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ABSTRACT 

                                 In  this  research  paper,  it  is  proved  that  an   approximation  to  Gibbs-Shannon  entropy  

             measure  naturally  leads  to  Tsallis  entropy  for  the  real  parameter  q =2 .  Several  interesting   

             measures  based  on  the  input  as  well  as  output  of  a  discrete  memoryless  channel  are  provided  

             and  some  of  the  properties  of  those  measures  are  discussed.  It  is  expected  that  these  results will 

             be  of  utility  in  Information  Theoretic  research.   

1. Introduction: 
                       From  the   considerations  of  statistical  physics,  J. Willard  Gibbs  proposed  an  interesting  

entropy  measure.  Independently, motivated  by  the  desire  to  capture  the  uncertainity  associated  with  a  

random  variable, C.E. Shannon  proposed an  entropy  measure.  It  is  later  realized  that  Gibbs  and  

Shannon  entropy  measures  are  very  closely  related.  From  the  considerations  of  statistical  

communication  theory,  defining  mutual  information  ( based  on  the  definition  of   conditional  entropy 

measure ),  Shannon  successfully  proved  the  channel  coding  Theorem  ( which  defined  the  limits  of  

reliable  communication  from  a  source  to  destination  over  a  noisy  channel )[Ash].  Thus  from  the  

point  of  view  of  information  theory,  Shannon  entropy  measure  became  very  important  and  useful. 

                    Also,  in  recent  years, Tsallis  proposed  an  entropy  measure  generalizing  the  Boltzmann-

Gibbs  entropy  measure.  The  author  became  interested  in  the  relationship  between  Tsallis  entropy  and  

Shannon  entropy.  Under  some  conditions,  the  author  proved  that  Shannon  entropy  leads  to  Tsallis  

entropy.  As   a  natural  generalization,  the  author  proposed  interesting  measures  defined  on  probability  

mass  functions  and   the  channel  matrix  of  a  Discrete  Memoryless  Channel (DMC). 

                            This  research  paper  is  organized  as  follows. In  Section 2,  an  approximation  to  

Shannon  entropy  is  discussed  and  the  relationship  to  Tsallis  entropy  is  proved.  In  Section 3,  

interesting  measures  on  probability  mass  functions  are  proposed.  Finally,  conclusions  are  reported  in  

Section  4. 

 

2. Approximation   to  Gibbs-Shannon  Entropy  Measure :  Tsallis   Entropy: 
                                                                                                                                  It  is  well  known  that  the  

Gibbs-Shannon entropy  measure  associated  with  a  discrete  random  variable  ( specified  by  the  

probability  mass  function    �   � ��  � ���  1 
 � 
 � �    is  given  by   

 

H(X) =  �∑ ������ ���� ��  bits. ……………..(2.1) 

 

Also,  in  recent  years,  Tsallis  proposed  another  entropy  measure  which  in  the  case  of  a  

discrete  random  variable  is  given  by 

 

                 ����  �   �
���  �  1 �  ∑ � ��� ��   ,     …………………….(2.2) 

 
             where   S  denotes  the  entropy,  p(.)  is  the  probability  mass  function  of  interest  and  ‘q’  is   a  real  

             parameter.  In  the  limit  as  � � 1,  the  normal  Boltzmann—Gibbs   entropy  is  recovered.  The  parameter   

             ‘q’  is  a  measure  of  the  non-extensivity  of  the  system  of  interest. 

                           The  author  became  interested  in  knowing  whether  there  is   any  relationship  between   

             Gibbs-Shannon  entropy  measure  and  Tsallis  entropy  under  some  conditions.  This  question   



             naturally  led  to  a  discovery  which  is  summarized  in  the  following  Lemma. 

 

Lemma  1:  Consider  a  discrete  random  variable  X  with  finite  support  for  the  probability  

mass  function.  Under  reasonable  assumptions,  we  have  that   

 

                   H(X       � 1 � ∑ ��� ����   ����!  =   ����  ����! …………..(2.3) 

 

Proof:       From  the  basic  theory  of   infinite  series [ Kno ],  we  have  the  following: 
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Now   let  us  consider  the  entropy, H(X)  of  a  discrete  random  variable, X  which  

assumes  finitely   many  values.  We  have  that 

 

H(X) =  �∑ ������ ���� ��  bits  =  �∑ �1 � ������ ���� �1 � ��  bits…………(2.5) 

 

          = �∑ �1 � ��  ���) �1 � ������  ���� !   

 

Now  using  the  above  infinite  series  and  neglecting  the  terms  
�8,
� ,

�8-
. ,  and  so on, 

We  have  that 

 

H(X)  � �∑ �1 � ������ ) ( -��    ����!  
 

           � ∑ ������ �1 � �� ����!   � 1 � ∑ �������   ����!                  Q.E.D. 

 

 

Remark:  Thus,  the  square of the  9� � 5��:  of  the  vector  corresponding  to  the 

                 probability  mass  function ( of  a  discrete random variable )  is  utilized  to 

                 approximate  the  entropy  of  the  discrete   random  variable.  In  summary,  

                 we  have  that 

                

                  ;�<  ����, ��, … , �� � � 1 � ∑ �������  ����! ………………(2.6) 

 

                        Thus,  an  approximation  to  Gibbs-Shannon  entropy  naturally  leads  to  the 

                        scaled  Tsallis   entropy  for   the  real  parameter  q=2.  The  quantity  H(X)  with   

                        the  above  approximation  is  rounded-off  to  the  nearest  integer.For  continuous   

                        case  i.e  for  probability  density   functions  associated  with  continuous  random   

                        variables,  similar  result  can  easily  be  derived  and  is  avoided  for  brevity. 

 



                        Note:  If  the  logarithm  is   taken  to  a  different  base,  a  scaling  constant   

                                   should  be  included. 

 

We  would   like  to  study  the  properties  satisfied  by  the  function  f(.,.,…,) 

approximating   the  entropy.  The  following  claim   can  easily  be  proved.  

 

Lemma 2:  The  maximum  value  of  ����, ��, … , ��  is   attained  when � �� �����  

              are  all  equal i.e.  �� � ��   for  1 
 � 
 �. 
Proof:  Follows  by  the  application  of  Lagrange  Multipliers  method. 

            Detailed   proof  is  avoided  for  brevity                    Q.E.D 

 

               Thus,  the  maximum  value  of  approximation  to  entropy  of   

a  discrete  random  variable  assuming  “M”  values  is   > 1 � �
� ? ����!. 

 

• It  is  easy  to  see  that  this  approximation  to  Gibbs-Shannon  entropy  satisfies  

only   two ( out  of  four )  axioms  satisfied  by  the  Shannon  entropy  functional. 

 

• Remark:   As  in  the  proof  of  above  Lemma,  it  is  possible  to  provide 

                  higher  order  approximations  to  Gibbs-Shannon  entropy  measure. 

                  Also,  in  the  spirit  of  Lemma 1,  Renyi  and  other  types  of  entropy 

                  can  easily  be  approximated.  Details  are  avoided  for  brevity. 
 

3. Novel  Measures  on  Probability  Distributions: 
                                                                                    Shannon’s  entropy  of  a  discrete  random  variable  

constitutes  an  important  scalar  valued  mesure  defined  on  the  class  of   probability  mass  functions 

(  of   the  discrete  random  variables  ).  In  contrast  to  the  moments  of  discrete  random  variables,  the  

entropy  does  not  depend  on  the  actual  values  assumed  by  the  discrete  random  variable.  Thus,  one  is  

naturally  led  to   the  definition  of  other   measures  associated  with  discrete  random  variable  which  

depend  only  on  the  probability  mass  function (  and  not  the  values  assumed  by  it ). 

 

              @A � BCDE  CF  GDCHIHJKJLM  NOPLCDQ:  SQIKKJQ  TULDCVM: 
 

• We  first  treat  the  probability  mass  function  of   a  discrete  random  variable  as  a vector  

of  probabilities.  It  should  be  kept  in  mind  the   M-dimensional  probability  vector 

( corresponding  to  ‘M’  values  assumed  by  the  discrete  random  variable )  lies on  a  

hyperplane  in  the  “positive  orthant”  (  of  the  M-dimensional  Euclidean  space ) only. 

Also,  as  a  natural  generalization,  we   can  also  conceptualize  “infinite  dimensional” 

probability  vector  corresponding  to  a  discrete  random  variable  which  assumes  

infinitely  many  values. 

 

• Consider  a  “probability  vector” (  corresponding  to  the  associated  probability  mass  

function..finite  or  infinite  dimensional )  and  define  the  9� � 5��:  of   the  vector ( in  

the  same  manner  as  done   in  pure  mathematics ).  Let 

                                           ��� �W  ) =  X ∑ X�YZ[�� �\]� ]
^
_   for  � ` 1……  (2.7) 

As  discussed  in  [Rama],  some  interesting  properties  are  satisfied  by  �� .  Also 

all  the  results   associated  with    9� � 5��:  ( in  pure  mathematics )  such  as  the 



Holder,  Minkowski  inequalities  can  be  readily  invoked  with  the  measure  �� . 
 

                     It  is  elementary  to  see  that  such  a  measure  can  easily  be  related  to  

Tsallis  entropy.   Specifically,  we  have  that 

                                              ��� �   1 – � � � 1 ���� .            ………….(2.8) 

 

Now  let  us  define  the  following  function  naturally  associated  with  the  9� � 5��: 

i.e.�� . 
                           ��� �W    �    1 � ��� �W  ).    
It  is  easy  to  see   that   for  any  two  real  numbers  ��, ��  such  that  �� a ��  ,  we 

have  that 

                         ��^� � b   a  ��,� �W  . 
                        In  view  of  this,  it  is  easy  to  reason  that   lim��Z �� � �W  �   1.   In  the  similar  spirit, 

                        it  is  possible  to  derive  an  inequality  associated  with   ( q-1 ) ����  i.e.  scaled  Tsallis 

                        entropy (  for   different  values  of  the  real  parameter ‘q’). 

 

• Based  on  the  properties  of  ��,  it  is  easy  to  see that  the  probability  mass  function  

based  infinite  dimensional  probability  vectors  always  belong  to  discrete  Hilbert  space. 

 

• Let  us  first  consider  the  case  where  the  support  of  the   probability  mass  function  is  

finite.  The  9� � 5��:  of  the  associated  probability  vector  is  

�� =  X ∑ X�Y�[�� �\]� ]^,   ………………(2.9) 

             We reasoned  in  the  previous  section  that  such  a  measure  naturally  arises  in  

approximating  the  Gibbs-Shannon  entropy  functional/measure (  to  a good  degree  of  accuracy ).  

 

• Using  similar  approach,  the  conditional  entropy  can  be  approximated. 

Also,  using  the  approximation  for  H(X|Y) / H(Y|X),  H(X)/H(Y),  the 

mutual  information  between  the  input  and  output  of  a  Discrete  Memoryless  

Channel (DMC)  can  be  approximated.  Details  are   avoided  for  brevity. 

 

               Quadratic  Forms  Associated   with  Probability  Mass  Functions: 

 

• Clearly,  the  expression  in (2.3)  is  an interesting  measure  defined  over  the 

Vector, �Yfff representing  the  probability  mass  function.  Thus  one  is  naturally   

led  to   the   definition  of a quadratic  form  defined  over  the  vector  �Yfff. 
Specifically,  let  us  define  quadratic  forms  associated  with  the  channel  matrix, 

Q ( of  a  DMC ).                    

                                                 i.e.  �Ygfff  h  �Yfff. 
Since   �Ygfff  h �   �ifff,  we  readily  have  that 

                          �Ygfff  h  �Yfff �  �igfff  �Yfff �  j �i  ,fffff �Y  fffffk.                 ….(2.10) 

 

lmnop:  Thus  the  quadratic  form  associated  with  the  channel  matrix  of  a  

DMC  represents  the  inner  producy  between  the  probability  vectors  

 �ifff  &5q  �Yfff.   
 



• It  readily  follows  that  in  the  case  of  “noiseless  channel”,  we  have  that  Q = I 

and  thus   the  quadratic  form   becomes  the  “square  of  the  Euclidean  length  

(  9�-norm ) of  the  probability  vector.  It  is  thus  always  positive. 

 

• In  view  of  the  relationship  of  Tsallis  entropy  to  the   Gibbs-Shannon  entropy  

measure,  we  define  the  following  measure  associated  with  the  stochastic  

matrix  W  and  the  probability  vector  �Yfff  i.e. 

 

               ��b  � �Yfff  �   1 �  �Ygfff  r �Yfff   
 

If  W  is  the  channel  matrix  of  a  discrete  memoryless  channel,  the  above  

measure  has  interesting   interpretation ( discussed  previously).  In  this  case  

                  

                      ��b  � �Yfff  �   1 �  �Ygfff  r �Yfff  =   1 -  �Ygfff  �ifff  . 
 

It  is  easy  to  reason  that   this  measure  is  non-negative.  Also  using  Lemma 2, 

the  above  entropy  type  measure  can  be  bounded. 

 

 

It  is  interesting to see  its  interpretation  when  W  is  the  state  transition  matrix  

of  a  homogeneous  Markov  chain.  In  this  case,  the  state  of  the  dynamical  

system  captured  through  an  associated  probability  vector  evolves   through  the  

associated  Markov  chain.  (  We  can  capture  the  idea  of   initial  entropy,  

transient  entropy  and   equilibrium  entropy  of   the  associated  Markov  chain  

modeling  the physical phenomena ). 

                       Furthermore  W  could  be  a  doubly  stochastic  matrix.  It  is  

immediate  that  when  W  happens  to  be  an  identity  matrix  i.e.  W = I,  then  the  

above  measure  is  the  Tsallis  entropy  for   parameter  q =2  ( i.e.  an  

approximation  to  the  Gibbs-Shannon  entropy  measure ). 

 

• Hence  we  would  like  to  study  the  properties  of   the  quadratic  form  using  the 

Inner  product  between  two  probability  vectors ( namely  the  input  and  output  

probability  vectors  of  a  DMC ).  In  that  effort,  we  would  like  to   address  the  

following  question: 

 

Q:  How  does  the  inner  product  of   two  probability  vectors  summarize  the  

“similarity / dissimilarity”  of   probability  mass   functions? 

 

***In  this  effort,  we   invoke  the  Cauchy-Schwartz  inequality  associated  with  

bounding   the  inner-product  between  two  vectors: 

 

                                  X �Ygfff �ifff ]�   
 X ∑ �Y����� �� ] X ∑ �i����� ��] …………..(2.11) 

 

• It  is  easily  seen  that  the  following  holds  true: 

 

                                                    ∑ �Y����� �� �   s 1  ��  �Yfff  �7  q!�!5!�&(!
# 1 �� �Yfff  �7 5�5 � q!�!5!�&(!

t ……….(2.12) 



• Furthermore  the  minimum  possible  value  of  ∑ �Y����� ��  ( i.e.  value of  
�
� ) 

occurs  when  �Y�� �   ��  for  all   1 
 � 
 �. 
• Also,  it  should  be  noted  that  the  inequality  in  (2.11)  reduces  to  equality  only   

when   

                      �Y�� �   �i��   ���   1 
 � 
 �. 
 

i.e  the  inner  product  between  probability   vectors �Yfff  &5q  �ifff  attains  the 

“maximum”  value  when  they  are  both  same ( equal). 

 

• Suppose  �Yfff  is  the  invariant  probability  distribution (  also  called  as  the  steady 

state  probability  distribution )  of  the  homogeneous  Discrete  Time  Markov  Chain  

( DTMC )  associated  with  the  Channel  matrix  Q  (  a  stochastic  matrix ).  In  this 

case, we  have  that 

                                �Ygfff h �  �Ygfff.                 …………..(2.13) 

Then  the  quadratic  form  associated  with �Yfff  becomes 

                                 �Ygfff  h  �Yfff =  �Ygfff �Yfff > 0. 

                             Thus,  the  quadratic  form  attains  the  maximum  value.  Equivalently, we  have  that   

                             in  this  case, the  value  of  the  quadratic  form  is  same  as  that  in  the  case   of  a   

                             noiseless  channel. 

 

• In  the  same  spirit  of  the  definition of  mutual  information,  let  us  define  the  

following  scalar  “measure”  between  the  input  and  output  of  a  Discrete  

Memoryless  Channel (DMC). 

                                                 u�<; w �   �Ygfff h �ifff  �  �igfff  �ifff ,    ……..(2.14) 

                                where  �Yfff  corresponds  to  the input  probability  vector (i.e  the  input  probability   

                                 mass  function )  and  �ifff  corresponds  to  the  output  probability  vector.  Let  us 

                                 investigate  some  of  the  properties  of  the  scalar  measure  u�<; w. 
 

• (i)  Since  �Ygfff h �  �igfff,    we  have  that  �igfff �ifff  a  0.   

           Also, we  have  that 

                                     J( X ; X ) =  �  �Ygfff h �Yfff  �  �igfff  �Yfff ` 0. 
i.e. J( X; X ) is  zero  when  the  probability  vectors  �Yfff , �ifff  are  orthogonal 

vectors  ( as  in  the  case  of  vector  spaces ). 

 

• (ii)  J( Y; X ) = �igfff h �Yfff.  Now  substituting   �igfff �   �Ygfff h ,  we  have  that 

       J ( Y; X ) = �igfff �ifff  =  J ( X ; Y ).  Thus  the  scalar  measure  is  symmetric. 

 

• Now  we  check  whether  the  scalar  valued  measure  satisfies  the  triangular  

inequality (  The  random  variable  X  is  the  input  to  a  discrete   memoryless  

channel  whose  output  is  Y.  Y  is  inturn  the  input   to  another  discrete  

memoryless  channel  whose  output  is  Z ) 

 

                   u�<; w �   �Ygfff h �ifff  �  �igfff  �ifff , 
                  u�w; x �   �igfff h �yfff  �  �ygfff  �yfff , 
 



Hence  we  necessarily  have  that   

             u�<; w + u�w; x �   �igfff  �ifff + �ygfff  �yfff . 
 

But  by  definition   J(X;Z)  � �Ygfff h �yfff  �  �ygfff  �yfff . 
 

Thus      J(X;Y) + J(Y;Z) `  J(X;Z). 

 

Hence  the  triangular  inequality  is  satisfied.  Thus, the  following  Lemma  

is   established. 

 

Lemma  3:  The  scalar  valued  measure 

                                                             u�<; w �   �Ygfff h �ifff  �  �igfff  �ifff…………(2.15) 

 

between  the  probability  vectors ( corresponding  to  the  probability  mass 

functions  of  the  random  variables  X, Y )  is  a  “Pseudo—Metric” on  the 

space  of  probability  vectors  (  Where  the  random  variable  Y  is   output  of   

a  Discrete  Memoryless  Channel  whose  input  is  X ). 

 

             In  the  spirit  of   definition  of  Tsallis  entropy,  we  can  define  an 

Interesting  entropy  type  measure   1- J ( X; Y ).  It  is  precisely  the  Tsallis 

entropy  of  the  probability  mass  function  of  the  output  of  a  discrete  memoryless 

channel.   

 

• Remark:   It  is  well  known  that  higher  degree  forms  ( multivariate  polynomials) 

are   captured   through   Tensors.  Thus  using  tensors,  new  measures  can  be 

defined  generalizaing   the  above  ideas.  Details  are  not  provided  for  brevity.  

 

                                       Now  we  summarize   the  results  discussed  so  far  in the  following: 

 

• J(X)  =    X ∑ X�YZ[�� �\]� ]^,     is  like  the  “Euclidean  Length” of   a  probability 

vector.  In  Lemma  1,  it  was  shown  that   1 � X u�<]�  approximates  the  Gibbs-

Shannon  entropy  of  the  random  variable   X. 

 

• J(X;Y)  is  a  scalar  valued  measure  on  the  input  X  and  output  Y  of  a  discrete  

memoryless  channel. 

 

                     4.  Conclusions: 

                                            In  this  research  paper,  the  relationship  between  Gibbs-Shannon 

                    Entropy  measure  and  the  Tsallis  entropy  ( for  q=2 )  is  demonstrated.  Based  on  

                    this  result,  various  interesting  measures  associated  with  probability  mass  functions 

                    (defined  at  the  input  and  output  of  a  Discrete  Memoryless  Channel )  are  defined. 

                    It  is  expected  that  these  results  will  be  of  utility  in  Information  Theoretic   

                    Investigations. 

 

 

 



                       REFERENCES: 

 

                    [Ash]  R.B.Ash,”   Information  Theory,”  Dover Publications,  Inc,  New  York, 

 

                   [Kno]  K. Knopp, “Theory  and  Applications  of  Infinite  Series,” Dover  

                                                  Publications,  Inc,  New  York , 

 

                    [Rama] G. Rama  Murthy, “Weakly  Short  Memory Stochastic  Processes:  Signal   Processing 
                                Perspectives, “  Proceedings  of  International  Conference  on Frontiers  of  Interface 

                     between  Statistics  and  Sciences,” December  20, 2009  to  January 02, 2010, 

 

 

                

 

                

              
 


