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Abstract. Fine-Grained Visual Categorization (FGVC) is a challeng-
ing topic in computer vision. It is a problem characterized by large
intra-class differences and subtle inter-class differences. In this paper,
we tackle this problem in a weakly supervised manner, where neural
network models are getting fed with additional data using a data aug-
mentation technique through a visual attention mechanism. We perform
domain adaptive knowledge transfer via fine-tuning on our base network
model. We perform our experiment on six challenging and commonly
used FGVC datasets, and we show competitive improvement on accu-
racies by using attention-aware data augmentation techniques with fea-
tures derived from deep learning model InceptionV3, pre-trained on large
scale datasets. Our method outperforms competitor methods on multiple
FGVC datasets and showed competitive results on other datasets. Ex-
perimental studies show that transfer learning from large scale datasets
can be utilized effectively with visual attention based data augmenta-
tion, which can obtain state-of-the-art results on several FGVC datasets.
We present a comprehensive analysis of our experiments. Our method
achieves state-of-the-art results in multiple fine-grained classification datasets
including challenging CUB200-2011 bird, Flowers-102, and FGVC-Aircrafts
datasets.

Keywords: Domain Adaptation · Transfer Learning · Fine-Grained Vi-
sual Categorization · Visual Attention.

1 Introduction

Deep neural networks have provided state-of-the-art results in many domains in
computer vision. However, having a big training set is very important for the
performance of deep neural networks [7, 15]. Data augmentation techniques have
been gaining popularity in deep learning and are extensively used to address the
scarcity of training data. Data augmentation has led to promising results in var-
ious computer vision tasks [15]. There are different data augmentation methods
for deep models, like image flipping, cropping, scaling, rotation, translation, color
distortion, adding Gaussian noise, and many more. Previous works mostly choose
random images from the dataset and apply the above operations to enlarge the
amount of training data. However, applying random cropping to generate new
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training examples can have undesirable consequences. For example, if the size of
the cropped region is not large enough, it may consist entirely of background,
and not contain any part of the labeled object. Moreover, this generated data
might reduce accuracy and negatively affect the quality of the extracted fea-
tures. Consequently, the disadvantages of random cropping might cancel out its
advantages. More specific features need to be provided to the model to make
data augmentation more productive.

In Fine-Grained Visual Categorization (FGVC), same-class items may have
variation in the pose, scale, or rotation. FGVC contains subtle differences among
classes in a sub-category of an object, which includes the model of the cars, type
of the foods or the flowers, species of the birds or dogs, and type of the aircrafts.
These differences are what make FGVC a challenging problem, as there are
significant intra-class differences among the sub-categories, and at the same time,
items from different classes may look similar. In contrast with regular object
classification techniques, FGVC aims to solve the identification of particular
subcategories from a given category [10, 12].

Convolutional Neural Networks (CNNs) have been extensively used for var-
ious applications in computer vision. To achieve good performance with CNNs,
typically, we need large amounts of labeled data. However, it is a tedious process
to collect labeled fine-grained datasets. That is why there are not many FGVC
datasets, and existing datasets are not as large compared to standard image
recognition datasets like ImageNet [7]. Normally, a model pre-trained on large
scale datasets such as ImageNet is used, then that is fine-tuned using data from
an FGVC dataset. Typically, FGVC datasets are not too big. Without being big
in size and with a limited number of large scale FGVC datasets, it becomes crit-
ical to design methods that can compensate for the limited amount of data. In
this paper, we investigate some techniques that allow the model to learn features
more effectively, and that perform well on large scale datasets with fine-grained
categories. Generally, there are two kinds of the domain involved in fine-tuning
a network. One is the source domain, which typically includes large scale image
datasets like ImageNet [7], where initial models are pre-trained. Another is the
target domain, where data is used to fine-tune the pre-trained models. In this
paper, the target domain is FGVC datasets, and we are interested in developing
techniques that can boost accuracy on these type of datasets. Modern FGVC
methods use pre-trained networks with ImageNet dataset to a large extent. We
explore the possibility of achieving better accuracy than what has been achieved
so far using ImageNet. A model first learns useful features from a large amount
of training data, and is then fine-tuned on a more evenly-distributed subset to
balance the efforts of the network among different categories and transfer the
already learned features. In short, our research tries to find out the answer of
two questions: 1) What approaches beyond transfer learning do we need to take
to boost the performance on FGVC datasets? 2) How can we determine which
large scale dataset for transfer learning we choose, given that the target domain
is FGVC?
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We calculate the domain similarity score between the source and target do-
mains. This score gives us a clear picture of selecting the source domain for
transfer learning to achieve better accuracy in the target domain. Then, we
focus on a visual attention guided network for data augmentation. Typically,
FGVC datasets are relatively smaller in size, we leverage the feature learning
from fine-tuning as well as data augmentation to achieve better accuracy. The
performance of the combination of these two strategies outperforms the baseline
approach.

In summary, the main contributions of this work are:

1. We propose a simple yet effective improvement over recently proposed net-
work WS-DAN [12], which is used for generating attention maps to extract
sequential local features to tackle the FGVC challenge. A domain similarity
score can play a vital role before applying transfer learning. Based on the
score, we decide which source domain is necessary to use for transfer learn-
ing. Then, we can employ WS-DAN [12] to achieve better results among
FGVC datasets.

2. We demonstrate a domain adaptive transfer learning approach combining
with visual attention based data augmentation can achieve state-of-the-art
results on CUB200-2011 [28], and Flowers-102 [20], and FGVC-Aircrafts [19]
datasets. Additionally, we match the current state-of-the-art accuracy on
Stanford Cars [14], Stanford Dogs [13] datasets.

3. We present the relationship of top-1 accuracy and domain score on six com-
monly used FGVC datasets. We illustrate the effect of image resolution in
transfer learning in detail.

2 Related Work

In this section, we present a brief overview of data augmentation, fine-grained
visual categorization, visual attention mechanism and transfer learning.

2.1 Data Augmentation

Machine learning theory suggests that a model can be more generalized and ro-
bust if it has been trained on a dataset with higher diversity. However, it is a
very difficult and time-consuming task to collect and label all the images which
involve these variations [33]. Data augmentation methods are proposed to ad-
dress this issue by adding the amount and diversity of training samples. Various
methods have been proposed focusing on random spatial image augmentation,
specifically involving in rotation variation, scale variation, translation, and de-
formation, etc. [12]. Classical augmentation methods are widely adopted in deep
learning techniques. The main drawback of random data augmentation is low
model accuracy. Additionally, it suffers from generating a lot of unavoidable
noisy data. Various methods have been proposed to consider data distribution
rather than random data augmentation. A search space based data augmenta-
tion method has been proposed [5]. It can automatically search for improving
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data augmentation policies in order to obtain better validation accuracy. In con-
trast, we leverage WS-DAN [12], which generates augmented data from visual
attention features of the image.

Peng et al. proposed a method for human pose estimation, by introducing a
complicated augmentation network whose task is to generate hard data online,
and thus improving the robustness of models [21]. Nevertheless, their augmen-
tation system is complicated and less accurate compared to the network that
we experimented with. Additionally, attention-aware data segmentation is much
simpler and proven effective in terms of accuracy.

2.2 Fine-Grained Visual Categorization

Fine-grained Visual Categorization (FGVC) is a challenging problem in the field
of computer vision. Normally, object classification is used for categorize differ-
ent objects in the image. In contrast with typical object classification which
concentrates to find correct labels such as a humans, objects or animals, fine-
grained image classification concentrates more on detecting sub-categories of a
given category like various types of bird, dogs or cars. The purpose of FGVC
is to find subtle differences among various categories of a dataset. It presents
significant challenges for building a model that generalizes patterns. This prob-
lem provides insights to a wide range of applications such as image captioning
[2], image generation [4], image search engines, and so on. Various methods have
been developed to differentiate fine-grained categories. Due to the remarkable
success of deep learning, most of the recognition works depend on the powerful
convolutional deep features. Several methods were proposed to solve large scale
real problems [24, 11, 26]. However, it is relatively hard for the basic models to
focus on very precise differences of object’s parts without adding special mod-
ules [12]. A weakly supervised learning based approach was adapted to generate
class-specific location maps by using pooling methods [18]. Adversarial Com-
plementary Learning (ACoL) [34] is a weakly supervised approach to identify
entire objects by training two adversarial complementary classifiers, which aims
at locating several parts of objects and detects complementary regions of the
same object. However, their method fails to accurately locate the parts of the
objects due to having only two complementary regions. On the contrary, our
proposed approach depends on attention-guided data augmentation and domain
adaptive transfer learning. Our method extracts fine-grained discriminative fea-
tures and provides a generalization of domain features to achieve state-of-the-art
performance in terms of accuracy.

2.3 Attention

Attention mechanisms have been getting a lot of popularity in the deep learning
area. Visual attention has been already used for FGVC. Xiao et al. proposed
two-way attention (one is for finding the object-level attention and another is
for finding the part-level attention) based method to train domain-specific deep
networks [30]. Fu et al. proposed an approach that can predict the location of
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one attention area and extract corresponding features [9]. However, this method
can only focus on local object’s part at the same time. Zheng et al. addressed this
issue and introduced Multi-Attention CNN (MA-CNN) [35], which can simulta-
neously focus on multiple body parts. However, selected parts of the object are
limited and number of selected parts is fixed (2 or 4) which might hamper ac-
curacy because of limited number of object’s parts. The works mentioned above
mostly focus on object localization. In contrast, our research concentrates more
on data augmentation with visual attention, which has not been much explored.
We use the attention mechanism for data augmentation purposes. Moreover, the
benefit of guided attention based data augmentation [12] helps the network to
locate object precisely which makes our trained model learn about closer object
details and hence, improve the predictions.

2.4 Transfer Learning

Transfer learning is a machine learning technique where a model trained on one
task is re-trained on a second related task. The purpose of transfer learning is to
improve the performance of a learning algorithm by utilizing knowledge that is
acquired from previously solved similar problems. CNNs have been widely used
for transfer learning. They are mostly used in the form of pre-trained networks
that serve as feature extractors [23, 8]. Considerable amounts of effort have been
made to understand transfer learning [31, 25, 3]. Initial weights for a certain net-
work can be obtained from an already-trained network even if the network is
used for different tasks [31]. Some prior work has shown some results on trans-
fer learning and domain similarity [6]. Their contribution mostly addresses the
effect of image resolution on large scale datasets and choosing different subsets
of datasets to boost accuracy. In our work, we show domain adaptive transfer
learning can be very useful if we incorporate visual attention based data aug-
mentation with it.

Unlike previous works, our proposed technique takes account of domain adap-
tive transfer learning between the source and target domains. Then, it incorpo-
rates the attention-driven approach for data augmentation. Our main goal is to
guide the training model to learn relevant features from the source domain and
augment data with the visual attention of the target domain. The combination
of two processes can be useful to achieve better performance.

3 Domain Adaptive Transfer Learning (DATL)

In our research, we consider different types of large scale datasets to find out the
similarity with FGVC datasets. We compute domain similarity score initially.
Based on the domain similarity score we choose large scale datasets for transfer
learning and then we perform WS-DAN [12] to train and evaluate the accuracy.
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3.1 Domain Similarity

Generally, transfer learning performs better if it has been trained on bigger
datasets. Chen et al. showed that transfer learning performance increases loga-
rithmically with the number of data [25]. In our work, we observe that using a
bigger dataset does not always provide a more accurate result. Yosinski et al.
[31] mentions that there is some correlation between the transferability of a net-
work from the source task to the target task and the distance between the source
and target tasks. Furthermore, they show fine-tuning on a pre-trained network
towards a target task can boost performance. For measuring domain similarity,
we use the approach of Cui et al. [6] who introduce a method which can calcu-
late domain similarity by the Earth Mover’s Distance (EMD) [22]. Furthermore,
they show transfer learning can be treated as moving image sets from the source
domain S to the target domain T . The domain similarity [6] can be defined as

d(S, T ) = EMD(S, T ) =

∑m,n
i=1,j=1 fi,jdi,j∑m,n
i=1,j=1 fi,j

(1)

where si is i-th category in S and tj is j-th in T , di,j = ||g(si)− g(tj)|| , feature
extractor g(.) of an image and the optimal flow fi,j computes total work as a
EMD minimization problem. Finally, the similarity is calculated as:

sim(S, T ) = e−γd(S,T ) (2)

where γ is a regularization constant of value 0.01.
Domain similarly score can be calculated between the source and target do-

mains. In our approach, we use large scale datasets as source domains, and target
domains are selected from six commonly used FGVC datasets.

3.2 Attention Aware Data Augmentation

In our method, we consider using the Weakly Supervised Data Augmentation
Network (WS-DAN) [12]. Firstly, we extract features of the image I and feature
maps F ∈ RH×W×C , where H, W, and C correspond to height, width, and
number of channels of a feature layer. Then, we generate attention maps A ∈
RH×W×M from feature maps, where M is the number of attention maps. One
more critical component is bi-linear attention pooling, which is used to extract
features from part objects. Element-wise multiplication between feature maps
and attention maps is computed to get part-feature maps, and then, pooling
operation is applied on part-feature maps afterward. Randomly generated data
from augmentation is not much efficient. However, attention maps can be handy
for data augmentation. This way model can be guided to focus on essential parts
of the data and augment those data to the network. With an augmentation map,
part’s region can be zoomed, and detailed features can be extracted. This process
is called attention cropping. attention maps can represent similar object’s part.
Attention dropping can be applied to the network to distinguish multiple object’s
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part. Both attention cropping and attention dropping are controlled through a
threshold value.

During the training process, no bounding box or keypoints based annotation
are available. For each particular training image, attention maps are generated to
represent the distinguishable part of object. Attention guided data augmentation
component is responsible to select attention maps efficiently utilizing attention
cropping and attention dropping. Bilinear Attention Pooling (BAP) is used to
extract feature from object’s parts. Element-wise multiplication between the
feature maps and attention maps is used to generate part feature matrix. Then,
part features are extracted by convolutional or pooling operation. In the last step,
the original data along with attention generated augmented data are trained as
input data.

During the testing process, at first, the probability of the object’s categories
and attention maps are produced from input images. Then, the selected part
of the object can be enlarged to refine the category’s probability. The final
prediction is evaluated as the average of those two probabilities.

4 Experiments

In this section, we show comprehensive experiments to verify the effectiveness of
our approach. Firstly, we calculate the domain similarity score using EMD [22] to
demonstrate the relationship between the source and target domains. Then, we
compare our model with the state-of-the-art methods on six publicly available
fine-grained visual categorization datasets. Furthermore, we perform additional
experiments to demonstrate the effect of image resolution on transfer learning.
We compare input images in the iNaturalist (iNat) dataset from 299 × 299 to
448 × 448 to observe the effect of image resolution in terms of accuracy. We
train the baseline inceptionV3 model with iNat datasets for this experiment.
Additionally, we combine both iNat and imageNet dataset to make a bigger
dataset. We perform detailed experimental studies with different types of large
scale datasets and apply the WS-DAN [12] method to observe the impact.

4.1 Datasets

We present a detailed overview of the datasets that we use for our experiments.

ImageNet: The ImageNet [7] contains 1.28 million training images and 50
thousand validation images along with 1,000 categories.

iNaturalist(iNat) : The iNat dataset introduces in 2017 [27]. It contains
more than 665,000 training and around 10000 test images from more than
5000 natural fine-grained categories. Those categories include different types
of species, including mammals, birds, insects, plants, and more. This dataset is
quite imbalanced and varies a lot in terms of the number of images per category.

Fine-grained object classification dataset: Table 1 summarizes the in-
formation of each dataset in detail.
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Table 1. Six commonly used FGVC datasets.

Datasets Objects Classes Training Test

CUB200-2011 Bird 200 5,994 5,794
FGVC-Aircraft Aircraft 100 6,667 3,333
Stanford Cars Car 196 8,144 8,041
Stanford Dogs Dog 120 12,000 8,580
Flowers-102 Flowers 102 2,040 6,149

Food-101 Food 101 75,750 25,250

4.2 Implementation Details

In our experiment, we used open-source implementation of popular deep learning
framework, Tensorflow [1] to train all the models on multiple Nvidia Geforce
GTX 1080Ti GPUs. The machine has Intel Core-i7-5930k CPU@ 3.50GHz x
12 processors with 64GB of memory. During training, we adopted Inception v3
[26] as the backbone network. We employed WS-DAN [12] technique to perform
experiments to demonstrate the effectiveness of transfer learning. For all the
datasets, we used Stochastic Gradient Descent (SGD) with a momentum of 0.9,
the number of epoch 80, mini-batch size 12. The initial learning rate was set
0.001, with exponential decay of 0.8 after every 2 epochs.

Fig. 1. Effect of transfer learning with
different sizes of image resolution on
iNat dataset.

Fig. 2. Co-relation between transfer learn-
ing accuracy and domain similarity score
between the source and target domain.

5 Results

When training a CNN, some pre-processing is usually done to the input image
to match with a specific size. Higher resolutions images usually contain essen-
tial information and precise details that are important to visual recognition. We
compare results on six FGVC datasets with different sizes of image resolution of
the iNat dataset. In summary, images with higher resolution yields better accu-
racy except for stanford dogs dataset. Figure 1 represents the effect of transfer
learning with various sizes of image resolution on iNat dataset.
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Table 2. Comparison to different types of FGVC datasets. Each row represents a net-
work pre-trained on source domain for transfer learning and each column represents
top-1 image classification accuracy by fine-tuning different networks on the target do-
mains.

Pre-trained InceptionV3
CUB200

2011
Stanford

Cars
Aircrafts

Food
101

Flowers
102

Stanford
Dogs

ImageNet 82.8 91.3 85.5 88.6 96.2 84.2

ImageNet
on WS-DAN

89.3 94.5 93.0 87.2 97.1 92.2

iNat
on WS-DAN

91.2 92.5 91.0 87.5 98.9 79.1

ImageNet + iNat
on WS-DAN

91.0 94.1 91.5 88.7 98.7 90.0

Table 3. Comparison in terms of accuracy with existing state-of-the-art FGVC meth-
ods.

Method
CUB200

2011
Stanford

Cars
Aircrafts

Food
101

Flowers
102

Stanford
Dogs

Bilinear-CNN [18] 84.1 91.3 84.1 82.4 - -
DLA [32] 85.1 94.1 92.6 89.7 - -

RA-CNN [9] 85.4 92.5 - - - 87.3
Improved Bilinear-CNN [17] 85.8 92.0 88.5 - - -

GP-256 [35] 85.8 92.8 89.8 - - -
MA-CNN [9] 86.5 92.8 89.9 - - -

DFL-CNN [29] 87.4 93.8 92.0 - - -
MPN-COV [16] 88.7 93.3 91.4 - - -

Subset B [6] 89.6 93.5 90.7 90.4 - 88.0
WS-DAN [12] 89.4 94.5 93.0 87.2 97.1 92.2

DATL + WS-DAN 91.2 94.5 93.1 88.7 98.9 92.2

In Table 2, we present the top-1 accuracy of the target domains on vari-
ous source domains. These results show the impact of transfer learning from
pre-trained model. Large scale datasets are essential for getting improved ac-
curacy when transfer learning is conducted. ImageNet dataset is much larger
than iNat dataset; still, it shows worse accuracy in the CUB200-2011 dataset.
So, we cannot conclude that using a bigger dataset while transfer learning can
always yield better results. Moreover, the domain similarity score also supports
this hypothesis. Hence, transfer learning can be effective if the target domain
can be trained with similar source domain. We compare our method with state-
of-the-art baselines on six commonly used fine-grained categorization datasets.
The summary of the comparison is presented in Table 3. We visually represent
the relationship between the top-1 accuracy and the domain similarity score. We
can observe from Figure 2 that the domain similarity score positively correlated
with transfer learning accuracy between large scale datasets and FGVC datasets.
Each marker represents a source domain. With the right selection of source do-
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main, better transfer learning performance can be achieved. For example, the
domain similarity score between iNat and CUB200-2011 is around 0.65, which
is the reason it shows higher accuracy (91.2) when iNat is used as pre-training
the source domain compared to others. For Flowers-102 dataset, the accuracy
is 98.9 with iNat as the source domain which has the highest domain simiar-
ity score 0.54, among other source domains. Similarly, Stanford Cars, Stanford
Dogs and Aircrafts dataset show higher domain similarity score supports better
accuracy. Only for the Food101 dataset, the accuracy from transfer learning re-
mains similar while domain similarity changes. We believe this is due to having
vast number of training images in Food101. Consequently, the target domain
contains enough data; thus, transfer learning has a little contribution. We can
observe that both ImageNet and iNat are highly biased, achieving dramatically
different transfer learning accuracy on target datasets. Intriguingly, when we
transfer networks trained on the combined ImageNet + iNat dataset and per-
form WS-DAN [12] method over it, we got better results in Food-101 dataset.
Intriguingly, the resulted accuracy of the combination of ImageNet and iNat,
fell in-between ImageNet and iNat pre-trained model. It means that we can not
attain good accuracy on target domains by just using a larger (combined) source
domain.

Our work demonstrates utilizing proper domain similarity score can be used
initially to identify which large scale dataset to employ. That way, target datasets
can learn essential features from large training data. Furthermore, we can em-
ploy attention aware data augmentation techniques to achieve state-of-the-art
accuracies on FGVC datasets.

6 Conclusion

In this paper, we describe a simple technique that takes attention mechanism
as a data augmentation technique. attention maps are guided to focus on the
object’s parts and encourage multiple attention. We demonstrate the effect of
domain adaptive transfer learning to play a vital role in boosting performance.
Depending on the domain similarity score on the source datasets, we can con-
sider which target datasets we can train to get better accuracy. We show that
the effect of adequately selected datasets in the source domain with attention-
based augmentation technique can achieve the state-of-the-art result in multiple
fine-grained visual classification datasets. We also analyze the effect of image
resolution on transfer learning between the source and target domains. In future
work, we are planning to explore the various types of domain similarity metrics
on transfer learning to boost performance.
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