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Abstract- Nowadays most software systems 

manage a huge amount of data. The clients 

depend heavily on these data and they expect the 

data to be available at all times. In order to use 

and manage these data in an efficient way to 

ensure availability, data replication technique is 

used. So far, three basic models for replication 

are exist with their variants. This paper reviews 

these three basic models of replication techniques 

and their variants regards to how the load is 

distributed among replicas, what is the total 

throughput for these set of replicas, and which 

type of consistency models is supported by them.  
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I. INTRODUCTION 

Replication is one way to provide the availability 
and tolerate the failure of the system. It is defined as 
the process of copying data over multiple servers by 
using replication techniques, in order to increase the 
data availability [1]. Replication is classified into 
two approaches. One approach of replication is 
called active replication, in which the client request 
is executed by all non-faulty replicas in the same 
order. On the other hand, in the passive replication 
approach; one of the replicas is considered as 
primary and the others are backup replicas. The 
client request is executed at the primary, and the 
state changes are propagated to all replicas. The 
system with replication needs to maintain data 
consistency among replicas. Therefore, a trade-off 
between consistency and performance must be 
considered. Some system requires strong 
consistency with replication, and this is achieved 
when all replicas must be identical to each other. On 
the other hand, weaker models for consistency, such 
as eventual consistency, allow the replicas to diverge 
[2]. 
 

 
1 A. M. Mostafa  

  Systems and Computers Department, 

  Faculty of Engineering, Alazhar University, Cairo,  Egypt. 

The objective of this paper is to review three basic 
models of replication techniques used in distributed 
systems as well as their variants including the 
supported consistency model, their throughput, and 
the distribute load among replicas. 1 

 
This paper is organized as the following: First, in 
section 1, we discuss the basic classic Paxos with its 
variants. Then, the second model of replication is 
about primary backup and two improvement 
approaches is defined in section 2. After that, chain 
replication and a set of variants models are reviewed 
in section 3. Finally, a compression between three 
replication techniques is presented in the last 
section. 
 

1. CLASSIC PAXOS 

 
Paxos [1], [3], [4] is one of the oldest algorithms that 
was invited in the middle of 80’s. It is mainly used 
for solving the distributed consensus  in order to 
ensure all replicas are consistent. The Paxos 
algorithm guarantees that all non- faulty replicas 
choose a single value among the proposed values.  
 
In this model, the processes are classified based on 
their roles: proposer, acceptor, and learner. These 
processes are communicated with each other by 
exchanging messages. And each one of them can 
play different roles They are defined as follows: 
Proposers: to suggest a value to be chosen; 
Acceptors: to agree which value to choose; 
Learners: to learn which value was chosen;  
Coordinator/Leader: at each round, one of the 
Proposers is chosen to be the "distinguished" one 
and acts as coordinator to allow a new round to start 
with a new ID and ensure that no conflicts happen.  
 
Classic Paxos relies on one coordinator/leader to 
starting the round and manage the consistency. 
Therefore, there will be high loads and a bottleneck 
on a single server (coordinator) especially when the 
number of nodes is large. In addition, it suffers from 
poor utilization of resources, so the throughput is 
limited to  a single server. Also, it requires that the 
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leader must hear from the majority for both phases 
and this might slow reaching the decision and 
increase the latency and decrease the performance. 
And in case of the failed of the majority, Paxos 
cannot reach to decision. In the following 
subsections, we will review several variants of 
Paxos.  
 

1.1 Raft 

The original Paxos algorithm was quite difficult to 

understand and consequently a lot of works has been 

done to explain it in an easier way. Different variants 

of Paxos algorithm have been proposed over the 

years to make the classic Paxos more efficient as 

mentioned before. On the other hand, Raft [5], 

[6]was invited by Diego Ongaro and John 

Ousterhout to be an alternative to Paxos. The main 

contribution of Raft is to improve the 

understandability by finding a straightforward 

consensus algorithm.  It is considered as efficient as 

Paxos but with different structure.   

The consensus is implemented as the following first 

a leader must be elected by leader election 

mechanism. After that, the elected leader has to 

manage the replicated log, and all clients request 

(command) are processed by that leader. The 

received command will be appended to the leader’s 

log as a new entry. The entry will be sent in parallel 

to all other servers in order to replicate it to their 

logs. Once the process of replicated the entry is done 

by majority of the servers, the command is 

committed, and the leader notifies the client about 

the result. 

Raft can be compared to the basic Paxos. First, the 

performance of Raft is better than Paxos. Raft need 

only one round trip in order to disseminate the new 

entry to other servers. While Paxos needs two round 

trips. So, this results in less latency than in Paxos. 

Second, all of them use a leader election protocol. In 

Raft the protocol is separated from the consensus 

algorithm. However, the leader election in Paxos is 

considered as an important part of the consensus 

algorithm. As a result, Paxos requires more 

mechanism than Raft. 

1.2 Mencius 

 Mencius[7] is an algorithm that is derived from 

Paxos. It is proposed to solve leader bottleneck and, 

to achieve high throughput when the clients load is 

high and low latency when clients load is low.  

In Paxos, only the leader in each round can propose 
values. While in the Mencius, all servers can take 
turns for proposing values, and this is done through 
pre-partitioning consensus instance among replicas. 
So, it has better utilization of resources and load 

balance. As a result,  throughput will be increased. 
In addition, it will reduce the latency, because a local 
server can be used as the leader (coordinator) for the 
client request.  
 
The drawback of this approach is that in order to 
committee the command, the coordinator of this 
command must gather information from all other 
replicas in the system. So, in case of the failure of 
response from any replica, then coordinator cannot 
make any progress so this will result a poor 
performance.  
 

1.3 Egalitarian Paxos 

 EPaxos[8], [9] is an improvement of Paxos that has 
no central leader process. In this approach, a client 
can send the request at any replica. This enables that 
all replicas can act as proposers at the same time, so 
better utilization of resources is provided. When the 
replica receives the request s, it will act as the 
leadership of that command and it is responsible to 
collect dependencies from other nodes which are 
conflicting command with s .  And these conflicting 
commands is ordered using a graph-based 
mechanism to represent the dependencies. So, the 
request can be committed after communicating with 
subset of replicas. Hence, EPaxos requires fewer 
messages to process than Mencius, so its latency is 
lower, and its throughput is commonly higher.  
 
While this approach has advantages over Mencius, 
but it needs an expensive computation in case with a 
graph that has complicated dependency patterns .  
Consequently, both of two previous models 
improves the performance and enable load balancing 
but they need to exchange dependency among 
nodes, and this is considered a costly process since 
it requires a higher bandwidth. In addition, reaching 
the decision will be slow if the size of the system is 
increased because the fact that multiple replicas may 
produce conflict transactions.  
 

1.4 M2 Paxos 

M2 Paxos [10], [11] is an algorithm presented to 

overcome the drawback of keeping track of 

dependencies (conflicting command) as in EPaxos. 

In M2 Paxos, the commands can be decided without 

the need of exchanging dependencies or a designed 

leader. Instead, it requires that the node must have 

the  ownership of all objects for command c.  

Three cases within this protocol:  If the proposer 

node (p) has the ownership of c, then (p) can execute 

the command. If the proposer node (p) of the 

command does not have the ownership of c, but 

other node in the system does have then M2 Paxos 

will forward c to that node. Otherwise, the node that 

proposed a command must first acquire the 

ownership of all objects in c.  
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Leader election protocol is used with M2 Paxos for 
changing the ownership of objects if the owner is 
failed. As a result, this effects on the availability of 
the system i.e. if the node fails its owned objects will 
become unavailable until electing a new node to 
takes the objects ownership.  

 

1.5 A generalized consensus  
 

Finally, in 2019, a generalized consensus 

algorithm[12] is proposed as an improvement of 

Paxos. The aim of this solution is to improve the 

performance of Paxos by handling its limitation. 

This improvement is done by changing some 

requirements of classic Paxos regarding to quorums 

intersection, quorums agreement(value) and epochs 

(proposal ID). As a result, the algorithm provides a 

flexibility of choosing the trade-off depends on the 

system needs.  

In the proposed approach, each node acts as a 

proposer has a stable table in which contains the set 

of registers and the quorums is defined. While in 

Paxos, the majority is required for all registers set to 

decide the value. So, less participant is involved for 

deciding the value in the generalized consensus. As 

a result, it guarantees less latency than Paxos. 

In both algorithms, the epochs associated with each 

value must be unique. This is achieved in class 

Paxos by a prior allocation of epochs among the 

proposers or by voting on a unique epoch. On the 

other hand, the proposed algorithm overcome these 

requirements by introducing three mechanism for 

selecting epochs.  So, it provides more flexibility 

mechanism for assigning epoch value.  

 

In summary, as shown in the table (1), 
Paxos rely on a single leader at all time to ensure 
strong consistency. This introduce an important 
consequence which is limited throughput and 
scalability to only one server, and as a result high 
load on that server. Other variants of Paxos 
algorithms that eliminate the bottleneck created by 
the unique leader by allowing multiple replicas to act 
as leaders at the same time such as Mencius, 
Egalitarian Paxos. As a result, this improves 
resource utilization since the load is distributed 
among all replicas. M2 Paxos has the same 
advantages of Mencius, Egalitarian Paxos, and 
additionally a better performance is guaranteed since 
no need for collecting and exchanging conflict 
commands. Finally, Raft is considered as 
understandable consensus algorithm and alternative 
to Paxos. 

 
 

Table 1 Important Information about Paxos and its variants. 

 

2. PRIMARY BACKUP 

REPLICATION 

Primary backup[13], [14]  was first proposed in 70’s 

as  a replication model used in most practical 

systems that require high availability and 

consistency. One server is considered to be the 

primary server and all the other backups. In this 

model, the primary server is exclusively responsible 

for processing all requests from the client. When the 

primary receives a request from the client, first it has 

to check the request type. If the request is a query 

(read), the primary server processes the request 

directly without communicating with the backups. 

However, if the received request is update (write), 

the primary needs first to communicate with every 

backup node. This is done by disseminating the 

update request to all replicas (backups) in parallel. 

Then, the primary has to await acknowledgments 

from all backups. After receiving acknowledgments, 

a reply (write notification) is sent to the client.  

Primary backup replication uses a master 

coordination for failure detection, and a leader 

election algorithm for recovery. So, in case of the 

primary failure, one of the backups is elected to be 

the primary. The primary backup model can tolerate 

f failure with f+1 replica. 

Since the primary server exclusively processed all 

types of requests, strong consistency among 

distributed objects can be provided. On the other 

hand, this leads to imbalanced load distribution and 

limits the system scalability and throughput to only 

a single server (primary). In addition, it may cause a 

bottleneck of the primary server. Also, in case of a 

failure of the primary, the availability of the system 

and data accessibility are lost until electing a new 

primary. On the other hand, under weak consistency 

model, any replica can handle the query request. As 

a result, read throughput is increased, and not limited 

to only the primary server. So, read throughput in 

this case is equivalent to the total number of servers 

in the system. The following subsections review 

some variants of PBR. 
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2.1 Object Ownership Distribution 

Object ownership distribution (OOD)[15] is an 

enhancement on primary backup protocol in order to 

overcome some of its limitation. It is considered as 

a static logical partition in which the ownership of 

the objects is distributed between the replicas. 

Unlike primary backup model, in which the primary 

node is exclusively responsible for maintaining the 

objects consistency among replicas. While in OOD 

all replicas are participated to maintain the 

consistency. As a result, this leads to better 

utilization of resources as well as load balancing.  

In OOD, each replica owns subset of objects at 

which they are created by the client. The ownership 

table is used in this model in order to keep the owner 

information such as the object ID associated with the 

owner ID. This table is replicated at each replica and 

updated if there is a new creation of object, so every 

replica knows about its owned objects as well as the 

owners of other objects in the system. Any updates 

associated with item should be authorized by the 

owner’s replica and it has to control all updated 

request of its owned objects. In this model, as a 

result, the owner ensures the consistency of the set 

of objects it owns.  

OOD can be compared with PBR, in OOD model a 

better resource utilization is provided because the 

fact that OOD uses active replication instead of 

passive replication as in PBR and this leads to higher 

throughput than PBR.  Throughput is not limited to 

one server (primary) as in the PBA. In addition to 

that, availability is increased because there is no 

leader failure like in primary backup approach So, 

only subset of data that owned by failed replica will 

become unavailable.  

 

2.2 Dynamic Health-based Objects 

Ownerships Distribution Protocol 

(DHOOD) 

In the previous model (OOD), the partitioning of the 

objects among replicas is static in which the objects 

distribution depends on the object creation. That’s 

mean, this approach doesn’t consider the 

differentiation between nodes regarding their 

capabilities such as some of resources are poor while 

other resources are powerful. This might lead to 

waste of resources either underutilization or 

overutilization.  

DHOOD [16] is an improvement on OOD in which 

the redistribution of objects’ ownerships is done 

according to replica’s health. The proposed model 

has the same architecture and additionally in has one 

module for evaluating the health of replica (HE) and 

another module for redistributing the object’s 

ownership (OM). The replica’s health is assessed 

based on its resources including CPU, memory, and 

network bandwidth. In this protocol, the 

redistribution process is conducted in three steps. 

First, health evaluation is done by HE module. In 

this step, a health tabled is maintained to evaluate 

the health level of resources in the system. So, 

replica’s health is evaluated regularly. And any 

updates associated with that table will be notified to 

all other replicas. Then, object ownership 

transformation; in this step OM module is 

responsible to defines the number of objects that 

should be transferred to other replicas based on the 

replica’s health. Finally, the ownerships will be 

distributed among other replicas in the system 

according to their health level (from lower level to 

higher level transformation).   

 

In this section so far , we conclude that the 

primary backup replication is one of the passive 

replication techniques that suffers from poor 

utilization of resources. As a result, the performance 

is considered low due to the restriction of throughput 

to a single server (primary). Moreover, in case of 

leader failure, throughput drops to zero until a new 

leader is elected. While OOD and DHOOD which 

are variants of PBA there is no single point of failure 

since the load is distributed among replicas. 

Furthermore, they have better utilization of 

resources, and higher throughput than PBA.  

 

3. CHAIN REPLICATION 

CR has been proposed by Van Renesse and 

Schneider [17], [18] in 2004  as a variation on 

primary backup replication to be used mainly with 

storage system. . All replica nodes are serially 

ordered to form a chain. In chain replication, the role 

of request execution is shared by two replicas.   

CR works as follow: The first node in the chain is 

called the Head (H), which is responsible for 

handling write operations, and prorogating the 

updates to the next replica of the chain until the 

request reaches the tail. while the last node is called 

the Tail (T) receives query operations and reply 

generation. So, all updates and query requests are 

processed at the tail. As a result, strong consistency 

is guaranteed. 

 

The most important advantage of CR is better 

utilization of computing resources comparing with 

other models. In chain replication, if the chain has n 
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servers , we can get (n) physical chains. The 

following table (2) shows the possible combinations 

of physical chains with different roles of servers 

(head of the chain, tail of the chain, and middle) .  

Also, it has higher read throughput because total 

throughput in CR is equivalent to two servers which 

are the head and the tail. Also, it provides lowest 

latency than other models for read operations  

Table 2 list of physical chains with n servers in CR. 

 

Chain replication handles server failures well due to 

its serial chain structure. It needs a single service for 

fault tolerance coordination, which is called the 

master and is responsible for detecting failure, 

removing the failed server, adjusting the successor 

and predecessor for each sever and informing the 

client if there is a new head or tail.  

In chain replication, all updates are disseminated 

serially to other replicas before reply generation. 

This results a high latency for update request, and it 

needs n+1 latency when there are n servers to reply 

write notification to the client.  

The problem with chain replication is load balancing 

under strong consistency model, especially for 

query-intensive applications. Since all query 

requests and reply notifications are processed by the 

tail, read throughput will be limited to a single node. 

This might cause a bottleneck for the tail. While 

under weak consistency model, a query request can 

be handled at any replica, but this leads to read a 

stale value. Moreover, communication and 

computing resources of the chain are not fully 

utilized because the data are transferred and 

processed in only one direction (from the head to the 

tail). In the following subsections CRAQ and BCR 

which are variants of CR will be reviewed. 

 

3.1 Chain Replication with 

Apportioned Queries (CRAQ) 

CRAQ [19] is an improvement on chain replication 

in which the queries are apportioned, in order to 

provide lower latency and higher throughput for 

query requests. Apportioned queries are done 

through splitting read request between replicas in the 

chain and any replica can carry out query request 

with guaranteeing strong consistency. The 

architecture of CRAQ is the same as chain 

replication, except that it allows the handling of read 

requests by all replicas not only the tail like in chain 

replication. As a result, it eliminates the possibility 

of making a hotspot on the tail. The fault-tolerance 

and recovery mechanisms that are applied in CRAQ 

are the same as the basic chain replication model. 

This approach can be compared with the basic model 

of chain replication. Since the read requests can be 

processed by all replicas in the chain for CRAQ, 

throughput increases for query requests and hotspots 

are reduced on the tail in the case of weak 

consistency model ( eventual consistency) approach. 

Also, this approach better utilizes resources since the 

intermediate nodes can process query requests, 

while in chain replication these nodes are only 

responsible for propagating the updates.  

On the other hands, some limitations are present in 

this approach. First, in the case of strong 

consistency, when the request query is forwarded to 

a replica with dirty version, this replica needs to 

communicate with the tail in order to get a clean 

version, so this is not aligned with the main 

contribution of this approach, which is the 

elimination of the hotspot on the tail. So, this will 

increase the latency for query requests. Second, 

reply notification for update requests are done by the 

tail in chain replication, while the head replica in 

CRAQ is responsible for handling this reply. This 

means that after the tail receives the updates, the 

acknowledgment will be propagated back until it is 

received by the head, and then the head will respond 

to the client. Consequently, the updates latency is 

double in CRAQ what it is in CR. 

 

3.2 Bidirectional Chain Replication 

(BCR) 

BCR [20] is an improvement on chain replication it 

tries to gain higher throughput through better 

utilization of network resources including 

computing and communication while maintaining 

consistency. The proposed model, however, doesn’t 

address fault-tolerance and recovery mechanism.  

BCR has the same architecture as CR, but chains run 

concurrently in opposite directions. The following 

table (3) shows the possible combinations of 

physical chains with different roles of servers (head 

of the chain, tail of the chain, and middle) . So, with 

n servers, we can get 2N physical chains as each 

Chain # S1 S2 S3 S4 

Chain 1 Head middle middle Tail 

Chain 2 middle Head Tail middle 

Chain 3 middle Tail Head middle 

Chain 4 Tail middle middle Head 
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server can play 2N roles; L: denoted that a chain run 

form left to right, while R: denoted that a chain run 

from right to left. 

Table 3 list of physical chains with n servers in BCR. 

 

So,  in BCR there are two logical partitions for 

splitting the replicated data at each server, and two 

heads and two tails can process update requests and 

query request, respectively, at the same time. Thus, 

this leads to higher throughput since four requests 

can be achieved  concurrently  without  affecting 

consistency. 

One limitation of BCR is about the distribution of 

requests among two partitions, because some data 

objects may belong to either of the partitions which 

are frequently requested. 

 

In summary, chain replication with its 

variants including CRAQ, BCR have better 

utilization of resources comparing with PBR, since 

the load is not limited to one server(primary) as in 

PBR. In addition, throughput for both update and 

query request are higher than PBA. So , they provide 

better performance.  

 

II. DISCUSSION& 

CONCOLUSION 

In this paper, a systematic review about data 

replication techniques in distributed systems has 

been presented.  

 A common challenge in the three-replication 

technique is that they suffer from poor utilization of 

computing resources. In addition, they have low 

performance due to the restriction of throughput to a 

single server as in Paxos and PBR or two servers as 

in CR under strong consistency model. Also, in case 

of leader/coordinator failure, throughput drops to 

zero until a new leader is elected such as Paxos and 

PBR. Moreover, in case of the failure response from 

one server in the system , this will negatively effect 

on the performance. In addition, the process of 

extension or configuration of adding a new server 

while the system is running is considered as 

challenges and difficult task. 

In general, we can compare these models with the 

client/server model. Client server model suffers 

from unavailability in case of failure, but it provides 

better performance comparing with replication 

models since a response is completed with one round 

trip. Replication models under strong consistency 

behaves differently in order to response , Paxos 

requires three round trips while PBR needs only two 

round trips. In chain replication under strong 

consistency when there are ( n ) servers, the clients 

have to wait (n+1) latency to get the reply 

notification. Nevertheless, under weak consistency, 

Paxos, PBR, and CR needs only one round trip to 

provide the response which is the same performance 

as in the client server model.  

The following table (4) summarizes consistency 

model ,load distribution and throughput for each 

basic replication model.  

Table 4 comparison between three basic models for replication. 

 

III. REFRENCES 

[1] L. Lamport, “Paxos Made Simple,” in       ACMSIGACT News, 

2001, vol. 32, pp. 18 - 25. 

[2] Jay Kreps .., “Distributed Systems for fun and profit.” [Online]. 

Available: http://book.mixu.net/distsys/index.html. 

[Accessed: 15-Oct-2019]. 

[3] R. van Renesse, “Paxos Made Moderately Complex,” ACM 

Computing Surveys (CSUR), vol. 47, no. 3, pp. 1–16, 

2015. 

[4] W. J. Bolosky, D. Bradshaw, R. B. Haagens, N. P. Kusters, P. 

Li Microsoft, and M. Research, “Paxos Replicated State 

Machines as the Basis of a High-Performance Data 

Store,” 2011. 

[5] D. Ongaro and J. Ousterhout, “In Search of an Understandable 

Consensus Algorithm (Extended Version),” in USENIX 

Chain # S1 S2 S3 S4 

Chain 1 Head Middle L Middle L Tail 

Chain 2 Middle L Head Tail Middle L 

Chain 3 Middle L Tail Head Middle L 

Chain 4 Tail Middle L Middle L Head 

Chain 5 Middle R Middle R Tail Head 

Chain 6 Middle R Middle R Head Tail 

Chain 7 Tail Head Middle R Middle R 

Chain 8 Head Tail Middle R Middle R 



7 
 

ATC’14 Proceedings of the 2014 USENIX conference on 

USENIX, 2014, pp. 305–320. 

[6] H. Howard, “ARC: Analysis of Raft Consensus,” 2014. 

[7] Y. Mao, F. P. Junqueira, and K. Marzullo, “Mencius: Building 

Efficient Replicated State Machines for WANs,” 8th 

USENIX Symposium on Operating Systems Design and 

Implementation, pp. 369–384, 2008. 

[8] I. Moraru, D. G. Andersen, and M. Kaminsky, “There is more 

consensus in Egalitarian parliaments,” in SOSP 2013 - 

Proceedings of the 24th ACM Symposium on Operating 

Systems Principles, 2013, pp. 358–372. 

[9] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, and J. M. 

Hellerstein, “Highly Available Transactions: Virtues and 

Limitations,” Proceedings of the VLDB Endowment, vol. 

7, no. 3, pp. 181–192, 2013. 

[10] R. Palmieri, “Leaderless consensus: The state of the art,” in 

Proceedings - 2016 IEEE 30th International Parallel 

and Distributed Processing Symposium, IPDPS 2016, 

2016, pp. 1307–1310. 

[11] V. Tech and R. Palmieri, “Making Fast Consensus Generally 

Faster Sebastiano Peluso Alexandru Turcu Giuliano 

Losa Binoy Ravindran,” in Annual IEEE/IFIP 

International Conference on Dependable Systems and 

Networks (DSN), 2016, pp. 1–31. 

[12] H. Howard and R. Mortier, “A Generalised Solution to 

Distributed Consensus,” Feb. 2019. 

[13] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg, 

“Chapter 8: The Primary Backup Approach,” New York 

, USA. 

[14] L. Lamport, D. Malkhi, and L. Zhou, “Vertical Paxos and 

Primary-Backup Replication,” 2009. 

[15] A. M. Mostafa and A. E. Youssef, “Improving Resource 

Utilization, Scalability, and Availability in Replication 

Systems Using Object Ownership Distribution,” 

Arabian Journal for Science and Engineering, vol. 39, 

no. 12, pp. 8731–8741, Nov. 2014. 

[16] S. Albassam and A. M. Mostafa, “Dynamic Health-based 

Objects Ownerships Distribution Protocol (DHOOD),” 

in Sixth International Conference on Digital Information 

Processing and Communications (ICDIPC), 2016, pp. 

13–18. 

[17] R. van Renesse and F. B. Schneider, “Chain Replication for 

Supporting High Throughput               and Availability,” 

in USENIX Symposium On Operating Systems Design 

and Implementation (OSDI04), 2004, vol. 4, pp. 91–104. 

[18] S. L. Fritchie, “Chain Replication In Theory and in Practice 

Working Title, rough draft,” 2010. 

[19] J. Terrace and M. J. Freedman, “Object Storage on CRAQ 

High-throughput chain replication for read-mostly 

workloads,” 2009. 

[20] A. M. Mostafa, A. E. Youssef, and Y. A. Aljarbua, 

“Bidirectional chain replication for higher throughput 

provision,” KSII Transactions on Internet and 

Information Systems, vol. 13, no. 2, pp. 668–685, Feb. 

2018. 

  


