λ4 = −1.9669794− 4.0571187j, λ5 = −9.3303829.

F1 =

[
−36.816339 19.498243
−30.793252 16.558322

]
λ1 = −3, λ2 = −4, λ3 = −1.0795178 + 6.1019018j,

λ4 = −1.0795178− 6.1019018j, λ5 = −4.4381969.

F2 =

[
56.687413 −54.391796
48.612123 −46.190671

]

where the eigenvalues are λ1 = −3, λ2 = −4, λ3 = −10,
λ4 = −2 + 4.1836895j, λ5 = −2− 4.1836895j.

VI. CONCLUSIONS

The paper has presented an approach to partial eigenvalue
assignment in second-order descriptor linear systems via pro-
portional plus derivative plus output feedback controller was
presented. The approach to partial eigenstructure assignment
is shown using a proportional plus-derivative plus output feed-
back in the second-order linear system. This study presented
an approach to partial the eigenstructure assignment for the
descriptor system where an algorithm is presented for cal-
culating the output feedback matrix by equation de Sylvester.
Two theorems were presented using Sylvester’s equations. Two
algorithms were implemented using the Sylvester equation as
a basis, and examples are presented with their conclusions.

REFERENCES

[1] J. N. Juang, K. B. Lim, and J. L. Junkins, "Robust eigensystem assignment
for flexible structures", J. Guid., Control Dyna., vol. 12, no. 3, pp.381-
–387, 1989.

[2] E. K. Chu and B. N. Datta, "Numerically robust pole assignment for
second-order systems", Int. J. Control, vol. 64, no. 4, pp. 1113—1127,
1996.

[3] B. N. Datta, S. Elhay, and Y. Ram, "Orthogonality and partial pole
assignment for the symmetric definite quadratic pencil", Linear Alg.
Applicat., vol. 257, pp. 29—48, 1997.

[4] B. N. Datta, W. W. Lin, and J. N. Wang, "Robust and minimum gain
partial pole assignment in vibrating structures with aerodynamics effects",
Proc. IEEE Conf. Decision Control, pp. 2358—2363, 2003.

[5] J. M. Araújo, and C. E.T. Dórea and L. M.G. Gonçalves and B. N. Datta,
"State derivative feedback in second-order linear systems: A comparative
analysis of perturbed eigenvalues under coefficient variation", Mechanical
Systems and Signal Processing, vol. 76-77, pp. 33–46, 2016.

[6] E. B. Castelan, and V. G. Da Silva, "On the solution of a sylvester
equation appearing in descriptor systems control theory", Systems and
Control Letters, vol. 54, no.2, pp 109—117. 2005.

[7] E. B. Castelan, "Estabilização de sistemas descritores por realimentação
de saídas via subespaços invariantes", Revista Controle & Automação,
vol.16 no.4, pp. 467–477,Outubro,2005.

[8] Elmer R. L. Villarreal, "Abordagem Geométrica para Estabilização por
Realimentação de Saídas e sua Extensão aos Sistemas Descritores",
Doutorado em Engenharia Elétrica-UFSC, Florianopolis, SC, Brasil,
2002.

[9] V. K. Mishra, N. K. Tomar and M. K. Gupta, "On Controllability
and Normalizability for Linear Descriptor Systems", Journal of Control,
Automation and Electrical Systems vol. 27, pp.19–28, 2016.

[10] A. Laub and W. F. Arnold, "Controllability and observability criteria
for multivariate linear second-order models", IEEE Transactions on
Automatic Control, vol. AC-29, pp. 163-–165, Feb. 1984.

[11] J. Zhang, Y. Yuan and H. Liu, "An Approach to Partial Quadratic Eigen-
value Assignment of Damped Vibration Systems Using Static Output
Feedback", International Journal of Structural Stability and Dynamics
vol. 18, no. 1, pp. 1–18, 2018.

[12] N. F. Almuthairi and S. Bingulac, "On coprime factorization and
minimal-realization of transfer-function matrices usingthe pseudo-
observability concept", Int. J. Syst. Sci., vol. 25, no. 27, pp. 1819—1844,
1994.

[13] T. G. J. Beelen and G. W. Veltkamp, "Numerical computation of a
coprime factorization of a transfer-function matrix", Syst. Control Lett.,
vol. 9, no. 4, pp. 281-–288, 1987.

[14] G. R. Duan, "Parametric Eigenstructure Assignment in Second-Order
Descriptor Linear Systems", IEEE Transactions on Automatic Control,
vol. 49, no. 10, pp.1789–1795, 2004.


