
EasyChair Preprint
№ 2170

A Systematic Literature Review of Recent
Trends in Replication Technique

Albandari Alanazi, Almetwally Mostafa and Abeer Alnuaim

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 16, 2019

1

A Systematic Literature Review of Recent Trends in Replication

Techniques

Albandari L. Alanazi

Department of Information

Systems, King Saud University

Riyadh, Saudi Arabia

439203801@student.ksu.edu.sa

Almetwally M. Mostafa 1

Department of Information

Systems, King Saud University

Riyadh, Saudi Arabia

almetwaly@ksu.edu.sa

Abeer A. Alnuaim

College of Applied Studies and

Community Services ,

King Saud University, Riyadh,

abalnuaim@ ksu.edu.sa

Abstract- Nowadays most software systems

manage a huge amount of data. The clients

depend heavily on these data and they expect the

data to be available at all times. In order to use

and manage these data in an efficient way to

ensure availability, data replication technique is

used. So far, three basic models for replication

are exist with their variants. This paper reviews

these three basic models of replication techniques

and their variants regards to how the load is

distributed among replicas, what is the total

throughput for these set of replicas, and which

type of consistency models is supported by them.

Key words- Replication, Paxos, Primary Backup
Replication (PBR), Chain Replication (CR).

I. INTRODUCTION

Replication is one way to provide the availability
and tolerate the failure of the system. It is defined as
the process of copying data over multiple servers by
using replication techniques, in order to increase the
data availability [1]. Replication is classified into
two approaches. One approach of replication is
called active replication, in which the client request
is executed by all non-faulty replicas in the same
order. On the other hand, in the passive replication
approach; one of the replicas is considered as
primary and the others are backup replicas. The
client request is executed at the primary, and the
state changes are propagated to all replicas. The
system with replication needs to maintain data
consistency among replicas. Therefore, a trade-off
between consistency and performance must be
considered. Some system requires strong
consistency with replication, and this is achieved
when all replicas must be identical to each other. On
the other hand, weaker models for consistency, such
as eventual consistency, allow the replicas to diverge
[2].

1 A. M. Mostafa

 Systems and Computers Department,

 Faculty of Engineering, Alazhar University, Cairo, Egypt.

The objective of this paper is to review three basic
models of replication techniques used in distributed
systems as well as their variants including the
supported consistency model, their throughput, and
the distribute load among replicas. 1

This paper is organized as the following: First, in
section 1, we discuss the basic classic Paxos with its
variants. Then, the second model of replication is
about primary backup and two improvement
approaches is defined in section 2. After that, chain
replication and a set of variants models are reviewed
in section 3. Finally, a compression between three
replication techniques is presented in the last
section.

1. CLASSIC PAXOS

Paxos [1], [3], [4] is one of the oldest algorithms that
was invited in the middle of 80’s. It is mainly used
for solving the distributed consensus in order to
ensure all replicas are consistent. The Paxos
algorithm guarantees that all non- faulty replicas
choose a single value among the proposed values.

In this model, the processes are classified based on
their roles: proposer, acceptor, and learner. These
processes are communicated with each other by
exchanging messages. And each one of them can
play different roles They are defined as follows:
Proposers: to suggest a value to be chosen;
Acceptors: to agree which value to choose;
Learners: to learn which value was chosen;
Coordinator/Leader: at each round, one of the
Proposers is chosen to be the "distinguished" one
and acts as coordinator to allow a new round to start
with a new ID and ensure that no conflicts happen.

Classic Paxos relies on one coordinator/leader to
starting the round and manage the consistency.
Therefore, there will be high loads and a bottleneck
on a single server (coordinator) especially when the
number of nodes is large. In addition, it suffers from
poor utilization of resources, so the throughput is
limited to a single server. Also, it requires that the

mailto:439203801@student.ksu.edu.sa
mailto:almetwaly@ksu.edu.sa

2

leader must hear from the majority for both phases
and this might slow reaching the decision and
increase the latency and decrease the performance.
And in case of the failed of the majority, Paxos
cannot reach to decision. In the following
subsections, we will review several variants of
Paxos.

1.1 Raft

The original Paxos algorithm was quite difficult to

understand and consequently a lot of works has been

done to explain it in an easier way. Different variants

of Paxos algorithm have been proposed over the

years to make the classic Paxos more efficient as

mentioned before. On the other hand, Raft [5],

[6]was invited by Diego Ongaro and John

Ousterhout to be an alternative to Paxos. The main

contribution of Raft is to improve the

understandability by finding a straightforward

consensus algorithm. It is considered as efficient as

Paxos but with different structure.

The consensus is implemented as the following first

a leader must be elected by leader election

mechanism. After that, the elected leader has to

manage the replicated log, and all clients request

(command) are processed by that leader. The

received command will be appended to the leader’s

log as a new entry. The entry will be sent in parallel

to all other servers in order to replicate it to their

logs. Once the process of replicated the entry is done

by majority of the servers, the command is

committed, and the leader notifies the client about

the result.

Raft can be compared to the basic Paxos. First, the

performance of Raft is better than Paxos. Raft need

only one round trip in order to disseminate the new

entry to other servers. While Paxos needs two round

trips. So, this results in less latency than in Paxos.

Second, all of them use a leader election protocol. In

Raft the protocol is separated from the consensus

algorithm. However, the leader election in Paxos is

considered as an important part of the consensus

algorithm. As a result, Paxos requires more

mechanism than Raft.

1.2 Mencius

 Mencius[7] is an algorithm that is derived from

Paxos. It is proposed to solve leader bottleneck and,

to achieve high throughput when the clients load is

high and low latency when clients load is low.

In Paxos, only the leader in each round can propose
values. While in the Mencius, all servers can take
turns for proposing values, and this is done through
pre-partitioning consensus instance among replicas.
So, it has better utilization of resources and load

balance. As a result, throughput will be increased.
In addition, it will reduce the latency, because a local
server can be used as the leader (coordinator) for the
client request.

The drawback of this approach is that in order to
committee the command, the coordinator of this
command must gather information from all other
replicas in the system. So, in case of the failure of
response from any replica, then coordinator cannot
make any progress so this will result a poor
performance.

1.3 Egalitarian Paxos

 EPaxos[8], [9] is an improvement of Paxos that has
no central leader process. In this approach, a client
can send the request at any replica. This enables that
all replicas can act as proposers at the same time, so
better utilization of resources is provided. When the
replica receives the request s, it will act as the
leadership of that command and it is responsible to
collect dependencies from other nodes which are
conflicting command with s . And these conflicting
commands is ordered using a graph-based
mechanism to represent the dependencies. So, the
request can be committed after communicating with
subset of replicas. Hence, EPaxos requires fewer
messages to process than Mencius, so its latency is
lower, and its throughput is commonly higher.

While this approach has advantages over Mencius,
but it needs an expensive computation in case with a
graph that has complicated dependency patterns .
Consequently, both of two previous models
improves the performance and enable load balancing
but they need to exchange dependency among
nodes, and this is considered a costly process since
it requires a higher bandwidth. In addition, reaching
the decision will be slow if the size of the system is
increased because the fact that multiple replicas may
produce conflict transactions.

1.4 M2 Paxos

M2 Paxos [10], [11] is an algorithm presented to

overcome the drawback of keeping track of

dependencies (conflicting command) as in EPaxos.

In M2 Paxos, the commands can be decided without

the need of exchanging dependencies or a designed

leader. Instead, it requires that the node must have

the ownership of all objects for command c.

Three cases within this protocol: If the proposer

node (p) has the ownership of c, then (p) can execute

the command. If the proposer node (p) of the

command does not have the ownership of c, but

other node in the system does have then M2 Paxos

will forward c to that node. Otherwise, the node that

proposed a command must first acquire the

ownership of all objects in c.

3

Leader election protocol is used with M2 Paxos for
changing the ownership of objects if the owner is
failed. As a result, this effects on the availability of
the system i.e. if the node fails its owned objects will
become unavailable until electing a new node to
takes the objects ownership.

1.5 A generalized consensus

Finally, in 2019, a generalized consensus

algorithm[12] is proposed as an improvement of

Paxos. The aim of this solution is to improve the

performance of Paxos by handling its limitation.

This improvement is done by changing some

requirements of classic Paxos regarding to quorums

intersection, quorums agreement(value) and epochs

(proposal ID). As a result, the algorithm provides a

flexibility of choosing the trade-off depends on the

system needs.

In the proposed approach, each node acts as a

proposer has a stable table in which contains the set

of registers and the quorums is defined. While in

Paxos, the majority is required for all registers set to

decide the value. So, less participant is involved for

deciding the value in the generalized consensus. As

a result, it guarantees less latency than Paxos.

In both algorithms, the epochs associated with each

value must be unique. This is achieved in class

Paxos by a prior allocation of epochs among the

proposers or by voting on a unique epoch. On the

other hand, the proposed algorithm overcome these

requirements by introducing three mechanism for

selecting epochs. So, it provides more flexibility

mechanism for assigning epoch value.

In summary, as shown in the table (1),
Paxos rely on a single leader at all time to ensure
strong consistency. This introduce an important
consequence which is limited throughput and
scalability to only one server, and as a result high
load on that server. Other variants of Paxos
algorithms that eliminate the bottleneck created by
the unique leader by allowing multiple replicas to act
as leaders at the same time such as Mencius,
Egalitarian Paxos. As a result, this improves
resource utilization since the load is distributed
among all replicas. M2 Paxos has the same
advantages of Mencius, Egalitarian Paxos, and
additionally a better performance is guaranteed since
no need for collecting and exchanging conflict
commands. Finally, Raft is considered as
understandable consensus algorithm and alternative
to Paxos.

Table 1 Important Information about Paxos and its variants.

2. PRIMARY BACKUP

REPLICATION

Primary backup[13], [14] was first proposed in 70’s

as a replication model used in most practical

systems that require high availability and

consistency. One server is considered to be the

primary server and all the other backups. In this

model, the primary server is exclusively responsible

for processing all requests from the client. When the

primary receives a request from the client, first it has

to check the request type. If the request is a query

(read), the primary server processes the request

directly without communicating with the backups.

However, if the received request is update (write),

the primary needs first to communicate with every

backup node. This is done by disseminating the

update request to all replicas (backups) in parallel.

Then, the primary has to await acknowledgments

from all backups. After receiving acknowledgments,

a reply (write notification) is sent to the client.

Primary backup replication uses a master

coordination for failure detection, and a leader

election algorithm for recovery. So, in case of the

primary failure, one of the backups is elected to be

the primary. The primary backup model can tolerate

f failure with f+1 replica.

Since the primary server exclusively processed all

types of requests, strong consistency among

distributed objects can be provided. On the other

hand, this leads to imbalanced load distribution and

limits the system scalability and throughput to only

a single server (primary). In addition, it may cause a

bottleneck of the primary server. Also, in case of a

failure of the primary, the availability of the system

and data accessibility are lost until electing a new

primary. On the other hand, under weak consistency

model, any replica can handle the query request. As

a result, read throughput is increased, and not limited

to only the primary server. So, read throughput in

this case is equivalent to the total number of servers

in the system. The following subsections review

some variants of PBR.

 Classic

Paxos

Mencius EPaxos M2 paxos

Mini.

comm.

delay for

learning a

value

4

2

2

2

Leader

approach
Single

leader

Multi-

leader

Multi-

leader

Exclusive

ownership

4

2.1 Object Ownership Distribution

Object ownership distribution (OOD)[15] is an

enhancement on primary backup protocol in order to

overcome some of its limitation. It is considered as

a static logical partition in which the ownership of

the objects is distributed between the replicas.

Unlike primary backup model, in which the primary

node is exclusively responsible for maintaining the

objects consistency among replicas. While in OOD

all replicas are participated to maintain the

consistency. As a result, this leads to better

utilization of resources as well as load balancing.

In OOD, each replica owns subset of objects at

which they are created by the client. The ownership

table is used in this model in order to keep the owner

information such as the object ID associated with the

owner ID. This table is replicated at each replica and

updated if there is a new creation of object, so every

replica knows about its owned objects as well as the

owners of other objects in the system. Any updates

associated with item should be authorized by the

owner’s replica and it has to control all updated

request of its owned objects. In this model, as a

result, the owner ensures the consistency of the set

of objects it owns.

OOD can be compared with PBR, in OOD model a

better resource utilization is provided because the

fact that OOD uses active replication instead of

passive replication as in PBR and this leads to higher

throughput than PBR. Throughput is not limited to

one server (primary) as in the PBA. In addition to

that, availability is increased because there is no

leader failure like in primary backup approach So,

only subset of data that owned by failed replica will

become unavailable.

2.2 Dynamic Health-based Objects

Ownerships Distribution Protocol

(DHOOD)

In the previous model (OOD), the partitioning of the

objects among replicas is static in which the objects

distribution depends on the object creation. That’s

mean, this approach doesn’t consider the

differentiation between nodes regarding their

capabilities such as some of resources are poor while

other resources are powerful. This might lead to

waste of resources either underutilization or

overutilization.

DHOOD [16] is an improvement on OOD in which

the redistribution of objects’ ownerships is done

according to replica’s health. The proposed model

has the same architecture and additionally in has one

module for evaluating the health of replica (HE) and

another module for redistributing the object’s

ownership (OM). The replica’s health is assessed

based on its resources including CPU, memory, and

network bandwidth. In this protocol, the

redistribution process is conducted in three steps.

First, health evaluation is done by HE module. In

this step, a health tabled is maintained to evaluate

the health level of resources in the system. So,

replica’s health is evaluated regularly. And any

updates associated with that table will be notified to

all other replicas. Then, object ownership

transformation; in this step OM module is

responsible to defines the number of objects that

should be transferred to other replicas based on the

replica’s health. Finally, the ownerships will be

distributed among other replicas in the system

according to their health level (from lower level to

higher level transformation).

In this section so far , we conclude that the

primary backup replication is one of the passive

replication techniques that suffers from poor

utilization of resources. As a result, the performance

is considered low due to the restriction of throughput

to a single server (primary). Moreover, in case of

leader failure, throughput drops to zero until a new

leader is elected. While OOD and DHOOD which

are variants of PBA there is no single point of failure

since the load is distributed among replicas.

Furthermore, they have better utilization of

resources, and higher throughput than PBA.

3. CHAIN REPLICATION

CR has been proposed by Van Renesse and

Schneider [17], [18] in 2004 as a variation on

primary backup replication to be used mainly with

storage system. . All replica nodes are serially

ordered to form a chain. In chain replication, the role

of request execution is shared by two replicas.

CR works as follow: The first node in the chain is

called the Head (H), which is responsible for

handling write operations, and prorogating the

updates to the next replica of the chain until the

request reaches the tail. while the last node is called

the Tail (T) receives query operations and reply

generation. So, all updates and query requests are

processed at the tail. As a result, strong consistency

is guaranteed.

The most important advantage of CR is better

utilization of computing resources comparing with

other models. In chain replication, if the chain has n

5

servers , we can get (n) physical chains. The

following table (2) shows the possible combinations

of physical chains with different roles of servers

(head of the chain, tail of the chain, and middle) .

Also, it has higher read throughput because total

throughput in CR is equivalent to two servers which

are the head and the tail. Also, it provides lowest

latency than other models for read operations

Table 2 list of physical chains with n servers in CR.

Chain replication handles server failures well due to

its serial chain structure. It needs a single service for

fault tolerance coordination, which is called the

master and is responsible for detecting failure,

removing the failed server, adjusting the successor

and predecessor for each sever and informing the

client if there is a new head or tail.

In chain replication, all updates are disseminated

serially to other replicas before reply generation.

This results a high latency for update request, and it

needs n+1 latency when there are n servers to reply

write notification to the client.

The problem with chain replication is load balancing

under strong consistency model, especially for

query-intensive applications. Since all query

requests and reply notifications are processed by the

tail, read throughput will be limited to a single node.

This might cause a bottleneck for the tail. While

under weak consistency model, a query request can

be handled at any replica, but this leads to read a

stale value. Moreover, communication and

computing resources of the chain are not fully

utilized because the data are transferred and

processed in only one direction (from the head to the

tail). In the following subsections CRAQ and BCR

which are variants of CR will be reviewed.

3.1 Chain Replication with

Apportioned Queries (CRAQ)

CRAQ [19] is an improvement on chain replication

in which the queries are apportioned, in order to

provide lower latency and higher throughput for

query requests. Apportioned queries are done

through splitting read request between replicas in the

chain and any replica can carry out query request

with guaranteeing strong consistency. The

architecture of CRAQ is the same as chain

replication, except that it allows the handling of read

requests by all replicas not only the tail like in chain

replication. As a result, it eliminates the possibility

of making a hotspot on the tail. The fault-tolerance

and recovery mechanisms that are applied in CRAQ

are the same as the basic chain replication model.

This approach can be compared with the basic model

of chain replication. Since the read requests can be

processed by all replicas in the chain for CRAQ,

throughput increases for query requests and hotspots

are reduced on the tail in the case of weak

consistency model (eventual consistency) approach.

Also, this approach better utilizes resources since the

intermediate nodes can process query requests,

while in chain replication these nodes are only

responsible for propagating the updates.

On the other hands, some limitations are present in

this approach. First, in the case of strong

consistency, when the request query is forwarded to

a replica with dirty version, this replica needs to

communicate with the tail in order to get a clean

version, so this is not aligned with the main

contribution of this approach, which is the

elimination of the hotspot on the tail. So, this will

increase the latency for query requests. Second,

reply notification for update requests are done by the

tail in chain replication, while the head replica in

CRAQ is responsible for handling this reply. This

means that after the tail receives the updates, the

acknowledgment will be propagated back until it is

received by the head, and then the head will respond

to the client. Consequently, the updates latency is

double in CRAQ what it is in CR.

3.2 Bidirectional Chain Replication

(BCR)

BCR [20] is an improvement on chain replication it

tries to gain higher throughput through better

utilization of network resources including

computing and communication while maintaining

consistency. The proposed model, however, doesn’t

address fault-tolerance and recovery mechanism.

BCR has the same architecture as CR, but chains run

concurrently in opposite directions. The following

table (3) shows the possible combinations of

physical chains with different roles of servers (head

of the chain, tail of the chain, and middle) . So, with

n servers, we can get 2N physical chains as each

Chain # S1 S2 S3 S4

Chain 1 Head middle middle Tail

Chain 2 middle Head Tail middle

Chain 3 middle Tail Head middle

Chain 4 Tail middle middle Head

6

server can play 2N roles; L: denoted that a chain run

form left to right, while R: denoted that a chain run

from right to left.

Table 3 list of physical chains with n servers in BCR.

So, in BCR there are two logical partitions for

splitting the replicated data at each server, and two

heads and two tails can process update requests and

query request, respectively, at the same time. Thus,

this leads to higher throughput since four requests

can be achieved concurrently without affecting

consistency.

One limitation of BCR is about the distribution of

requests among two partitions, because some data

objects may belong to either of the partitions which

are frequently requested.

In summary, chain replication with its

variants including CRAQ, BCR have better

utilization of resources comparing with PBR, since

the load is not limited to one server(primary) as in

PBR. In addition, throughput for both update and

query request are higher than PBA. So , they provide

better performance.

II. DISCUSSION&

CONCOLUSION

In this paper, a systematic review about data

replication techniques in distributed systems has

been presented.

 A common challenge in the three-replication

technique is that they suffer from poor utilization of

computing resources. In addition, they have low

performance due to the restriction of throughput to a

single server as in Paxos and PBR or two servers as

in CR under strong consistency model. Also, in case

of leader/coordinator failure, throughput drops to

zero until a new leader is elected such as Paxos and

PBR. Moreover, in case of the failure response from

one server in the system , this will negatively effect

on the performance. In addition, the process of

extension or configuration of adding a new server

while the system is running is considered as

challenges and difficult task.

In general, we can compare these models with the

client/server model. Client server model suffers

from unavailability in case of failure, but it provides

better performance comparing with replication

models since a response is completed with one round

trip. Replication models under strong consistency

behaves differently in order to response , Paxos

requires three round trips while PBR needs only two

round trips. In chain replication under strong

consistency when there are (n) servers, the clients

have to wait (n+1) latency to get the reply

notification. Nevertheless, under weak consistency,

Paxos, PBR, and CR needs only one round trip to

provide the response which is the same performance

as in the client server model.

The following table (4) summarizes consistency

model ,load distribution and throughput for each

basic replication model.

Table 4 comparison between three basic models for replication.

III. REFRENCES

[1] L. Lamport, “Paxos Made Simple,” in ACMSIGACT News,

2001, vol. 32, pp. 18 - 25.

[2] Jay Kreps .., “Distributed Systems for fun and profit.” [Online].

Available: http://book.mixu.net/distsys/index.html.

[Accessed: 15-Oct-2019].

[3] R. van Renesse, “Paxos Made Moderately Complex,” ACM

Computing Surveys (CSUR), vol. 47, no. 3, pp. 1–16,

2015.

[4] W. J. Bolosky, D. Bradshaw, R. B. Haagens, N. P. Kusters, P.

Li Microsoft, and M. Research, “Paxos Replicated State

Machines as the Basis of a High-Performance Data

Store,” 2011.

[5] D. Ongaro and J. Ousterhout, “In Search of an Understandable

Consensus Algorithm (Extended Version),” in USENIX

Chain # S1 S2 S3 S4

Chain 1 Head Middle L Middle L Tail

Chain 2 Middle L Head Tail Middle L

Chain 3 Middle L Tail Head Middle L

Chain 4 Tail Middle L Middle L Head

Chain 5 Middle R Middle R Tail Head

Chain 6 Middle R Middle R Head Tail

Chain 7 Tail Head Middle R Middle R

Chain 8 Head Tail Middle R Middle R

7

ATC’14 Proceedings of the 2014 USENIX conference on

USENIX, 2014, pp. 305–320.

[6] H. Howard, “ARC: Analysis of Raft Consensus,” 2014.

[7] Y. Mao, F. P. Junqueira, and K. Marzullo, “Mencius: Building

Efficient Replicated State Machines for WANs,” 8th

USENIX Symposium on Operating Systems Design and

Implementation, pp. 369–384, 2008.

[8] I. Moraru, D. G. Andersen, and M. Kaminsky, “There is more

consensus in Egalitarian parliaments,” in SOSP 2013 -

Proceedings of the 24th ACM Symposium on Operating

Systems Principles, 2013, pp. 358–372.

[9] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, and J. M.

Hellerstein, “Highly Available Transactions: Virtues and

Limitations,” Proceedings of the VLDB Endowment, vol.

7, no. 3, pp. 181–192, 2013.

[10] R. Palmieri, “Leaderless consensus: The state of the art,” in

Proceedings - 2016 IEEE 30th International Parallel

and Distributed Processing Symposium, IPDPS 2016,

2016, pp. 1307–1310.

[11] V. Tech and R. Palmieri, “Making Fast Consensus Generally

Faster Sebastiano Peluso Alexandru Turcu Giuliano

Losa Binoy Ravindran,” in Annual IEEE/IFIP

International Conference on Dependable Systems and

Networks (DSN), 2016, pp. 1–31.

[12] H. Howard and R. Mortier, “A Generalised Solution to

Distributed Consensus,” Feb. 2019.

[13] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg,

“Chapter 8: The Primary Backup Approach,” New York

, USA.

[14] L. Lamport, D. Malkhi, and L. Zhou, “Vertical Paxos and

Primary-Backup Replication,” 2009.

[15] A. M. Mostafa and A. E. Youssef, “Improving Resource

Utilization, Scalability, and Availability in Replication

Systems Using Object Ownership Distribution,”

Arabian Journal for Science and Engineering, vol. 39,

no. 12, pp. 8731–8741, Nov. 2014.

[16] S. Albassam and A. M. Mostafa, “Dynamic Health-based

Objects Ownerships Distribution Protocol (DHOOD),”

in Sixth International Conference on Digital Information

Processing and Communications (ICDIPC), 2016, pp.

13–18.

[17] R. van Renesse and F. B. Schneider, “Chain Replication for

Supporting High Throughput and Availability,”

in USENIX Symposium On Operating Systems Design

and Implementation (OSDI04), 2004, vol. 4, pp. 91–104.

[18] S. L. Fritchie, “Chain Replication In Theory and in Practice

Working Title, rough draft,” 2010.

[19] J. Terrace and M. J. Freedman, “Object Storage on CRAQ

High-throughput chain replication for read-mostly

workloads,” 2009.

[20] A. M. Mostafa, A. E. Youssef, and Y. A. Aljarbua,

“Bidirectional chain replication for higher throughput

provision,” KSII Transactions on Internet and

Information Systems, vol. 13, no. 2, pp. 668–685, Feb.

2018.

