
EasyChair Preprint

№ 98

A FOOLish Encoding of the Next State Relations

of Imperative Programs

Evgenii Kotelnikov, Laura Kovács and Andrei Voronkov

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 25, 2018

A FOOLish Encoding of the Next State
Relations of Imperative Programs

Evgenii Kotelnikov1, Laura Kovács1,2, and Andrei Voronkov3,4

1 Chalmers University of Technology, Gothenburg, Sweden
2 TU Wien, Vienna, Austria

3 The University of Manchester, Manchester, UK
4 EasyChair

Abstract. Automated theorem provers are routinely used in program
analysis and verification for checking program properties. These prop-
erties are translated from program fragments to formulas expressed in
the logic supported by the theorem prover. Such translations can be
complex and require deep knowledge of how theorem provers work in
order for the prover to succeed on the translated formulas. Our previous
work introduced FOOL, a modification of first-order logic that extends
it with syntactical constructs resembling features of programming lan-
guages. One can express program properties directly in FOOL and leave
translations to plain first-order logic to the theorem prover. In this paper
we present a FOOL encoding of the next state relations of imperative
programs. Based on this encoding we implement a translation of imper-
ative programs annotated with their pre- and post-conditions to partial
correctness properties of these programs. We present experimental results
that demonstrate that program properties translated using our method
can be efficiently checked by the first-order theorem prover Vampire.

1 Introduction

Automated program analysis and verification requires discovering and proving
program properties ensuring program correctness. These program properties are
usually expressed in combined theories of various data structures, such as inte-
gers and arrays. SMT solvers and first-order theorem provers that are used to
check these properties need efficient handling of both theories and quantifiers.
Moreover, formalisation of the program properties in the logic supported by the
SMT solver or theorem prover plays a crucial role in making the prover succeed
proving program correctness.

The translation of program properties into logical formulas accepted by a
theorem prover is not straightforward. The reason for this is a mismatch between
the semantics of the programming language constructs and that of the input
language of the theorem prover. If program properties are not directly expressible
in the input language, one needs to implement a translation of these properties to
the language of the theorem prover. Such translations can be complex and error
prone. Furthermore, one might need deep knowledge of how theorem provers
work to obtain formulas in a form that theorem provers can handle efficiently.

Program verification systems reduce the mismatch between program proper-
ties and their formalisation as logical formulas from two ends. On the one hand,
intermediate verification languages, such as Boogie [12] and WhyML [5], are de-
signed to represent programs and their properties in a way that is friendly for
translations to logic. On the other hand, theorem provers extend their supported
logics with syntactic constructs that mirror those of programming languages.

Our previous work introduced FOOL [8], a modification of many-sorted first-
order logic (FOL). FOOL extends FOL with syntactical constructs such as if-
then-else and let-in expressions. These constructs can be used to naturally
express program properties about conditional statements and variable updates.
Users of a theorem prover that supports FOOL do not need to invent translations
for these features of programming languages and can use features of FOOL
directly. It allows the theorem prover to apply its own translation to FOL that
it can use efficiently. We extended the Vampire theorem prover [10] to support
FOOL [6] and designed an efficient clausification algorithm VCNF [7] for FOOL.

In summary, FOOL extends FOL with the following constructs.

– First-class boolean sort — one can define function and predicate symbols
with boolean arguments and use quantifiers over the boolean sort.

– Boolean variables used as formulas.
– Formulas used as arguments to function and predicate symbols.
– Expressions of the form if ϕ then s else t, where ϕ is a formula, and s and
t are either both terms or formulas.

– Expressions of the form let D1; . . . ;Dk in t, where k > 0, t is either a term
or a formula, and D1, . . . , Dk are simultaneous definitions, each of the form
1. f(x1 : σ1, . . . , xn : σn) = s, where n ≥ 0, f can be a function or a predi-

cate symbol, and s is either a term or a formula;
2. (c1, . . . , cn) = s, where n > 1, c1, . . . , cn are constant symbols of the sorts
σ1, . . . , σn, respectively, and s is a tuple expression. A tuple expression
is inductively defined to be either
(a) (s1, . . . , sn), where s1, . . . , sn are terms of the sorts σ1, . . . , σn, re-

spectively;
(b) if ϕ then s1 else s2, where ϕ is a formula, and s1 and s2 are tuple

expressions; or
(c) let D1; . . . ;Dk in s′, where D1; . . . ;Dk are definitions, and s′ is a

tuple expression.

To our knowledge, no other logic, efficiently implemented in automated theo-
rem provers, contains these constructs. Some constructs of FOOL have been pre-
viously implemented in interactive and higher-order theorem provers. However,
there was no special emphasis on the efficiency or friendliness of the translation
for the following processing by automatic provers.

In this paper, we extend our previous work on FOOL by demonstrating the
efficient use of FOOL for program analysis. To this end, we give an efficient
encoding of the next state relations of imperative programs in FOOL. Let us
motivate our work with the simple program on Figure 1. This program contains

if (x > y) {
t := x;
x := y;
y := t;

}
assert x <= y;

Fig. 1. An imperative program
with an if statement.

let (x, y, t) = if x > y

then let t = x in
let x = y in

let y = t in
(x, y, t)

else (x, y, t)
in x ≤ y

Fig. 2. A FOOL encoding of the program
assertion on Figure 1.

an if statement and assignments to integer variables. The assert statement
ensures that x is never greater than y after execution of the if statement.

To check that the given program assertion holds using an automated theorem
prover, one has to express this assertion as a logical formula. For that, one has
to express the updated values of x and y after the sequence of assignments.
For example, one can compute the updated value of each individual variable
separately for each possible execution trace. However, this approach suffers from
a bloated resulting formula that will contain duplicating parts of the program. A
more common technique is to first convert a program to a static single assignment
(SSA) form. This conversion introduces a new intermediate variable for each
assignment and creates a smaller translated formula.

Both excessive naming and excessive duplication of program expressions can
make the resulting logical formula very hard for a first-order theorem prover.
The encoding of the next state relations of imperative programs given in this
paper avoids both by using a FOOL formula that closely matches the structure
of the original program (Section 3). This way the decision between introducing
new symbols and duplicating program expressions is left to the theorem prover
that is better equipped to make it. The assertion of the program in Figure 1 is
concisely expressed with our encoding as the FOOL formula on Figure 2.

While FOOL offers a concise representation of some programming constructs,
the efficient implementation of FOOL poses a challenge for first-order theorem
provers since their performance on various translations to CNF can be hampered
by the (unintended) use of constructs interfering with their internal implemen-
tation, including the use of orderings, selection and the saturation algorithm.
For example, to deal with the boolean sort, it is not uncommon to add an ax-
iom like (∀x)(x = 0 ∨ x = 1) for this sort. Even this simple axiom can cause
a considerable growth of the search space, especially when used with certain
term orderings. To address the challenge of dealing with full FOOL, one needs
experimental comparison of various translations or various implementations of
FOOL. Our paper is the first one to make such an experimental comparison.

Our encoding uses tuple expressions and let-in expressions with tuple defi-
nitions, available in FOOL. We extend and generalise the use of tuples in first-

order theorem provers by introducing a polymorphic theory of first class tuples
(Section 2). In this theory one can define tuple sorts and use tuples as terms.

Our encoding can be efficiently used in automated program analysis and ver-
ification. To demonstrate this, we report on our experimental results obtained
by running Vampire on program verification problems (Section 4). These ver-
ification problems are partial correctness properties that we generated from a
collection of imperative programs using an implementation of our encoding to
FOOL as well as other tools.

Contributions. We summarise the main contributions of this paper below.

1. We define an encoding of the next state relation of imperative programs in
FOOL and show that it is sound (Section 3). Using this encoding, we define a
translation of certain properties of imperative programs to FOOL formulas.

2. We present a polymorphic theory of first class tuples and its implementation
in Vampire (Section 2). To our knowledge, Vampire is the only superposition-
based theorem prover to support this theory.

3. We present experimental results obtained by running Vampire on a collection
of benchmarks expressing partial correctness properties of imperative pro-
grams (Section 4). We generated these benchmarks using an implementation
of our encoding to FOOL and other tools. Our results show Vampire is more
efficient on the FOOL encoding of partial correctness properties, compared
with other translations.

2 Polymorphic Theory of First Class Tuples

The use of tuple expressions in FOOL is limited. They can only occur on the
right hand side of a tuple definition in let-in. One cannot use a tuple expression
elsewhere, for example, as an argument to a function or predicate symbol.

In this section we describe the theory of first class tuples that enables a more
generic use of tuples. This theory contains tuple sorts and tuple terms. Both of
them are first class — one can define function and predicate symbols with tuple
arguments, quantify over the tuple sort, and use tuple terms as arguments to
function and predicate symbols. Tuple expressions in FOOL, combined with the
polymorphic theory of tuples, are tuple terms.

Definition. The polymorphic theory of tuples is the union of theories of tuples
parametrised by tuple arity n > 0 and sorts τ1, . . . , τn.

A theory of first class tuples is a first-order theory that contains a sort
(τ1, . . . , τn), function symbols t : τ1 × . . .× τn → (τ1, . . . , τn), π1 : (τ1, . . . , τn)→
τ1, . . . , πn : (τ1, . . . , τn) → τn, and two axioms. The function symbol t con-
structs a tuple from given terms, and function symbols π1, . . . , πn project a
tuple to its individual elements. For simplicity we will write (t1, . . . , tn) instead
of t(t1, . . . , tn) to mean a tuple of terms t1, . . . , tn. The tuple axioms are

1. exhaustiveness

(∀x1 : τ1) . . . (∀xn : τn)(π1((x1, . . . , xn)) .= x1 ∧ . . . ∧ πn((x1, . . . , xn)) .= xn);

2. injectivity

(∀x1 : τ1) . . . (∀xn : τn)(∀y1 : τ1) . . . (∀yn : τn)
((x1, . . . , xn) .= (y1, . . . , yn)⇒ x1

.= y1 ∧ . . . ∧ xn
.= yn).

Tuples are ubiquitous in mathematics and programming languages. For ex-
ample, one can use the tuple sort (R,R) as the sort of complex numbers. Thus,
the term (a, b), where a : R and b : R represents a complex number a+ bi. One
can define the addition function plus : (R,R) × (R,R) → (R,R) for complex
numbers with the formula

(∀x : (R,R))(∀y : (R,R))
(plus(x, y) .= (π1(x) + π1(y), π2(x) + π2(y))),

(1)

where + denotes addition for real numbers.
Tuple terms can be used as tuple expressions in FOOL. If (c1, . . . , cn) = s is

a tuple definition inside a let-in, where c1, . . . , cn are constant symbols of sorts
τ1, . . . , τn, respectively, then tuple expression s is a term of the sort (τ1, . . . , τn).

It is not hard to extend tuple definitions to allow arbitrary tuple terms of
the correct sort on the right hand side of =. For example, one can use a variable
of the tuple sort. With such extension, Formula 1 can be equivalently expressed
using a let-in with two simultaneous tuple definitions as follows

(∀x : (R,R))(∀y : (R,R))
(plus(x, y) .= let (a, b) = x; (c, d) = y in (a+ c, b+ d)).

(2)

Implementation. Vampire implements reasoning with the polymorphic theory
of tuples by adding corresponding tuple axioms when the input uses tuple sorts
and/or tuple functions. For each tuple sort (τ1, . . . , τn) used in the input, Vam-
pire defines a term algebra [9] with the single constructor t and n destructors
π1, . . . , πn. Then Vampire adds the corresponding term algebra axioms, which
coincide with the tuple theory axioms.

Vampire reads formulas written in the TPTP language [16]. The TFX sub-
set5 of TPTP contains a syntax for tuples and let-in expressions with tuple
definitions. The sort (R,R) is represented in TFX as [$real,$real] and the
term (a+ c, b+ d) is represented as [$sum(a,c),$sum(b,d)]. Formula 2 can be
expressed in TPTP as
tff(plus,type,plus:([$real,$real]*[$real,$real])>[$real,$real]).
tff(plus_def,axiom,

![X:[$real,$real],Y:[$real,$real]]:
(plus(X,Y)=$let([[a:$real,b:$real],[c:$real,d:$real]],

[a,b]:=X;[c,d]:=Y,
[$sum(a,c),$sum(b,d)]))).

5 http://www.cs.miami.edu/˜tptp/TPTP/Proposals/TFXTHX.html

Vampire translates let-in with tuple definitions to clausal normal form of
first-order logic using the VCNF clausification algorithm [7].

3 Imperative Programs to FOOL

In this section we discuss an efficient translation of imperative programs to
FOOL. To formalise the translation we define a restricted imperative program-
ming language and its denotational semantics in Section 3.1. This language is
capable of expressing variable updates, if-then-else, and sequential composi-
tion. Then, we define an encoding of the next state relation for programs of
this language, and state the soundness property of this encoding in Section 3.2.
Finally, in Section 3.3 we show a translation that converts a program, annotated
with its pre-conditions and post-conditions, to a FOOL formula that expresses
the partial correctness property of that program.

We give (rather standard) definitions of our programming language and its
semantics and use them to define the main contributions of this section: the
encoding of the next state relation (Definition 6) and soundness of this encoding
(Theorem 1).

3.1 An Imperative Programming Language

We define a programming language with assignments to typed variables, if-
then-else, and sequential composition. We omit variable declarations in our
language and instead assume for each program a set of program variables V and
a type assignment η. η is a function that maps each program variable into a
type. Each type is either int, bool, or array(σ, τ), where σ and τ are types of
array indexes and array values, respectively. In the sequel we will assume that
V and η are arbitrary but fixed.

Programs in our language select and update elements of arrays, including
multidimentional arrays. We do not introduce a distinguished type for multidi-
mentional arrays but instead use nested arrays. We write array(σ1, . . . , σn, τ),
n > 1, to mean the nested array type array(σ1, array(. . . , array(σn, τ) . . .)).

Definition 1. An expression of the type τ is defined inductively as follows.

1. An integer n is an expression of the type int.
2. Symbols true and false are expressions of the type bool.
3. If η(x) = τ , then x is an expression of the type τ .
4. If η(x) = array(σ1, . . . , σn, τ), n > 0, e1, . . . , en are expressions of types σ1,

. . . , σn, respectively, then x[e1, . . . , en] is an expression of the type τ .
5. If e1 and e2 are expressions of the type τ , then e1

.= e2 is an expression of
the type bool.

6. If e1 and e2 are expressions of the type int, then −e1, e1 +e2, e1−e2, e1×e2
are expressions of the type int.

7. If e1 and e2 are expressions of the type int, then e1 < e2 is an expression
of the type bool.

8. If e1 and e2 are expression of the type bool, then ¬e1, e1 ∨ e2, e1 ∧ e2 are
expressions of the type bool. ut

Definition 2. A statement is defined inductively as follows.
1. skip is an empty statement.
2. If η(x1) = τ1, . . . , η(xn) = τn, n ≥ 1 and e1, . . . , en are expressions of the

types τ1, . . . , τn, respectively, then x1, . . . , xn := e1, . . . , en is a statement.
3. If η(x) = array(σ1, . . . , σn, τ), n ≥ 1, and e1, . . . , en, e are expressions of

types σ1, . . . , σn, τ , respectively, then x[e1, . . . , en] := e is a statement.
4. If e is an expression of the type bool, s1 and s2 are statements, and at least

one of s1, s2 is not skip, then if e then s1 else s2 is a statement.
5. If s1 and s2 are statements and neither of them is skip, then s1 ; s2 is a

statement. ut

We say that x1, . . . , xn in the statement x1, . . . , xn := e1, . . . , en and x in the
statement x[e1, . . . , en] := e are assigned program variables. For each statement
s we denote by updates(s) the set of all assigned program variables that occur
in s.

We define the semantics of the programming language by an interpretation
function J− K for types, expressions and statements. The interpretation of a type
is a set: J int K = Z, J bool K = {0, 1}, and J array(τ, σ) K = J τ K → Jσ K. The
interpretation of expressions and statements is defined using program states, that
is, mappings of program variables x ∈ V , η(x) = τ to elements of J τ K.

Definition 3. Let e be an expression of the type τ . The interpretation J e K is a
mapping from program states to J τ K defined inductively as follows.
1. Jn K maps each state to n, where n is an integer.
2. J true K maps each state to 1.
3. J false K maps each state to 0.
4. Jx K maps each st to st(x).
5. Jx[e1, . . . , en] K maps each st to st(x)(J e1 K (st)) . . . (J en K (st)).
6. J e1 ⊕ e2 K maps each st to J e1 K (st) ⊕ J e2 K (st),where ⊕ ∈ { .=,+,−,×, <

,∨,∧}.
7. J¬e K maps each st to ¬ J e K (st). ut

Definition 4. Let s be a statement. The interpretation J s K is a mapping be-
tween program states defined inductively as follows.
1. J skip K is the identity mapping.
2. Jx1, . . . , xn := e1, . . . , en K maps each st to st′ such that st′(xi) = J ei K (st)

for each 1 ≤ i ≤ n and otherwise coincides with st.
3. Jx[e1, . . . , en] := e K maps each st to st′ such that

st′(x)(J e1 K (st)) . . . (J en K (st)) = J e K (st)

and otherwise coincides with st.
4. J if e then s1 else s2 K maps each st to J s1 K (st) if J e K (st) = 1 and to

J s2 K (st) otherwise.
5. J s1 ; s2 K is J s2 K ◦ J s1 K. ut

3.2 Encoding the Next State Relation

Our setting is FOOL extended with the theory of linear integer arithmetic,
the polymorphic theory of arrays [6], and the polymorphic theory of first class
tuples (Section 2). The theory of linear integer arithmetic includes the sort Z,
the predicate symbol <, and the function symbols +, −, and ×. The theory of
arrays includes the sort array(τ, σ) for all sorts τ and σ, and function symbols
select and store. The function symbol select represents a binary operation of
extracting an array element by its index. The function symbol store represents
a ternary operation of updating an array at a given index with a given value.
We point out that sorts bool, Z, and array(σ, τ) mirror types bool, int and
array(σ, τ) of our programming language, and have the same interpretations.

We represent multidimentional arrays in FOOL as nested arrays6. To this end
we (i) inductively define select(a, i1, . . . , in), where n > 1, to be select(select(a, i1),
i2, . . . , in); and (ii) inductively define store(a, i1, . . . , in, e), where n > 1, to be
store(a, i1, store(select(a, i1), i2, . . . , in, e)).

Our encoding of the next state relation produces FOOL terms that use pro-
gram variables as constants and do not use any other uninterpreted function
or predicate symbols. In the sequel we will only consider such FOOL terms.
For these FOOL terms, η is a type assignment and each program state can be
extended to a η-interpretation, the details of this extension are straightforward
(we refer to [8] for the semantics of FOOL). We will use program states as η-
interpretations for FOOL terms. For example we will write evalst(t) for the value
of t in st, where t is a FOOL term and st is a program state. We will say that a
program state st satisfies a FOOL formula ϕ if evalst(ϕ) = 1.

To define the encoding of the next state relation we first define a translation
of expressions to FOOL terms. Our encoding applies this translation to each
expression that occurs inside a statement.

Definition 5. Let e be an expression of the type τ . T (e) is a FOOL term of the
sort τ , defined inductively as follows.

T (n) = n,where n is an integer.
T (true) = true.
T (false) = false.

T (x) = x.

T (x[e1, . . . , en]) = select(x, T (e1), . . . , T (en)).
T (e1 ⊕ e2) = T (e1)⊕ T (e2),where ⊕ ∈ { .=,+,−, <,×,∨,∧}.
T (−e) = −T (e).
T (¬e) = ¬T (e). ut

Lemma 1. evalst(T (e)) = J e K (st) for each expression e and state st. ut
6 Multidimentional arrays can be represented in FOOL also as arrays with tuple in-

dexes. We do not discuss such representation in this work.

Proof. By structural induction on e. ut
Definition 6. Let s be a statement. N (s) is a mapping between FOOL terms
of the same sort, defined inductively as follows.
1. N (skip) is the identity mapping.
2. N (x1, . . . , xn := e1, . . . , en) maps t to

let (x1, . . . , xn) = (T (e1), . . . , T (en)) in t.

3. N (x[e1, . . . , en] := e) maps t to

let x = store(x, T (e1), . . . , T (en), T (e)) in t.

4. N (if e then s1 else s2) maps t to

let (x1, . . . , xn) = if T (e) then N (s1)((x1, . . . , xn))
else N (s2)((x1, . . . , xn))

in t,

where updates(s1) ∪ updates(s2) = {x1, . . . , xn}.

5. N (s1 ; s2) is N (s1) ◦ N (s2). ut
The following theorem is the soundness property of translation N . Essen-

tially, it states that N encodes the semantics of a given statement as a FOOL
formula.
Theorem 1. evalst(N (s)(t)) = evalJ s K(st)(t) for each statement s, state st and
FOOL term t. ut
Proof. By structural induction on s. ut

3.3 Encoding the Partial Correctness Property
We use the encoding of the next state relation to generate partial correctness
properties of programs annotated with their pre-conditions and post-conditions.

We define an annotated program to be a Hoare triple {ϕ} s {ψ}, where s is a
statement, and ϕ and ψ are formulas in first-order logic. We say that {ϕ} s {ψ}
is correct if for each program state st that satisfies ϕ, J s K (st) satisfies ψ. We
translate each annotated program {ϕ} s {ψ} to the FOOL formula ϕ⇒ N (s)(ψ).
Theorem 2. Let {ϕ} s {ψ} be an annotated program. The FOOL formula ϕ⇒
N (s)(ψ) is valid iff {ϕ} s {ψ} is correct. ut
Proof. Directly follows from Theorem 1. ut

We point out the following two properties of the encoding N . First, the size
of the encoded formula is O(v · n), where v is the number of variables in the
program and n is the program size as each program statement is used once with
one or two instances of (x1, . . . , xn). Second, the encoding does not introduce
any new symbols. When we translate program correctness properties to FOL,
both an excessive number of new symbols and an excessive size of the translation
might make the encoded formula hard for a theorem prover. Instead of balancing
between the two, encoding to FOOL leaves the decision to the theorem prover.

4 Experiments

In this section we describe our experiments on comparing the performance of the
Vampire theorem prover [10] on FOOL and on translations of program proper-
ties to FOL. We used a collection of 50 programs written in the Boogie veri-
fication language [12]. Each of these programs uses only variable assignments,
if-then-else statements, and sequential composition and is annotated with its
pre-conditions and post-conditions, expressed in first-order logic. From this col-
lection of programs we generated the following three sets of benchmarks.

1. 50 problems in first-order logic written in the SMT-LIB language [2]. We
generated these problems by running the front end of the Boogie [1] verifier.

2. 50 FOOL problems with tuples generated by running our implementation of
the translation from Section 3.3, named Voogie.

3. 50 FOOL problems generated by running the BLT [3] translator.

We point out that in our experiments we do not aim to compare methods of
program verification or specific verification tools. Rather, we compare different
ways of translating realistic verification problems for theorem provers.

In what follows, we describe the collection of imperative programs used in
our experiments (Section 4.1) and discuss our set of benchmarks (Section 4.2).
All properties that we deal with use integers and arrays, as well as universal and
existential quantifiers. To verify these properties one has to reason in the combi-
nation of theories and quantifiers. We briefly describe how Vampire implements
this kind of reasoning in Section 4.3. Our experimental results are summarised
in Tables 1–3 and discussed in Section 4.4.

4.1 Examples of Imperative Programs

We demonstrate the work of our translation on a collection of imperative pro-
grams that only use variable assignments, if-then-else statements, and se-
quential composition. Unfortunately, no large collections of such programs are
available. There are many benchmarks for software verification tools, but most
of them use control flow statements not covered in this work, such as gotos and
exceptions. We also cannot use benchmarks from the hardware verification and
model checking communities, because they are mostly about boolean values and
bit-vectors. For our experiments we generated our own imperative programs in
two steps described below.

First, we crafted 10 programs that implement textbook algorithms and solu-
tions to program verification competitions. Each program uses variables of the
integer, boolean, and array type. Each program contains a single while loop of
the form while e do s, where e is a boolean expression and s is a statement. In
addition, each program contains variable assignments, if-then-else statements,
and sequential composition. We annotated each program with its pre-condition
ϕ and each loop with its invariant ψ. The formulas ϕ and ψ are expressed in
first-order logic.

Then, we unrolled the loop of each program k times, where k is an integer be-
tween 1 and 5. This resulted in 50 loop-free programs that retain the annotated
properties. Each program encodes the loop invariant property of the original
program. Multiple unrollings provide us with programs with long sequences of
variables updates, if-then-else statements and compositions, which are conve-
nient for our experiments. Our loop unrolling program transformation consisted
of the following steps.

1. Introduce a fresh boolean variable bad that encodes the under-specified state
of the program.

2. Construct a guarded loop iteration i as if ¬e then bad := true else skip ; s.
3. Construct a sequence of iterations i ; . . . ; i, where i is repeated k times.
4. Finally, construct the annotated program {ϕ ∧ ψ} i ; . . . ; i {¬bad ⇒ ψ}.

It is not hard to show that if a program with a loop satisfies its specification,
then the Hoare triple resulting in step 4 of the above transformation also holds.

We wrote our example programs with loops as well as their loop-free unrolled
versions in the Boogie language. Boogie can unroll loops automatically, but in-
troduces goto statements that our translation does not support. For this reason,
we used the loop unrolling described above.

An example of our loop unrolling is available at http://www.cse.chalmers.
se/˜evgenyk/ijcar18/. It shows the maxarray program with a loop from our
collection and a program generated from maxarray by unrolling its loop twice.

4.2 Benchmarks

We used the 50 annotated loop-free programs and generated their partial cor-
rectness statements using Boogie, Voogie and BLT. These statements are en-
coded as unsatisfiable problems in first-order logic and FOOL. Our collection of
imperative programs with loops, their loop-free unrollings and benchmarks ex-
pressed in the TPTP language [15] is available at http://www.cse.chalmers.
se/˜evgenyk/ijcar18/. The TPTP benchmarks are also available, along with
other FOOL problems, on the TPTP website http://tptp.org.

The Boogie verifier generates verification conditions as formulas in first-order
logic written in the SMT-LIB language and uses the SMT solver Z3 [4] to check
these formulas. We ran Boogie with the option /proverLog to print the generated
formulas on each of our annotated loop-free programs and in this way obtained
a collection of 50 SMT-LIB benchmarks.

Voogie is our implementation of the translation described in Section 3. It
takes as input programs written in a fragment of the Boogie language and gen-
erates FOOL formulas written in the TPTP language. The source code of Voogie
is available at https://github.com/aztek/voogie.

The fragment of the Boogie language supported by Voogie can be seen as
the smallest fragment that is sufficient to represent the loop-free programs in
our collection. This fragment consists of (i) top level variable declarations; (ii) a
single procedure main annotated with its pre- and post-conditions; (iii) assign-
ments to variables, including parallel assignments, and assignments to array

elements; (iv) if-then-else statements; and (v) arithmetic and boolean oper-
ations. Running Voogie on each loop-free program in our collection gave us 50
TPTP benchmarks. An example of the TPTP benchmark obtained from run-
ning Voogie on the maxarray program with its loops unrolled twice is available
at http://www.cse.chalmers.se/˜evgenyk/ijcar18/.

BLT (Boogie Less Triggers) [3] is an automatic tool that takes Boogie pro-
grams as input and generates their verification conditions in first-order logic
written in the TPTP language. BLT has an experimental feature of generating
FOOL formulas with tuple let-in and tuple expressions to represent next state
values of program variables in a style similar to Voogie. At the time of our ex-
periments, this feature was not stable enough, and we did not enable it. Running
BLT with its default configuration on each of the 50 loop-free programs in our
collection gave us 50 TPTP benchmarks.

The representation of program expressions coincides in all three translations.
All translations use the theory of linear integer arithmetic and the theory of
arrays as realised in their respective languages.

4.3 Theories and Quantifiers in Vampire

Vampire’s main algorithm is saturation of a set of first-order clauses using the
resolution and superposition calculus. Vampire also implements the AVATAR
architecture [17] for splitting clauses. The idea behind AVATAR is to use a
SAT or an SMT solver to guide proof search. AVATAR selects sub-problems for
the saturation-based prover to tackle by making decisions over a propositional
abstraction of the clause search space. The -sas option of Vampire selects the
SAT solver.

Vampire handles theories by automatically adding theory axioms to the
search space whenever an interpreted sort, function, or predicate is found in
the input. This approach is incomplete for theories such as linear and non-linear
integer and real arithmetic, but shows good results in practice. The -tha option
of Vampire with values on and off controls whether theory axioms are added.

A recent work [13] lifted AVATAR to be modulo theories by replacing the SAT
solver by an SMT solver, ensuring that the sub-problem is theory-consistent in
the ground part. The result is that the saturation prover and the SMT solver deal
with the parts of the problem to which they are best suited. Vampire implements
AVATAR modulo theories using Z3.

Our experience with running Vampire on theory- and quantifier-intensive
problems shows that some of the theory axioms can degrade the performance
of Vampire. These axioms make Vampire infer many theory tautologies making
the search space larger. We found that, among others, axioms of commutativity,
associativity, left and right identity, and left and right inverse of arithmetic
operations are in this sense “expensive”. Our solution to this problem is a more
refined control over which theory axioms Vampire adds to the search space.
We added to the -tha option of Vampire a new value named some that makes
Vampire only add “cheap” axioms to the search space. some implements our

empirical criterion for choosing theory axioms. Designing other criteria for axiom
selection is an interesting task for future work.

4.4 Experimental Results

For our experiments, we compared the performance of Vampire on the Boogie,
Voogie, and BLT translations of our benchmarks.

We ran Vampire on all three sets of benchmarks with options -tha some and
-sas z3. Vampire supports both TPTP and SMT-LIB syntax, the input lan-
guage is selected by setting the --input_syntax option to tptp and smtlib2, re-
spectively. We performed our experiments on the StarExec compute cluster [14]
using the time limit of 5 minutes per problem. The detailed experimental results
are available at http://www.cse.chalmers.se/˜evgenyk/ijcar18/.

Table 1. Runtimes in seconds of Vampire
on the Boogie translation of the bench-
marks.

Benchmark Number of loop unrollings
1 2 3 4 5

binary-search 0.884 2.420 3.364 10.709 27.648
bubble-sort – – – – –
dutch-flag 24.789 – – – –
insertion-sort 122.354 – – – –
matrix-transpose 1.311 – 1.078 – –
maxarray 0.205 0.587 1.197 1.702 1.692
maximum 0.066 0.078 0.082 0.095 0.129
one-duplicate – – – – –
select-k 96.993 – – – –
two-way-sort 0.191 0.205 0.647 1.384 1.344

Table 2. Runtimes in seconds of Vampire
on the Voogie translation of the bench-
marks.

Benchmark Number of loop unrollings
1 2 3 4 5

binary-search 1.979 25.135 6.560 – 163.803
bubble-sort 0.394 53.192 2.073 – –
dutch-flag 11.384 – – – –
insertion-sort 18.262 38.169 3.369 21.698 11.639
matrix-transpose 0.266 8.362 – – –
maxarray 0.170 0.587 0.489 2.635 6.325
maximum 0.062 0.065 0.070 0.087 0.102
one-duplicate 0.125 2.402 2.231 93.746 145.243
select-k 0.216 0.612 203.655 – –
two-way-sort 0.464 5.360 – – –

Tables 1 and 2 summarise the results of Vampire on the Boogie and Voogie
translations of the benchmarks, respectively. A dash means that Vampire does
not solve the problem within the given time limit.

– Vampire solves 25 of the problems, translated by Boogie, and 36 problems,
translated by Voogie.

– For 16 benchmark programs, Vampire solves their Voogie translations, but
not the Boogie translations.

– For 5 benchmark programs, Vampire solves their Boogie translations, but
not the Voogie translations.

– For 20 benchmark programs, Vampire solves both of their translations, and
is faster on the Voogie translations for 12 of them.

Table 3 summarises the results of Vampire on the BLT translations of the
benchmarks.

– Vampire solves 19 of the problems, translated by BLT.

– For all benchmark programs whose BLT translation Vampire is able to solve,
Vampire also solves their Voogie translations. There are 3 benchmark pro-
grams for which Vampire solves their BLT translations but not their Boogie
translations.

Table 3. Runtimes in seconds of Vampire
on the BLT translation of the benchmarks.

Benchmark Number of loop unrollings
1 2 3 4 5

binary-search 0.821 163.790 – – –
bubble-sort 3.511 – – – –
dutch-flag 4.049 – – – –
insertion-sort 1.780 – – – –
matrix-transpose 0.465 12.437 – – –
maxarray 0.174 1.567 47.724 – –
maximum 0.069 0.140 0.724 12.234 –
one-duplicate 0.307 10.039 – – –
select-k 3.142 – – – –
two-way-sort 0.319 24.622 – – –

Based on the results presented in
Tables 1–3 we make the following ob-
servation. The problems translated
from our benchmarks by Voogie are
easier for Vampire than the problems
translated by Boogie and BLT. Vam-
pire is more efficient both in terms of
the number of solved problems and
runtime on the problems translated
by Voogie. This confirms our conjec-
ture that the use of (efficient trans-
lations of) FOOL is better for sat-
uration theorem provers than trans-
lations to FOL designed for other
purposes. It would be interesting to
run these experiments for theorem
provers other than Vampire, however

Vampire is currently the only prover implementing FOOL.

5 Related Work

Our previous work introduced FOOL [8], its implementation in Vampire [6], and
an efficient clausification algorithm for FOOL formulas [7].

In [6] we sketched a tuple extension of FOOL and an algorithm for computing
the next state relations of imperative programs that uses this extension. This
paper extends and improves the algorithm. In particular, (i) we described an en-
coding that uses FOOL in its current form, available in Vampire, (ii) we refined
the encoding to only use in let-in the variables updated in program state-
ments, (iii) we gave the definition of the encoding formally and in full detail,
and (iv) we presented experimental results that confirm the described benefits
of the encoding.

Boogie is used as the name of both the intermediate verification language [12]
and the automated verification framework [1]. The Boogie verifier encodes the
next state relations of imperative programs in first-order logic by naming inter-
mediate states of program variables [11].

BLT [3] is a tool that automatically generates verification conditions of Boo-
gie programs. The aim of the BLT project is to use first-order theorem provers
rather than SMT solvers for checking quantified program properties. BLT pro-
duces formulas written in the TPTP language and uses if-then-else and let-in
constructs of FOOL. BLT has an experimental option that introduces tuples for

encoding of the next state relation. This option implements the encoding de-
scribed in our earlier work [6].

6 Conclusion and Future Work

We presented an encoding of the next state relations of imperative programs in
FOOL. Based on this encoding we defined a translation from imperative pro-
grams, annotated with their pre- and post-conditions, to FOOL formulas that
encode partial correctness properties of these programs. We presented experi-
mental results obtained by running the theorem prover Vampire on such prop-
erties. We generated these properties using our translation and verification tools
Boogie and BLT. We described a polymorphic theory of first class tuples and its
implementation in Vampire.

The formulas produced by our translation can be efficiently checked by au-
tomated theorem provers that support FOOL. The structure of our encoding
closely resembles the structure of the program. The encoding contains neither
new symbols nor duplicated parts of the program. This way, the efficient repre-
sentation of the problem in plain first-order logic is left to the theorem prover
that is better equipped to do it.

Our encoding is useful for automated program analysis and verification. Our
experimental results show that Vampire was more efficient in terms of the number
of solved problems and runtime on the problems obtained using our translation.

FOOL reduces the gap between programming languages and languages of
automated theorem provers. Our encoding relies on tuple expressions and let-
in with tuple definitions, available in FOOL. To our knowledge, these constructs
are not available in any other logic efficiently implemented in automated theorem
provers.

The polymorphic theory of first class tuples is a useful addition to a first-order
theorem prover. On the one hand, it generalises and simplifies tuple expressions
in FOOL. On the other hand, it is a convenient theory on its own, and can be
used for expressing problems of program analysis and computer mathematics.

For future work we are interested in making automated first-order theorem
provers friendlier to program analysis and verification. One direction of this
work is design of an efficient translation of features of programming languages
to languages of automated theorem provers. Another direction is extensions of
first-order theorem provers with new theories, such as the theory of bit vectors.
Finally, we are interested in further improving automated reasoning in combi-
nation of theories and quantifiers.

Acknowledgments

This work has been supported by the ERC Starting Grant 2014 SYMCAR
639270, the Wallenberg Academy Fellowship 2014, the Swedish VR grant D0497701,
the Austrian research project FWF S11409-N23 and EPSRC grants EP/K032674/1
(ReVeS) and EP/P03408X/1 (QuTie).

References
1. Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rus-

tan M. Leino. Boogie: A modular reusable verifier for object-oriented programs.
In Formal Methods for Components and Objects, 4th International Symposium,
FMCO 2005, pages 364–387, 2005.

2. Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard: Version
2.0. Technical report, Department of Computer Science, The University of Iowa,
2010. Available at www.SMT-LIB.org.

3. YuTing Chen and Carlo A. Furia. Triggerless happy – intermediate verification
with a first-order prover. In Nadia Polikarpova and Steve Schneider, editors, Pro-
ceedings of the 13th International Conference on integrated Formal Methods (iFM),
volume 10510 of Lecture Notes in Computer Science, pages 295–311. Springer,
September 2017.

4. Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver.
In Proceedings of TACAS, volume 4963 of LNCS, pages 337–340, 2008.

5. Jean-Christophe Filliâtre and Andrei Paskevich. Why3 — where programs meet
provers. In Programming Languages and Systems - 22nd European Symposium on
Programming, ESOP 2013, pages 125–128, 2013.

6. Evgenii Kotelnikov, Laura Kovács, Giles Reger, and Andrei Voronkov. The Vam-
pire and the FOOL. In Proceedings of the 5th ACM SIGPLAN Conference on
Certified Programs, 2016, pages 37–48, 2016.

7. Evgenii Kotelnikov, Laura Kovács, Martin Suda, and Andrei Voronkov. A clausal
normal form translation for FOOL. In Christoph Benzmüller, Geoff Sutcliffe, and
Raul Rojas, editors, GCAI 2016. 2nd Global Conference on Artificial Intelligence,
volume 41 of EPiC Series in Computing, pages 53–71. EasyChair, 2016.

8. Evgenii Kotelnikov, Laura Kovács, and Andrei Voronkov. A first class boolean sort
in first-order theorem proving and TPTP. In Intelligent Computer Mathematics,
pages 71–86. Springer, 2015.

9. Laura Kovács, Simon Robillard, and Andrei Voronkov. Coming to terms with
quantified reasoning. In Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, POPL 2017, pages 260–270, 2017.

10. Laura Kovács and Andrei Voronkov. First-Order Theorem Proving and Vampire.
In Proceedings of CAV, volume 8044 of LNCS, pages 1–35, 2013.

11. K. Rustan M. Leino. Efficient weakest preconditions. Inf. Process. Lett., 93(6):281–
288, 2005.

12. K. Rustan M. Leino. This is Boogie 2. Manuscript KRML, 178(131), 2008.
13. Giles Reger, Nikolaj Bjørner, Martin Suda, and Andrei Voronkov. AVATAR mod-

ulo theories. In GCAI 2016. 2nd Global Conference on Artificial Intelligence, pages
39–52, 2016.

14. Aaron Stump, Geoff Sutcliffe, and Cesare Tinelli. StarExec: A cross-community
infrastructure for logic solving. In Automated Reasoning – 7th International Joint
Conference, IJCAR 2014, pages 367–373, 2014.

15. Geoff Sutcliffe. The TPTP problem library and associated infrastructure — from
CNF to TH0, TPTP v6.4.0. J. Autom. Reasoning, 59(4):483–502, 2017.

16. Geoff Sutcliffe, Stephan Schulz, Koen Claessen, and Peter Baumgartner. The
TPTP Typed First-Order Form with Arithmetic. In Proceedings of LPAR, vol-
ume 7180 of LNCS, pages 406–419, 2012.

17. Andrei Voronkov. AVATAR: the architecture for first-order theorem provers. In
Computer Aided Verification — 26th International Conference, CAV 2014, pages
696–710, 2014.

