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ABSTRACT 
A flexible rate non-orthogonal data aggregator is proposed and discussed for internet of things (IoT) 

applications. The proposed scheme aggregates the data of several IoT devices before transmission to the cloud 

for visualization and monitoring. The aggregation scheme is based on non-orthogonal multiplexing and similar 

to data multiplexing in quadrature amplitude modulation (QAM). Complexity reduced software-defined 

aggregator and de-aggregator operations are discussed.  
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I. INTRODUCTION 

Internet of things (IoT) is becoming more 

prevalent all over the world, wherever internet is 

within the range of access [1]. Sensors are getting 

the data from the environment [2], the human 

being’s body [3] and the equipment [4] and send 

these data usually via wireless access technologies to 

the remote website, for monitoring and possibly 

control. Several wireless access technologies such as 

local WiFi, cellular generations, specifically 5G, 

LPWAN technologies may provide the required 

connectivity [5]. Due to the sharp increase in the 

number of IoT devices in recent years, where it is 

expected to rise, the role of data aggregators 

becomes important. Data aggregators combine the 

collected data from the local IoT devices and send 

them over internet, and work as an access point, as 

well. 

Data aggregation for IoT has been addressed in 

several reported researches among them [6], [7]. 

Importance of data aggregation in IoT is to save the 

spectral efficiency, to increase the network lifetime 

by decreasing the number of transmissions, and to 

add some levels of physical layer security. The 

reported types of data aggregation for IoT are tree-

based, cluster-based and centralized [7]. 

In this paper, a non-orthogonal data aggregation 

scheme is proposed and discussed for IoT 

applications. The proposed approach compresses the 

data of multiple sensors to one ready symbol to 

transmit, where it helps in improving the spectral 

efficiency at the verge of spectrum scarcity. The 

proposed approach combines the digital information 

of several sensors based on their importance into one 

symbol and transmits the symbol over the channel 

for presentation over the cloud, as it is illustrated in 

Fig. 1. In development of the proposed aggregator 

and de-aggregator, we used the efficient structure 

that was proposed for implementation of hierarchical 

quadrature amplitude modulation (QAM) [8-11]. 

The aggregation approach that is proposed for 

software defined applications, needs small amount 

of memory and has small computational cost. 

The rest of this paper is organized as follows. In 

section II, the structure of the proposed data 

aggregator and de-aggregators are given. The 

implementation cost of the proposed approach is 

presented in section III. The flexibility of the 

proposed approach and its performance is discussed 

in section IV. 
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Fig. 1: System model for the proposed data 

aggregation scheme 



 

II. IMPLEMENTATION OF THE PROPOSED 

AGGREGATION SCHEME 

In this section, an implementation routine is 

discussed for the proposed compressive data 

aggregator. The proposed data aggregator is based 

on hierarchical QAM modulation and based on the 

approach that was discussed in [8,9]. Similar to the 

scenario that is presented in Fig. 1, each IoT sensor 

sends its data to the data aggregator that also roles as 

the gateway of access to the cloud-based data 

presentation site. These data are stored in the data 

distributer buffer and sampled to be aggregated as it 

is illustrated in Fig. 2. The data aggregator module 

combines the data of different sensors at a constant 

rate, which is higher than the data rate of each input 

branch.   
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Fig.2: The general structure of the proposed data 

aggregator and de-aggregator 

The sampler’s binary output data dk, k = 1, …, n 

at transmitter side are combined together with 

different weights to form the I and the Q 

components, similar to the formation steps for one 

symbol of 2n-QAM [9]. For this purpose, each sub-

channel that forms the I and the Q branches are 

formed by weighted summation of the bipolar binary 

data dk that are ±1. Each symbol S is formed as 

follows: 

S = I + j Q (1) 

where I and Q are as follows: 
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The Ak for k= 1, …, p and Bk for k = 1+p, …, n are 

the sub-channel gain profile in combining the binary 

data branches of the aggregator. Fig. 3, illustrates 

these unequal gains for aggregator that combines six 

bits together to form each symbol of the aggregator’s 

output. 
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Fig. 3: The sub-channel gain profiles of six-bit data 

aggregator 

It was shown that each combiner in I and Q 

branch is on analog to digital converter (ADC) 

[9,10]. Accordingly, the aggregator is one complex 

ADC (CADC), which is composed of two ADCs for 

the real and the imaginary terms. One advantage of 

relating the two ADC structure to a CADC is the 

simplicity of rotation using complex operations that 

in software defined system can easily transfer the 

gains between sub-channels of I and Q branches. 

The gain transfer allows flexibly shift the capacity 

among the sub-channels according to the required 

data rate and performance. 

Rigorously, in a corollary [10] it was proved 

that the optimum maximum likelihood detector for 

the data dk are two successive-approximation 

analog-to-digital converter with the thresholds of 

decision equal to the sub-channel gain profile, that 

are Ak and Bk, for all related index values. 

Accordingly, the de-aggregator consists of two 

SAR-ADCs. The optimum detector uses successive 

interference cancellation (SIC) algorithm for 

detection of each bit based on the order of the data in 

aggregation process and from high gain to low gain. 

For optimization algorithm additive white Gaussian 

noise (AWGN) was assumed [10]. 

III. COMPUTATIONAL COMPLEXITY AND THE 

REQUIRED STORAGE 

The proposed aggregation algorithm has low 

computational complexity and in comparison, to 

table look-up needs much less memory for storage. 

In this section the complexity of the proposed 

aggregator is discussed. 

According to (1) and (2), the n-bit data 

aggregator with p-bit in Q branch and (n-p)-bit in I 

branch needs n real multiplications and n-2 real 

additions. The de-aggregation process also needs n 

comparators and n-2 real subtractions to use SIC.  

The proposed approach needs n real memory 

spaces for storage of n gains of the sub-channel gain 



 

profile. Because it needs to be able to manage all of 

the possible number of bits from 3 bits and up of 

data per symbol S, then the sub-channel gain profiles 

of these cases have to be considered in storage 

count. Accordingly, the total number of required 

memory spaces for the aggregator and the de-

aggregator is: 

NP = 3 + 4 + … + n = n(n+1)/2 -3 (4) 

In comparison, the table look-up approach needs 

3.2n memories for aggregating any n bits of data. 

Accordingly, for all of the possible 3-bit and up it 

needs a large amount of storages according to (5). 

NT = 3(23 + 24 + … + 2n) = 3(2n+1 -8) (5) 

 
Fig. 4: Comparison between the required storages of 

the proposed approach and table look-up 

Fig. 4, illustrates the required memories of these 

two approaches in logarithmic scale. According to 

this graph the proposed approach needs much less 

memory spaces for the software defined system. 

IV. PERFORMANCE EVALUATION 

The proposed data aggregator in this paper is 

flexible and it can relatively change the capacity and 

the maximum possible rate of each sub-channel to 

allow the IoT sensor that needs higher data rate to 

transmit, accordingly. For this purpose, we discuss 

the effect of scaling and rotation on bit error rate and 

the sub-channel capacity. 

The exact bit error probability of each 

subchannel was analytically discussed in [12, where 

it can be used for calculation of the capacity of each 

sub-channel of the aggregated data. With Pk, the 

average bit error rate of the sub-channel number k in 

the presence of AWGN, the capacity bound of sub-

channel in the presence of AWGN is according to 

(6). 

Ck = 1 + Pk Log
10

(Pk) + (1- Pk) Log
10

 (1- Pk) (6) 

Fig. 5 illustrates the bit error probability for 8-bit 

aggregation per symbol in AWGN channel based on 

simulations and analytical approach, where both 

perfectly support each other. 

 
Fig. 5: Exact bit error probability of different sub-

channels of 256-QAM, based on simulations and 

analysis 

Rotation and scaling are two possible 

approaches to change the sub-channel gain profile 

and accordingly change the sub-channel’s capacity 

bound and then data rate. It is important to mention 

that this change affects the capacity bound of the 

other sub-channels, due to non-orthogonal, 

coexisting interference from the other sub-channels. 

Fig. 6, illustrates the sub-channel gain profile of 

6-bit aggregator per symbol, before and after 10-

degree rotation of the forming vector V = A1 +j B1. 

The related bit error rate of the rotation is presented 

in Fig. 7. According to this figure, even 10-degree 

rotation of the weakest sub-channel results in 

tangible changes in bit error rate of the other sub-

channels. The reason for rotation of the weakest sub-

channels (related to the data bit #1 and #4) is to 

apply the least interference on other sub-channels. 

This theoretical experience clearly prove that the 

proposed data aggregation scheme can flexibly shift 

the capacity and accordingly the data rate between 

the sub-channels that each is assigned to one 

sensor’s data. The simple operation such as rotation 

can be done with low computational load in software 

defined platform in IoT data aggregator / gateway 

unit. 



 

 

Fig. 6: The sub-channel gain profile of 6-bit data 

aggregator before and after 10-degree rotation of the 

vector that the weakest sub-channels. 

 

Fig. 7: Bit error rate of 6-bit aggregator in AWGN 

before and after 10 degrees rotation of the weakest 

sub-channel. The graph shows the bit error rate 

versus Carrier to Noise ratio (CNR) in dB 

To investigate the effect of scaling, the gain of 

the weakest sub-channels (related to the data bits #1 

and #4) scaled up by multiplying them with constant 

factor 1.2. Fig. 8 illustrates the result of this 

investigation. According to these results, similar to 

rotation, scaling also improved the capacity of the 

amplified sub-channels and it decreases the capacity 

of the other sub-channels due to increase in co-

channel interference level. 

V. CONCLUSION 

A flexible and low-complexity data aggregator 

based on hierarchical quadrature amplitude 

modulation is discussed for internet of things (IoT) 

applications. The proposed approach needs relatively 

small amount of memory space. It is shown that by 

simple operations such as rotation and scaling it is 

possible to change the data rate by changing the 

error rate of the sub-channels. The simulation results 

support the potential of flexible capacity exchange 

among data of different IoT nodes. 

 

Fig. 8: The bit error rate of the selected sub-channels 

of 6-bit data aggregator before and after scaling of 

the weakest sub-channels (sub-channels #1 and #4). 
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