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Abstract

The Riemann hypothesis is a conjecture that the Riemann zeta func-
tion has its zeros only at the negative even integers and complex
numbers with real part 1

2
. The Riemann hypothesis is considered by

many to be the most important unsolved problem in pure mathemat-
ics. Let σ(n) denote the sum-of-divisors function σ(n) =

∑
d|n d.

An integer n is perfect if σ(n) = 2 · n. It is unknown whether
any odd perfect numbers exist. Leonhard Euler stated: “Whether . . .
there are any odd perfect numbers is a most difficult question”. We
require the properties of superabundant numbers, that is to say left
to right maxima of n 7→ σ(n)

n
. We also use Robin’s criterion and

Ramanujan’s old notes which were published in 1997 annotated by
Jean-Louis Nicolas and Guy Robin. There are several statements equiv-
alent to the famous Riemann hypothesis. In this note, conditional on
Riemann hypothesis, we prove that there is no odd perfect number.
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1 Introduction

As usual σ(n) is the sum-of-divisors function of n∑
d|n

d,

1
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where d | n means the integer d divides n. Define f(n) as σ(n)
n .

Proposition 1 For every prime power pa, we have f(pa) = pa+1−1
pa·(p−1)

[1,

Lemma 2.1 pp. 3]. If p is a prime number, and a, b two positive integers, then [1,
pp. 5]:

f(pa+b)− f(pa) · f(pb) = − (pa − 1) · (pb − 1)

pa+b−1 · (p− 1)2
.

We say that Robin(n) holds provided that

f(n) < eγ · log log n,

where γ ≈ 0.57721 is the Euler-Mascheroni constant and log is the natural
logarithm. The Ramanujan’s Theorem states that if the Riemann hypothesis
is true, then the previous inequality holds for large enough n. Next, we have
the Robin’s Theorem:

Proposition 2 Robin(n) holds for all natural numbers n > 5040 if and only if the
Riemann hypothesis is true [2, Theorem 1 pp. 188].

In 1997, Ramanujan’s old notes were published where he defined the gen-
eralized highly composite numbers, which include the superabundant and
colossally abundant numbers [3]. Let p1 = 2, p2 = 3, . . . , pk denote the first k

consecutive primes, then an integer of the form
∏k

i=1 p
ai
i with a1 ≥ a2 ≥ . . . ≥

ak ≥ 1 is called a Hardy-Ramanujan integer. A natural number n is called
superabundant precisely when, for all natural numbers m < n

f(m) < f(n).

We know the following properties for the superabundant numbers:

Proposition 3 If n is superabundant, then n is a Hardy-Ramanujan integer [4,
Theorem 1 pp. 450].

Proposition 4 [4, Theorem 7 pp. 454]. Let n be a superabundant number such that
p is the largest prime factor of n, then

p ∼ logn, (n → ∞).

Proposition 5 [4, Theorem 9 pp. 454]. For some constant c > 0, the number of
superabundant numbers less than x exceeds

c · log x · log log x
(log log log x)2

.
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A number n is said to be colossally abundant if, for some ϵ > 0,

σ(n)

n1+ϵ
≥ σ(m)

m1+ϵ
for (m > 1).

There is a close relation between the superabundant and colossally abundant
numbers.

Proposition 6 Every colossally abundant number is superabundant [4, pp. 455].

Several analogues of the Riemann hypothesis have already been proved.
Many authors expect (or at least hope) that it is true.

Proposition 7 Ramanujan [3] proved that if n is a generalized superior highly com-
posite number, i.e., a colossally abundant number, then under the Riemann hypothesis
we have

lim
n→∞

(
f(n)− eγ · log logn

)
·
√
n ≥ −eγ · (2 ·

√
2 + γ − log(4 · π)) ≈ −1.558.

In number theory, the p-adic order of an integer n is the exponent of the
highest power of the prime number p that divides n. It is denoted νp(n). Equiv-
alently, νp(n) is the exponent to which p appears in the prime factorization of
n.

Proposition 8 [5, Theorem 4.4 pp. 12]. Let n be a superabundant number such
that p is the largest prime factor of n and 2 ≤ p ≤ p, then⌊

log p

log p

⌋
≤ νp(n).

In mathematics, a perfect number is a positive integer n such that f(n) = 2.
Euclid proved that every even perfect number is of the form 2a−1 · (2a − 1)
whenever 2a − 1 is prime. It is unknown whether any odd perfect numbers
exist, but under the assumption that the Riemann hypothesis is true, we prove
that there is no odd perfect number.

2 Main Insight

Lemma 9 For every odd prime p and two natural numbers a, b, we have

f(pa) · f(pb) ≤ 1.5 · f(pa+b).

Proof We know that

f(pa) · f(pb)− f(pa+b) =
(pa − 1) · (pb − 1)

pa+b−1 · (p− 1)2



A Millennium Prize Problem

4 The Riemann hypothesis

by Proposition 1. Hence, it is enough to show that

(pa − 1) · (pb − 1)

pa+b−1 · (p− 1)2
≤ f(pa+b)

2

which is the same as

(pa − 1) · (pb − 1)

pa+b−1 · (p− 1)2
≤ pa+b+1 − 1

pa+b · (p− 1) · 2
by Proposition 1. That is equivalent to

p · (pa − 1) · (pb − 1)

p− 1
≤ pa+b+1 − 1

2
.

For every odd prime p,
p− 1 ≥ 2

and

p · (pa − 1) · (pb − 1) = (pa+1 − p) · (pb − 1)

= pa+b+1 − pa+1 − pb+1 + p

≤ pa+b+1 − 1

and thus, the inequality

p · (pa − 1) · (pb − 1)

p− 1
≤ pa+b+1 − 1

2

holds. □

3 Main Theorem

This is the main theorem.

Theorem 10 Under the assumption that the Riemann hypothesis is true, we prove
that there is no odd perfect number.

Proof Suppose that N is the smallest odd perfect number, then we will show this
implies that the Riemann hypothesis should be false. We deduce there are infinitely
many colossally abundant numbers by Propositions 5 and 6. Let n be a large enough
colossally abundant number. Under the assumption that the Riemann hypothesis is
true and by definition of limit inferior, a value of b ≥ −eγ · (2 ·

√
2+ γ− log(4 · π)) ≈

−1.558 is the largest real number such that, for any positive real number ε, there
exists a natural number m such that

xn > b− ε

for all n > m, where
xn =

(
f(n)− eγ · log logn

)
·
√
n

is a sequence of real numbers by Proposition 7. Since n is large enough, then

xn > −1.559
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could be possible, which is the same as

f(n) > eγ · log log n− 1.559√
n

.

On the other hand, we can see that the value of ν2(n) goes to infinity as long as n
goes to infinity since n is colossally abundant according to Propositions 3, 4, 6 and 8.
So, the number 2ν2(n) could be too much greater than N since N is a fixed natural
number. We know that

f(n) = f(2ν2(n)) · f( n

2ν2(n)
)

=

(
2− 1

2ν2(n)

)
· f( n

2ν2(n)
)

= 2 · f( n

2ν2(n)
)−

f( n
2ν2(n) )

2ν2(n)

= f(N) · f( n

2ν2(n)
)−

f( n
2ν2(n) )

2ν2(n)

≤ 1.5 · f( N · n
2ν2(n)

)−
f( n

2ν2(n) )

2ν2(n)

= 1.5 · f(n′)−
f(n

′

N )

2ν2(n)

by Proposition 1 and Lemma 9, since f(. . .) is multiplicative and n′ = N ·n
2ν2(n) .

Therefore, we have

1.5 · f(n′)−
f(n

′

N )

2ν2(n)
> eγ · log log n− 1.559√

n

which is the same as

1.5 · f(n′) > eγ · log log n− 1.559√
n

+
f(n

′

N )

2ν2(n)
.

Let subtract by 1.5 · eγ · log logn′ both sides to obtain that(
f(n′)− eγ · log logn′) > (2

3
·

(
eγ · log logn− 1.559√

n
+

f(n
′

N )

2ν2(n)

)
− eγ · log log n′

)
.

We know that(
2

3
·

(
eγ · log log n− 1.559√

n
+

f(n
′

N )

2ν2(n)

)
− eγ · log log n′

)
> 0

because of n could be too much greater than n′. Since we took an arbitrary large
enough colossally abundant number, then there are infinitely many natural num-
bers n′ such that Robin(n′) does not hold. Hence, the Riemann hypothesis must be
necessarily false under the assumption of the existence of such smallest odd perfect
number N by Proposition 2. In this way, the number N does not exist under the
assumption that the Riemann hypothesis is true. □
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