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SELF-EXTENSIONALITY OF FINITELY-VALUED LOGICS:
ADVANCES

ALEXEJ P. PYNKO

ABSTRACT. We start from proving general characterizations of both self-ex-
tensionality and structural completeness of sentential logics as well as admis-
sibility of rules in them, implying the decidability of these problems for (not
necessarily uniform) finitely-valued logics. And what is more, in case of either
implicative or both disjunctive and conjunctive finitely-valued logics [defined
by finitely many finite hereditarily simple {viz., having no non-simple subma-
trix} matrices], we then derive a characterization of self-extensionality yielding
a quite effective algebraic criterion of checking their self-extensionality [via ana-
lyzing homomorphisms between {viz., in the uniform case, endomorphisms of}
the underlying algebras of their defining matrices and equally being a quite
useful heuristic tool, manual applications of which are demonstrated within
the framework of Lukasiewicz’ finitely-valued logics, unform three-valued log-
ics with subclassical negation (U3VLSN), uniform four-valued expansions of
Belnap’s “useful” four-valued logic as well as their {not necessarily uniform}
no-more-than-four-valued extensions, (uniform inferentially consistent proper
{in particular, no-more-than-three-valued} non-)classical ones proving to be
(non-)self-extensional]. Likewise, within the framework of classical (not nec-
essarily functionally complete) logics and U3VLSN as well as uniform four-
valued expansions of Belnap’s logic, we obtain quite effective algebraic cri-
teria of structural completeness, according to which, among other things,
any “classical logic”/“weakly disjunctive paracomplete (viz., intuitionistic)
U3VLSN”|“uniform four-valued expansion of Belnap’s logic” is structurally
complete iff it is mazimally consistent/paracomplete (i.e., has no proper consis-
tent/paracomplete extension) iff/ “only if” it has a theorem. And what is more,
any weakly [more, specifically, strongly] disjunctive paracomplete U3VLSN is
structurally complete iff it has no proper consistent non-classical extension [if
and] only if it has both a theorem and either no classical extension or no clas-
sical implication (viz., a secondary binary connective satisfying the Deduction
Theorem as well as both the Modus Ponens rule and the Pierce Law axiom).
Likewise, any [“weakly conjunctive” /implicative] paraconsistent/paracomplete
U3VLSN is structurally complete if[f]/“[if and] only if” it has no classical ex-
tension. In general, we prove that any either implicative or paraconsistent logic
with a consistent non-paraconsistent (in particular, classical) proper extension
is not structurally complete thus providing a new and quite transparent purely
logical insight into the structural incompleteness of Lukasiewicz’ no-less-than-
three-valued logics.

1. INTRODUCTION

Perhaps, the principal value of universal logical investigations consists in discov-
ering uniform points behind particular results originally proved ad hoc. This thesis
is the main paradigm of the present universal logical study.

Recall that a sentential logic (cf., e.g., [7]) is said to be self-extensional, whenever
its inter-derivability relation is a congruence of the formula algebra (i.e. is pre-
served under subformula replacement). This feature is typical of both two-valued
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(in particular, classical)! and super-intuitionistic logics as well as some interesting
many-valued ones (like Belnap’s “useful” four-valued one [2]). Here, we explore
self-extensionality laying a special emphasis onto the general framework of finitely-
valued logics and the decidability issue with reducing the complexity of effective
procedures of verifying self-extensionality, when restricting our consideration to
either implicative or both conjunctive and disjunctive (viz., having either classi-
cal implication or both classical conjunction and classical disjunction in Tarski’s
conventional sense) finitely-valued logics [especially, those defined by finitely many
hereditarily simple (viz., having no non-simple submatrix; i.e., having an equality
determinant in a sense extending [20]) finite matrices]. We then exemplify our uni-
versal elaboration by discussing four (perhaps, most representative) generic classes
of logics of the kind involved: Lukasiewicz’ finitely-valued logics [8]; unform three-
valued logics with subclassical negation (U3VLSN); uniform four-valued expansions
of Belnap’s “useful” four-valued logic [2] as well as their (not necessarily uniform)
no-more-than-four-valued extensions, [uniform inferentially consistent proper {in
particular, no-more-than-three-valued} non-]classical ones proving to be [non-]self-
extensional.

Likewise, a sentential calculus/logic is said to be structurally complete, whenever
every rule, being admissible in it (i.e., retaining its theorems [viz., axioms deriv-
able/satisfied in it]), is derivable/satisfied in it. Though the problem of verifying
structural completeness of (not necessarily uniform) finitely-valued logics is decid-
able, its computational complexity is normally too large to apply it expansively.
On the other hand, within the framework of classical (not necessarily functionally
complete) logics and U3VLSN as well as uniform four-valued expansions of Bel-
nap’s logic, we obtain quite effective algebraic criteria of structural completeness,
according to which, among other things, any “classical logic” /“weakly disjunctive
paracomplete U3VLSN” |“uniform four-valued expansion of Belnap’s logic” is struc-
turally complete iff it is mazimally consistent/paracomplete (i.e., has no proper
consistent /paracomplete extension) iff/“only if” it has a theorem, subsuming, in
particular, the well-known structural completeness of genuinely classical logics and
providing it with a new purely logical insight. And what is more, a weakly [more
specifically, strongly] disjunctive paracomplete U3VLSN is structurally complete
iff it has no proper consistent non-classical extension [if and] only if it has both a
theorem and either no classical extension or no classical implication. Likewise, any
“weakly conjunctive” /implicative paraconsistent/paracomplete U3VLSN is struc-
turally complete iff it has no classical extension. In general, we prove that any
either implicative or paraconsistent logic with a consistent non-paraconsistent (in
particular, classical) proper extension is not structurally complete thus providing a
new and quite transparent purely logical insight into the structural incompleteness
of Lukasiewicz’ no-less-than-three-valued logics.

The rest of the paper is as follows. The exposition of the material of the paper
is entirely self-contained (of course, modulo very basic issues concerning Set and
Lattice Theory, Universal Algebra and Logic to be found, if necessary, in standard
mathematical handbooks like [1, 4, 10, 11]). Section 2 is a concise summary of
particular basic issues underlying the paper, most of which, though having become
a part of algebraic and logical folklore, are still recalled just for the exposition to
be properly self-contained. Likewise, in Section 3, we then summarize certain ad-
vanced generic issues concerning simple matrices, equality determinants, intrinsic

Properly speaking, within the context of General Logic, the notorious classical logic arises
just as the clone of miscellaneous functionally complete two-valued logics with classical negation.
Here, we follow this natural paradigm, equally adopted in [25] even without the stipulation of
functional completeness, calling functionally complete classical logics genuinely so, that naturally
gives rise to the conception of subclassical logic/negation.
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varieties as well as both disjunctivity and implicativity. Section 4 is a collection
of main general results of the paper concerning self-extensionality that are then
exemplified in Section 6 (aside from Lukasiewicz’ finitely-valued logics, whose non-
self-extensionality has actually been due [21], as we briefly discuss within Example
4.17 — this equally concerns certain particular instances discussed in Section 6 and
summarized in Example 4.18). Likewise, in (mainly, motivational) Section 5 we dis-
cuss the decidability of the issue of structural completeness and its computational
complexity, advanced studying it within the framework of classical (not necessarily
functionally complete) logics and U3VLSN as well as uniform four-valued expan-
sions of Belnap’s logic being presented in Section 6. Finally, Section 7 is a brief
summary of principal contributions of the paper.

2. BASIC ISSUES

2.1. Set-theoretical background. We follow the standard set-theoretical con-
vention (cf. [11]), according to which natural numbers (including 0) are treated as
finite ordinals (viz., sets of lesser natural numbers), the ordinal of all them being de-
noted by w. In this way, when dealing with n-tuples to be viewed as either [comma
separated] sequences of length n or functions with domain n, where n € w, m;,
where i € n, denotes the i-th projection operator under enumeration started from
rather 0 than 1. (In particular, when n = 2, 7/, denotes the left /right projection
operator, respectively.) The proper class of all ordinals is denoted by oco. Also,
functions are viewed as binary relations (in particular, n-ary operations on a set
A, where n € w, are treated as (n + 1)-ary relations on A), while singletons (viz.,
one-element sets) are identified with their unique elements, unless any confusion
is possible. A function/mapping f /“to a set A” is said to be singular/surjective,
provided (img f) is one-element/“equal to A”, respectively.

Given a set S, let Ag = {(a,a) | a € S}, relations of such a kind being referred
to as diagonal, functions with diagonal kernel being said to be injective, “bijective”
standing for “both injective and surjective”, and p[x](S) the set of all subsets of
S [of cardinality € K C oo], respectively. Then, given any equivalence relation
0 on S, viz., a transitive (in the sense that (0 o 6) C 0) symmetric (in the sense
that =1 C 0) reflexive binary relation on S (in the sense that Ag C § C S?),
v denotes the function with domain S defined by vg(a) = 0[{a}], for all a € S,
while (T/0) £ vg[T], for every T C S. Next, any S-tuple (viz., a function with
domain S) is often written in the sequence form ¢, its s-th component (viz., the
value under argument s), where s € S, being written as t,, in that case. Given
two more sets A and B, any relation R C (A x B) (in particular, a mapping
R : A — B) determines the equally-denoted relation R C (A x BS) (resp., mapping
R : A% — B%) point-wise. Furthermore, any f : S — S, where n € w, is
said to be R-monotonic, where R C S?, provided, for all @ € R", it holds that
(f(@omy), f(@om)) € R. Then, Tr(R) £ {(mo(ao), m1(am_1)) | m € (w\1),a €
R™ ¥i € (m—1): m(a;) = mo(ai+1)} is the least transitive binary relation on S
including R, called the transitive closure of R. Finally, given any T" C S, we have
the characteristic function/mapping x5 £ (T x {1})U((S\T) x {0})) € 2% of T
in S.

Let A be a set. Then, an X € S C p(A) is said to be meet-irreducible in/of
S, provided, for each T' € p(S), X € T, whenever T' = (AN (\T), in which case
X # A (when taking T' = @), the set of all them being denoted by MI(S). Next,
a U C p(A) is said to be upward-directed, provided, for every S € g, (U), there
is some T € U such that (|JS) C T, in which case U # @, when taking S = .
Further, a subset of p(A) is said to be inductive, whenever it is closed under unions
of upward-directed subsets. Further, a closure system over A is any € C p(A) such
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that, for every S C C, it holds that (AN()S) € €. In that case, any B C C is called
a (closure) basis of C, provided € = {AN(S|S C B}. Furthermore, an operator
over A is any unary operation O on p(A). This is said to be monotonic, whenever it
is (CNgp(A)?)-monotonic. Likewise, it is said to be idempotent|transitive, provided,
for all X C A, it holds that (X]|O(O(X))) C O(X), respectively. Finally, it is said
to be inductive/finitary, provided, for any upward-directed U C p(A), it holds that
O(UU) C (UOU]). Then, a closure operator over A is any monotonic idempotent
transitive operator over A, in which case img C is a[n inductive] closure system over
A [iff C is inductive], determining C' uniquely, as, for every basis B of imgC' (in
particular, img C itself) and each X C A, C(X) = (AN{Y € B|X CY}), C and
img C' being said to be dual to one another.

Remark 2.1. By Zorn Lemma, due to which any non-empty inductive subset of
©(A) has a maximal element, MI(C) is a basis of any inductive closure system €
over A. O

2.2. Algebraic background. Unless otherwise specified, abstract algebras are de-
noted by Fraktur letters [possibly, with indices], their carriers (viz., underlying sets)
being denoted by corresponding Italic letters [with same indices, if any].

A (propositional/sentential) language|signature is any algebraic (viz., functional)
signature ¥ (to be dealt with throughout the paper by default) constituted by
function (viz., operation) symbols of finite arity to be treated as (propositional/se-
ntential) [primary] connectives.

Given a Y-algebra 2, the set Con() of all congruences of 2 (viz., equivalence
relations @ on A such that primary operations of 2 — i.e., those of the form ¢*,
where ¢ € ¥ — are §-monotonic) is an inductive closure system over A2, the dual
closure operator (of congruence generation) being denoted by Cg®. Then, a [partial]
endomorphism of 2 is any homomorphism from [a subalgebra of] 2 to 2. Next,
given any function f with (dom f) = A and (ker f) € Con(2l), we have the X-
algebra f[R] with carrier f[A] and primary operations ¢/[* £ f[¢%] where ¢ € .
In particular, given any 6 € Con(21), (21/60) = vg[2l] is known as the quotient of 2 by
6. Finally, given a class K of ¥-algebras, set hom(2(, K) = (|J{hom (2, B) | B € K}),
in which case ker[hom (2, K)] € Con(21), so (4% N ker[hom (A, K)]) € Con(A).

Given any rank, viz., « C w, put To, = (7;)icq and Var, = (img Z, ), elements of
which being viewed as (propositional/sentential) variables of rank «. (In general,
any mention of rank « within any context is normally omitted, whenever a = w.)
Then, providing either o # @ or ¥ has a nullary connective, in which case « is
called a X-rank, we have the absolutely-free X-algebra Fm$: freely-generated by the
set Var,, “its endomorphisms” / “elements of its carrier Fmg, (viz., X-terms of rank
«)” being called (propositional|sentential) X-substitutions/-formulas of {X-}rank
a. In this way, inverse X-substitutions of {X-}rank « are functions of the form
{{X,07YX]) | X C Fm$}, where o is an endomorphism of §m$. Any homomor-
phism A from §m§, to a Y-algebra (= Fm$) is uniquely determined by {and so
identified with} A’ = (h[(Var,(\V))) (where V' C Var, such that AV is diago-
nal) as well as often written in the standard assignment (resp., substitution) form
[v/h(V)]ve(dom hry> e {[)h(]), where ¢ € Fm§, standing for h(p) (the algebra super-
script being normally omitted just like in denoting primary operations of 2(). Then,
given any n € w, a secondary n-ary connective of ¥ is any Y-formula ¢ of rank
m = max(1l,n), in which case, given any X-algebra 2, an f : A" — A is said to
be secondary/ “(term-wise) definable {by ¢}” of/in A, provided, for all a € A™, it
holds that f(aln) = ¢*[z;/a;]icm. For the sake of formal unification, any primary
n-ary connective ¢ € ¥ is identified with the secondary one ¢(Z,). A 0 € Con(gmy;)
is said to be fully-invariant, if, for every YX-substitution o of rank «, it holds that
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olf] C 6. Recall that, for any [surjective] h € hom(,B), where 2 and 9B are
Y.-algebras, it holds that:

(2.1) [hom(Fms3, B) C[{g o h | g € hom(Fms;, A)}) € hom(Fms;, B).

Any (¢,9) € Eqx £ (Fm$)? is referred to as a Y-equation/-indentity of {%-
}rank o and normally written in the standard equational form ¢ =~ . In this
way, given any h € hom(Fmsy,2A), kerh is the set of all X-identities of rank
o true/satisfied in A under h. Likewise, given a class K of Y-algebras, 0% £
(Eqs; NN ker[hom(Fms;, K)]) € Con(Fms,), being fully invariant, in view of (2.1),
is the set of all all ¥-identities of rank « true/satisfied in K, in which case we
set F& £ (Im%/02). (In case o as well as both K and all elements of it are
finite, the class I = I¢ £ {(,h) | A € K,h € hom(Fm$,A)} is a finite set
— more precisely, |[I| = > o x|A|% in which case, putting, for each i € I,
A; & mo(i) € K, hy & m1(i) € hom(Fm$,2A;) and B; = (A;[(imgh;)), we have
hom(Fms,, Hie[ B;)>g:Fm§ — (Hie[ Bi), ¢ = (hi(¢))ier with (kerg) = 0 = 0K
and so, by the Homomorphism Theorem, e £ (v, 10 g) is an isomorphism from S
onto the subdirect product ([];c; B:)[(imgg) of (Bj;)ics. In this way, the former
is finite, for the latter is so — more precisely, |F¢| < (max{|A| | & € K}I])

The class of all ¥-algebras satisfying every element of an € C Eqs, is called the
variety aziomatized by €. Then, the variety V(K) axiomatized by 6 is the least
variety including K and is said to be generated by K, in which case 9%“0 = 0y, and
50 3'%/(K) = Sk-

Given a fully invariant § € Con(gFms), by (2.1), ms /0 belongs to the variety V
axiomatized by 6, in which case any Y-identity satisfied in V belongs to €, and so
6y = 0. In particular, given a variety V of ¥-algebras, we have 3y € V.

Throughout the rest of the paper, 1/(o|A|Y| O) is supposed to be a unary/binary
secondary connective of X.

Finally, let Var : Fmy, — g, (Var,) be the mapping assigning the set of all
actually occurring variables.

2.2.1. Lattice-theoretic background.

2.2.1.1. Semi-lattices. A Y-algebra 2 is called a o-semi-lattice, provided it satisfies
semi-lattice identities for ¢ (viz., idempotence (xg ¢ o) =~ xg, commutativity (zg ©
x1) & (21 0 x0) and associativity (xo o (z1 ¢ x2)) =~ ((xg © 1) © x2) ones), in which
case we have the partial ordering <% on A, given by (a <2 b) €& (a = (a 0¥ b)),
for all a,b € A. Then, in case the [dual] poset (A, (<2)[=1) has the least element
(viz., lower bound), this is called the [dual] (o—)bound of 2 and denoted by [6]32,
while 2 is referred to as a o-semi-lattice with [dual] bound {a, whenever a = [6]32}.

Lemma 2.2. Let 2 and B be o-semi-lattices with bound and h € hom(%,*B).
Suppose h[A] = B. Then, h(32) = 2.

Proof. There is some a € A such that h(a) = 82, in which case (ao® g2) = 82, so
h(B2) = (h(a) o® h(BZ)) = (BF o® h(B2)) = B2, as required. O

2.2.1.2. Lattices. A Y-algebra 2 is called a [distributive] (A,Y)-lattice, provided
it satisfies [distributive] lattice identities for A and Y (viz., semi-lattice identities
for both A and Y as well as absorption (xg oo (xo 01 21)) &~ xo [and distributivity
(20 00 (21 01 22) & ((xg 00 1) 01 (To 00 x2))] identities for A and ¥, for all bijective
5:2— {A,V}), in which case <% and <¥ are inverse/dual to one another, and so,
in case 2 is a Y-semi-lattice with bound (in particular, when A is finite), 63 is the
dual A-bound of 2 (viz., the greatest element of the poset (4, <2)). Then, in case
2 is a {distributive} (A, Y)-lattice, it is said to be that with zero|unit (a), whenever
it is a (A|Y)-semi-lattice with bound (a).
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2.2.1.2.1. Bounded lattices. Let gy (4301] = (@{U{A, V}}[U{L, T}]) be the {[bo-
unded] lattice} signature {with binary A (conjunction) and V (disjunction)} [{as
well as} with nullary L and T (falsehood/zero and truth/unit constants, respec-
tively)]. Then, a ¥ oj-algebra 2 is called a [bounded] (distributive) lattice, when-
ever it is a (distributive) (A, V)-lattice [with zero L* and unit T%] {cf., e.g., [1]}.
Given any signature ¥’ O X4 and any ¢,1 € Fms,, ¢ < ¢ stands for ¢ ~ (¢ A ).
Likewise, given any Y/-algebra 2 with ¥ | -reduct being a lattice, <* stands for <%.
Then, given any n € (w \ 2), D,[o1] denotes the [bounded] distributive lattice with

carrier (n <+ (n—1)) £ {-= | m € n} and <®=01 £ (<N Di[ou)'

2.3. Logical background.

2.3.1. Propositional caleuli and logics. A (propositional| sentential) [finitary|una-
ry|aziomatic] S-rule/-calculus {of (¥—)-rank a} is any element/subset of the set
Plwl2\1))1] (Fm‘g{ma}) X Fmg{ma}7 any Y-rule (I', ) being normally written in the
standard sequent form I' F ¢, “the left” /“any element of the right” component|side
of it being referred to as the/a conclusion/premise of it. Then, we set o(T' F
@) £ (o] F o(p)), where o is a Y-substitution. Axiomatic Y-rules are called
(propositional/sentential) 3-axioms and are identified with their conclusions.

A (propositional/sentential) X-logic (cf., e.g., [7]) is any closure operator C' over
Fm$, that is structural in the sense that o[C(X)] C C(o[X]), for all X C Fm$,
and all o € hom(Fms, Fmsy), that is, img C' is closed under inverse ¥-substitutions.
Then, we have the equivalence relation =& £ {(¢,¢) € Eq$ | C(¢) = C(¥)} on
Fm§,, where « is a Y-rank, called the inter-derivablity relation of C, whenever
a = w. A congruence of C is any § € Con(Fms,) such that § C =§, the set of
all them being denoted by Con(C). Then, given any 6,9 € Con(C), Tr(6 U ¥),
being well-known to be a congruence of §my,, is then that of C, for 8¢, being an
equivalence relation, is transitive. In particular, any maximal congruence of C' (that
exists, by Zorn Lemma, because Con(C) > Appg is both non-empty and inductive,
for Con(gms;) is so) is the greatest one to be denoted by O(C). Then, C is said to
be self-extensional, whenever =¢ € Con(Fms,). that is, O(C) = =¢.

Definition 2.3 (cf. [17]). Given a X-logic C, the variety IV(C) axiomatized by
O(C) is called the intrinsic variety of C. O

Next, a X-rule I' — ¢ is said to be satisfied/derivable in a ¥-logic C, provided
¢ € C(I'), E-axioms satisfied in C being referred to as theorems of C. A (set
of) X-formula(s) @ is said to be a[n]/ fin/consistent one/ of/in C, if C(®) is [not]
distinct from Fm$.

Definition 2.4. A X-logic C” is said to be a (proper) [K-Jextension of a X-logic
C [where K C oo, whenever (C" # C and) C(X) C C'(X), for all X € p[(Fmy),
C' being said to be a (proper) [K-Jsublogic of C', in which case C’ is said to be
aziomatized by a -calculus € relatively to C, whenever C' is the least (w.r.t.
the extension partial ordering) extension of C' satisfying every rule in €, while C’
is said to be ({C-relatively} (pre-ymazimally)/ [inferentially] consistent/inconsis-
tent, provided @[U{xo}] is consistent/inconsistent in C’ (and every (but, at most,
one) [inferentially] consistent extension of C’{NC} is a sublogic of C’)/“in which
case =¢ = Eqs € Con(§my), and so C is self-extensional“, the only inconsis-
tent Y-logic being denoted by IC* [whereas C” and C are said to be K -equivalent
(C =k ', in symbols), whenever they are K-extensions of one another, axiomati-
cally/finitely /inferentially standing for 1/w/(oc0 \ 1)]. O

Further, a Y-rule R is said to be admissible in a ¥-logic C, provided the exten-
sion of C' relatively axiomatized by R is axiomatically-equivalent to C'. Clearly, R
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is admissible in C, whenever it is derivable in C'. If the converse holds in general,
that is, every X-rule is derivable in C, whenever it is admissible in C, then C' is said
to be structurally/deductively/inferentially complete|mazimal. Clearly, C' is struc-
turally complete iff it has no proper axiomatically-equivalent extension. In general,
(Neres(imgC’)) > C(@), where S > C is the set of all ¥-logics axiomatically-
equivalent to C, is a closure system over Fm$ closed under inverse Y-substitutions,
in which case the dual closure operator over Fms, is the greatest axiomatically-
equivalent (and so structurally complete) extension of C, called the structural com-
pletion of C. Furthermore, we have the greatest finitary sublogic C'; of C', defined
by C4(X) £ (UClpu(X)]), for all X C Fm$, called the finitarization of C, in
which case C5 =, C, and so C5 is axiomatically-equivalent to C.

Next, C' is said to be (strongly)/weakly {classically} A-conjunctive, provided
C({xo,z1}) =/ C C(ag Ax1). Likewise, C is said to be (strongly) /weakly {classi-
cally} V-disjunctive, if C(X U{p Y y}) =/ C (C(X U{p})NC(X U{v})), where
(X U{¢,v}) C Fm$, “in which case”/“that is, the first two — viz., (2.2) — of”
the following four rules:

(2.2) z; B (zoYx), whereie€?2,
(2.3) (SC() Y 371) [ (3?1 y wo),
(24) (.’EO v (E()) H Zo

are satisfied in C. Further, C' is said to have/satisfy Deduction Theorem (DT) with
respect to a (possibly, secondary) binary connective 1 of ¥ (fixed throughout the
paper by default), provided, for all ¢ € X C Fm$ and all ¢ € C(X), it holds that
(¢ 3¢) € C(X \ {¢}), in which case the following axioms:

(25) To 1 Xo,

(2.6) w9 3 (21 J 7o)

are satisfied in C'. Then, C is said to be weakly {classically} TJ-implicative, if it has
DT w.r.t. 1 as well as satisfies the Modus Ponens rule:

(27) {II?(), xro 1 .761} Fxy,
in which case the following axiom:
(2.8) (.230 W5 ($0 ] 1‘1)),

where (xg Wo x1) = ((xo 3 @1) 3 1) is the intrinsic disjunction of (implication)
7, is satisfied in C. Likewise, C is said to be (strongly) {classically} J-implicative,
whenever it is weakly so and satisfies the Peirce Law axiom (cf. [12]):

(29) ((Io ] 1‘1) W4 .To).

Furthermore, C' is said to be [{aziomatically} (pre)mazimally] :-paraconsistent [cf.
[16] as well as the reference [Pyn95 b] therein|, where ? is a {possibly, secondary}
unary connective of X, tacitly fixed throughout the paper by default, provided it
does not satisfy the Fx Contradictione Quodlibet rule:

(2.10) {mo, o} a1

[and has no (more than one) proper -paraconsistent {axiomatic} extension]. Like-
wise, C' is said to be {mazimally} [inferentially] (V,1)-paracomplete, whenever it
does not satisfy the [inferential version of] the Excluded Middle Law axiom

(2.11) (21 F](z0 Y o)
{and has no proper [inferentially] (¥,?)-paracomplete extension}. Given any [X” C

¥ C %, the X'-logic C’, defined by C’(X) £ (Fm$, NC(X)), for all X C Fm$,,
is called the [¥"-conservative] ' -fragment of C, in which case C is referred to as
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a (3-)expansion of C'. Then, =¢, = (=% NEqgs,), and so C’ is self-extensional,
whenever C is so. Finally, C is said to be theorem-less/purely-inferential, whenever
it has no theorem, that is, @ € (img C). In general, (img C')U{@} is a closure system
over Fm$, closed under inverse Y-substitutions, for img C' is so, in which case the
dual closure operator Cy( over Fms, is the greatest purely-inferential sublogic of
C, called the purely-inferential version of C' and being inferentially-equivalent to C'
(cf. Definition 2.4), so

(2.12) =4 ==¢.,,
(in particular, Cpq is self-extensional iff C' is so).

Remark 2.5. Any X-logic axiomatically-equivalent to a (¥, ~)-paracomplete/con-
sistent one is itself (Y, ~)-paracomplete/consistent. In particular, any maximally
(Y, ~)-paracomplete/consistent 3-logic is structurally complete. O

Remark 2.6. Let C be a X-logic and ¢ “a theorem”/“an inconsistent formula” of
C, in which case, by the structurality of C, 1 £ (¢[z;/20]ics,) is one of rank 1/,
for (Var, \ Var(¢)) # @, as Var(¢) is a finite subset of the infinite set Var,”, and
so C is weakly 1-disjunctive/-conjunctive. ([

2.3.2. Logical matrices. A (logical) S-matriz (cf., e.g., [7]) is any pair of the form
A = (A, DA), where 2 is a ¥-algebra, called the underlying algebra of A, while A is
called the carrier/“underlying set” of A, attributes (such as cardinality, elements,
subsets, etc.) of A being referred to as those of A, whereas DA C A is called the
truth predicate of A, elements of A[ND*] being referred to as [distinguished] values
of A, the Y-matrix 8(A) = (A, A\ DA) being referred to as (truth-)dual to A. (In
general, matrices are denoted by Calligraphic letters [possibly, with indices|, their
underlying algebras being denoted by corresponding capital Fraktur letters [with
same indices, if any].) Then, A is said to be [no-more/less-than-n-valued, where
n € (w\ 1), provided |A| = [</Z=]n. Next, it is said to be [injconsistent, whenever
DA #£ [=]A, respectively. Likewise, it is said to be truth/-nonj-empty, whenever
D# = [#]@. Further, it is said to be truth-/false-singular, if |((D*/(A\ DA))| € 2.
Finally, A is said to be finite[ly generated]/“generated by a B C A”, if 2 is so.

Given any Y-rank « and any class M of ¥-matrices, we have the closure operator
Cnpy over Fm$ dual to the closure system with basis By = {h~[DA] | A€ M, h €
hom(Fms;,A)}, in which case:

(2.13) Cng (X) = (Fm& N Cn% (X)),

for all X C Fm$:. Then, by (2.1), Cnyy is a X-logic, called the logic of/ “defined by”
M. A X-logic is said to be { “unitary||uniformfly]”|double|finitely} (no-more/less-
than-)n-valued, where n € (w\ 1), whenever it is defined by a {one-element|two-
element|finite} class of (no-more/less-than-)n-valued X-matrices /{in which case it
is finitary, as the logic of any finite set of finite X-matrices is so; cf. [7]}. Then,
a [uniform{ly}] n-valued ¥-logic, where n € (w\ 2), is said to be minimal(ly) so,
unless it is [uniformly] no-more-than-(n — 1)-valued.

As usual, ¥-matrices are treated as first-order model structures (viz., algebraic
systems; cf. [10]) of the first-order signature ¥ U {D} with unary predicate D,
in which case any [in]finitary Y-rule I' F ¢ is viewed as the [in]finitary equality-
free basic strict Horn formula (AT) — ¢ under the standard identification of any
propositional ¥-formula ¢ with the first-order atomic formula D(1)), as well as
is true/satisfied in a class M of E-matrices (in the conventional model-theoretic
sense; cf., e.g., [10]) iff it is satisfied in the logic of M, theorems/“inconsistent
{sets of} formulas” of which being referred to as tautologies/ “inconsistent {sets
of } formulas” of M. (Clearly, inconsistent formulas of M are exactly tautologies
of 8[M], unless M contains an inconsistent element.)
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Remark 2.7. Since any rule with[out] premises is [not] true in any truth-empty
matrix, given any class M of Y-matrices, the theorem-less version of the logic of M
is defined by that of the form M US with only truth-empty elements of S # @. 0O

Let A and B be two Y-matrices. A (strict) [surjective] {injective} homomor-
phism from A [on]to B is any {injective} h € hom(2(,B) such that [h[A] = B
and] DA C h=1[DB](C DA), the set of all them being denoted by homgss])(A, B), in
which case B/A is said to be a (strictly) [surjectively] {injectively} homomorphic
image/counter-image ([{as well as called an isomorphic copy}]) of A/B, respec-
tively. Then, by (2.1), we have:

(214)  (homf(A,B)#2) = (Cng(X) C Cn(X)[C Cng(X))),
(2.15) (hom®(A, B) # @) = (Cn% (@) C Cng(2)),
for all ¥-ranks o and all X C Fm§,. Further, A[# B] is said to be a [proper]

submatriz of B, whenever Ay € homg(A,B), in which case we set (B[A) = A.
Injective/bijective strict homomorphisms from A4 to B are called embeddings/iso-
morphisms of/from A into/onto B, in case of existence of which A is said to be
embeddable/isomorphic into/to B.

Given a Y-matrix A, (x*/64) & (X’XA)/(ker x?)) is referred to as the character-
istic function/relation of A. Then, for any 6 € Con(21) [such that 8 C 64], v is a
[strict] surjective homomorphism from A onto (A/6) £ (4/6, D*/6) [in which case
6 is called a congruence of A, the set of all them being denoted by Con(.A)]. Given
any 6,9 € Con(A), Tr(6 U ¥), being well-known to be a congruence of 2, is then
that of A, for #4, being an equivalence relation, is transitive. In particular, any
maximal congruence of A (that exists, by Zorn Lemma, because Con(A) o Ay is
both non-empty and inductive, for Con(2() is so) is the greatest one to be denoted
by O(A), that is traditionally called the Leibniz congruence of A but denoted, for
quite unclear reasons, by rather Q(A) than, e.g., A(A) (here we though naturally
adapt more coherent conventions adopted in [25] to use its results immediately). Fi-
nally, A is said to be [(finitely) hereditarily] simple, whenever it has no non-diagonal
congruence [as well as no non-simple (finitely-generated) submatrix].

Remark 2.8. Let A and B be two X-matrices and h € hom(A, B) strict [and surjec-
tive]. Then, x* = (hox®) (in particular, 04 = h=1[05]) and, for every 6 € Con(B),
h=1[0] € Con(2A) [while h[h~1[0]] = §]. Therefore:

(i) for every 6 € Con(B), h=1[0] € Con(A) [while h[h~1[0]] = 6].
In particular (when § = Ag), by (i), we have (ker h) = h=1[Ag] € Con(A), so:

(ii) h is injective, whenever A is simple.

[Likewise, for any § € Con(B), by (i), we have h=1[f] € Con(A), in which case we
get h™1[0] C O(A), and so, by (i), we eventually get § = h[h=1[0]] C h[D(A)] (in
particular, Ap C 8 C Ap, whenever O(A) C (ker h)).] Thus:

[(ili) B is simple, whenever A is so.]

(iv) A/O(A) is simple. O
Definition 2.9. A Y-matrix A is said to be a [K-Jmodel of a ¥-logic C' {over A}
[where K C oo], provided C is a [K-|sublogic the logic of A (cf. Definition 2.4), the
class of all (simple of) them being denoted by Modf;?} (C{,2}), respectively. Then,
Fig(A) £ 71 [Mod(C,21)], whose elements are called filters of C over 2, is a closure
system over A, Fg% denoting the dual closure operator (of filter generation). [

A Y-matrix A is said to be (-paraconsistent/ “[inferentially] (¥,?)-paracomplete”,
whenever its logic is so. Next, A is said to be (strongly)/weakly {classically} o-
conjunctive, provided ({a,b} C DA) & / < ((ao® b) € DA), for all a,b € A,
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that is, the logic of A is strongly/weakly o-conjunctive. Then, A is said to be
(strongly) /weakly {classically} o-disjunctive, whenever 8(A) is strongly/weakly
o-conjunctive, “in which case”/“that is,” the logic of A is strongly/weakly o-
disjunctive, and so is the logic of any class of strongly/weakly o-disjunctive 3-
matrices. Likewise, A is said to be (weakly/strongly){ classically} T-implicative,
whenever ((a € DA) = (b € DA)) < ((a 3% b) € DA), for all a,b € A, in which
case it is W—-disjunctive, while the logic of A is J-implicative, for both (2.7) and
(2.9) are true in any J-implicative (and so Wo-disjunctive) X-matrix, while DT
is immediate, and so is the logic of any class of J-implicative ¥-matrices. Fur-
thermore, given any ¥’ C 3, A is said to be a (X-)ezpansion of its X'-reduct
(AIY) £ (A1Y, DA), clearly defining the Y'-fragment of the logic of A. Finally,
A is said to be weakly/(strongly) {classically} 1-negative, provided, for all a € A,
(a € DY) < / & (Ma ¢ DA), in which case it is truth-non-empty/“, and so
consistent”.

Remark 2.10. For any Y-matrices A and B, the following hold:
(i) Ais:

(a) [weakly] o-disjunctive/-conjunctive iff it is [weakly] o!-conjunctive/-dis-
junctive, respectively, whenever it is ¢-negative, where (xgotz1) = (oo
1x1) is the (-dual| De-Morgan counterpart of ©;

(b) Di-implicative, if it is both -negative and o-disjunctive, where (zo =%
x1) £ Qo oxy) is the material implication of/ “defined|given by” {nega-
tion} 1 and {disjunction} ©.

(c) not -paraconsistent, whenever it is :-negative;

(d) not (¢,?)-paracomplete, whenever it is both weakly t-negative and weakly
o-disjunctive;

(ii) for any strict [surjective] (injective) h € hom(.A, B), the following hold:
(a) A is {weakly} r-negative|o-conjunctive/-disjunctive/-implicative if[f] B

is so;
(b) B is consistent/truth-non-empty if[f] A is so;
(c) A is false-/truth-singular (if [and]) [only if] B is so. O

Remark 2.11. Let A be a consistent J-implicative [non--paraconsistent] Y-matrix
A and ¢ an inconsistent formula of A of rank 1 (in particular, [either ¢ = ),
where ¢ is a tautology of A of rank 1 {in particular, ¢ = (zo 3 x¢); cf. (2.5)},
or] any non-distinguished value of A is term-wise definable by ¢ in 2), in which
case, for each a € A, ¢%(a) ¢ D*, because, otherwise, ¢ - 2; would not be true
in A under [z¢/a,z1/b], where b € (A\ D4) # @, and so A is =%-negative, where

Uzodx0) (
3 b

ﬂ%xo £ (o O ¢), —|lj standing for - in particular, it, being W—-disjunctive,
®

is W—~-conjunctive; cf. Remark 2.10(i)(a)). O

Remark 2.12. Given a ¥-logic C, by its structurality, for any T € (img C), (Fms:, T)
€ Mod(C). Then, given any basis B of img C, any X-rule I' F ¢ not satisfied in C,
in which case there is some T" € B such that I' C T Z ¢, is not true in (§ms,T)
under the diagonal ¥-substitution, and so C'is defined by ({§ms} x B) C Mod(C)
(in particular, by Mod™(C) [in view of (2.14) and Remark 2.8(iv)]). O

Given a set I and an I-tuple A of Y-matrices, [any submatrix B of] the -
matrix ([T,c; Ai) 2 (TTic; i, [1c; DA is called the [a] [subjdirect product of A
[whenever, for each i € I, m;[B] = A;]. As usual, if (img.A) C {A}, where A is a
S-matrix, we set AT £ (T],c; As).
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Given a class M of ¥-matrices, the class of all “strictly surjectively homomorphic
[counter-]images” / “isomorphic copies” / “(consistent) {truth-non-empty} submatri-

ces” of elements of M is denoted by (HI=1/I/ S&{:)})(M), respectively. Likewise, the
class of all [sub]direct products of tuples (of cardinality € K C oo) constituted by

elements of M is denoted by PESKD)](M).

2.3.2.1. Classical matrices and logics. -matrices with diagonal characteristic func-
tion (and so relation) are said to be classically-canonical, isomorphisms between
them being diagonal, in which case isomorphic ones being equal. Then, the char-
acteristic function of any Y-matrix 4 with diagonal characteristic relation — viz.,
injective characteristic function — (and so no-more-than-two-valued) is an isomor-
phism from it onto the classically-canonical ¥-matrix C(A) £ (xA[2], {1}), called
the [classical] canonization of A.

A (classically-canonical) two-valued Y-matrix A [with functionally complete un-
derlying algebra] is said to be [genuinely] (canonical{ly}) 1-classical, whenever it is
-negative, in which case it is both false- and truth-singular (and so its characteristic
relation is diagonal) but is not -paraconsistent, by Remark 2.10(i)(c).

A 3-logic is said to be (genuinely) 1-[subjclassical, whenever it is [a sublogic
of] the logic of a (genuinely) -classical ¥-matrix, in which case it is inferentially
consistent. Then, a Y-matrix is said to be {-classically-defining, whenever its logic
is i-classical. Likewise, a unary ~ € ¥ is called a subclassical negation for a ¥-logic
C, whenever the ~-fragment of C' is ~-subclassical, in which case:

(2.16) Nm.’JSO ¢ C(an‘o),

for all m,n € w such that the integer m — n is odd, where the secondary unary
connective ! of ¥ is defined by induction on I € w via setting °H 12y £ 1.

Remark 2.13. ICJErO is an inferentially inconsistent (and so not [sub]classical) purely-
inferential (and so both consistent and axiomatically-equivalent) extension of any
purely-inferential 3-logic C, in which case C is structurally complete iff it is inferen-
tially inconsistent. In particular, any purely-inferential classical (and so inferentially
consistent) Y-logic is not structurally complete. O

3. PRELIMINARY KEY ADVANCED GENERIC ISSUES

3.1. Equality determinants versus matrix hereditary simplicity. Following
the paradigm of the works [20] and [21], an equality determinant for a class of
Y-matrices M is any infinitary quantifier-free equality-free formula ® of the first-
order signature L = (X U {D}) (that is, any equality-free formula of the infinitary
language Lo o) with variables in Varg such that the infinitary universal sentence
VaoVx1(® « (g &~ x1)) with equality is true in M, in which case ® is an equality
determinant for I(S(M)) (cf. Lemma 3.3 of [25] for the “unitary” case discussed
in Subsubsection 3.1.1). Then, a canonical equality determinant for M is any -
calculus ¢ of rank 2 such that A e is an equality determinant for M. The main
distinctive feature of ¥-matrices with equality determinant is as follows:

Lemma 3.1 (cf. Lemma 3.2 of [25] for the “unitary” case). Any X-matriz A with
equality determinant ® is simple, and so hereditarily so.

Proof. Then, for any a € 6 € Con(A), and all ¢ € Fm%, we have ©*(ao,ag) 0
©*(ag,a1), in which case we get (¢®(ag,a0) € DA) < (¢™(ag,a1) € DA), and so
A |E @[z;/a;)ica, for A= @[z;/a0]ic2, as ag = ap (in particular, ag = a1, in which
case 0 = Ay, and so A is simple). O

Conversely, we have:
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Theorem 3.2. Every element of a class M of Y-matrices (satisfying both (2.5)
and (2.7) [in particular, being J-implicative]) is [finitely] hereditarily simple iff
M has a ({finitary/unary(/aziomatic)} canonical) equality determinant, in which
case this is so for IS({{/PS)})M, and so all elements of this class are hereditarily
simple.

Proof. The “if” part is by Lemma 3.1. Conversely, assume every element of M is
finitely hereditarily simple. Consider any A € M. Let ¢ £ {pi - p1—i | i€ 2,0 €
(Fm%)z7 (¢olz1/20]) = (d1][21/%0]) }, in Which case

(3.1) n*xi/alie2 = (*xi/aies,

for all a € A and all (n F ¢) € ¢, and so A = (A¢)[zi/a)ica, for Aq C 64
Conversely, consider any @ € (A2 \ A4). Let B be the submatrix of A gen-
erated by the finite set imga. Then, it, being finitely-generated is simple, in
which case § £ Cg® (@) > a ¢ Ap is a non-diagonal congruence of B, and so
6 ¢ 68. On the other hand, according to Mal’cev Principal Congruence Lemma
9 (ct. [4]), 6 = Te(V¥(a) U V™ (@) ), where V(@) 2 {(¢®[wi/csin/aslien)es |
neE w,p € Fmg+1,6 € A"}, in which case 6%, being transitive and symmet-
ric, does not include V®(a), and so there are some n € w, some ¢ € Fmi!
and some ¢ € B" such that (p® [@n/aj;Ti/Cilicn)je & #B8. Therefore, there is
some k € 2 such that [z, /ar;2;/cilicn € DB % ©P[rn/a1_1;7i/cilien, while,
as ‘B is generated by imga, for each i € n, there is some ; € Fm% such that
ci = YP[v/ai)ie2. Then, ¢P[zi/ai)ica € DB F P ,[xi/ailica, where, for all
m € 2, ¢m 2 (QlTn/Tm;xi/Vilien) € Fm$. And what is more, (do[z1/x0]) =
(plivs/ (il [zalien) = (G121/20]), in which case (6 F é1y) € =, and so
B = (Ae)[ri/ai]ica. Hence, A }= (A e)[zi/ai]ica, for A € is quantifier-free, and so €
is a unary (in particular, finitary) canonical equality determinant for M. (Then, by
(2.5), (2.7) and (3.1), e 2 {n 3¢ | (n F ¢) € €} is an axiomatic canonical equality
determinant for M.) On the other hand, any Z C Fm% is an axiomatic canonical
equality determinant for a class of Y-matrices K iff the universal infinitary strict
Horn sentences with equality VzoVa1 (A E) — (zo = z1)) and Vao(E[z1/x0]), where
¢ € E, of the first-order signature XU{D} are true in K. In this way, the well-known
fact that model classes of universal infinitary (strict Horn) theories with equality
are closed under I and S (as well as P) |cf., e.g., [10]| completes the argument. O

3.1.1. Unitary equality determinants versus matrix non-diagonal partial automor-
phisms. A [partial] (strict) endomorphism of a ¥-matrix A is any (strict) homo-
morphism from [a submatrix of] A to A ([injective ones being referred to as partial
automorphisms of Al).

A unitary equality determinant for a class M of Y-matrices is any T C Fmy,
such that ey 2 {(v[zo/z;]) F (v[zo/z1-4]) | i € 2,v € T} is a (unary) canonical
equality determinant for M. It is unitary equality determinants that are equality
determinants in the sense of [20].

Theorem 3.3. A X-matriz A has a unitary equality determinant iff it is (finitely)
hereditarily simple and has no non-diagonal [injective] partial strict endomorphism.

Proof. First, let T be a unitary equality determinant for A, B a submatrix of A
and h € hom(B,.A) strict. Then, for every b € B and each v € Y, we have
(L2 (b) = vB(b) € DA) < (VB (b) € DB) < (V¥(h(b)) = h(v®(b)) € DA), in which
case we get h(b) = b, and so h is diagonal. Thus, the “only if” part is by Lemma
3.1. Conversely, assume A has no non-diagonal partial automorphism and is finitely
hereditarily simple, in which case, by Theorem 3.2, it has a unary canonical equality
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determinant ¢. Consider any a € A2 such that
(3.2) (9™ (a0) € D) & (p™(ar) € DY),

for all p € lex. Let f be the carrier of the subalgebra of 22 generated by {a}, and,
for each i € 2, B; the submatrix of A generated by {a;}, in which case B; = m;[f],
for m;(a) = a;, while 7; € hom(22,2). Consider any i € 2 and any b,¢ € f such
that b; # ¢;, in which case there are some ¢,v € Fmsy, such that b = ¢Ql2 (@) and
¢ = wmz(&) as well as some (£ = 1) € e such that £%(b;,c;) € DA & n*(bs,c;).
Let (w[¢) £ ((¢[n)lwo/¢,x1/¢]) € Fmy,, in which case (£n)* (b,¢) = (=[()* (a),
and so w™(a;) € DA # (*(a;). Hence, by (3.2), £¥(by_;,c1_4) = w™(a1_;) €
DA F (*a1_;) = n*(bi_4,c1_4), in which case by_; # ¢1_;, and so f : By — By is
injective. Therefore, f, being a subalgebra of 22, is an embedding of By into A, in
which case, by (3.2), f is an embedding of B into A, and so a partial automorphism
of A. Thus, f is diagonal, in which case a; = f(ag) = ao, so Fmy, is a unitary
equality determinant for A. O

Clearly, any consistent truth-non-empty two-valued (in particular, classical) -
matrix A is both false- and truth-singular, in which case its characteristic relation
is diagonal, and so {zo} is an equality determinant for A.

3.2. Disjunctivity.

3.2.1. Disjunctivity versus multiplicativity. A 3-logic C is said to be Y- (singularly-
)multiplicative, provided, for all X C Fm$ and all ¢, € Fm$, it holds that
MCX U{e}) x {¢}]) C C(X U{o ¥y}

Lemma 3.4. Any X-logic C is Y-disjunctive iff it is both weakly V-disjunctive and
V-multiplicative as well as satisfies both (2.3) and (2.4).

Proof. The “only if” part is immediate. Conversely, assume C' is both weakly V-
disjunctive and Y-multiplicative as well as satisfies both (2.3) and (2.4). Consider
any X C Fm$, any ¢,9 € Fm$, and any ¢ € (C(XU{¢})NC(XU{¢})). Then, by
the V-multiplicativity of C' and (2.3), we have (¥ Y o) € C(p¥Y9)) C C(XU{pV)}).
Likewise, by the ¥Y-multiplicativity of C' and (2.4), we have ¢ € C(p ¥ ¢) C C(X U
{Y ¥ }). In this way, we eventually get ¢ € C(X U {¢p Y ¢}). O

3.2.1.1. Implicativity versus intrinsic disjunctivity.

Theorem 3.5. Let C be a weakly J-implicative S-logic and ¥ 2 wo. Then, the
following hold:

(i) C is both weakly Y-disjunctive and Y-multiplicative;
(ii) C is D-implicative iff it is V-disjunctive iff it satisfies (2.3).

Proof. (i) First, (2.2) with ¢ =0 is by DT and (2.7). Likewise, (2.2) with i =1
is by (2.6) and (2.7). Now, consider any X C Fms and any ¢, 1, ¢ € Fms.
Then, by DT and (2.7), we have ((¢v € C(XU{¢}) = (¢ T ¢) € C(XU{yp O
©}), applying which twice, the second time being with (¢v 3 ¢)|(¢ I ¢)
instead of @[, respectively, we conclude that C' is Y-multiplicative.

(ii) Assume C'is J-implicative. Then, ((zo¥xo) 3 zo) = ((2.9)[x1/x0]) is satisfied
in C, for this is structural, and so is (2.4), in view of (2.7). Furthermore, by
(2.7), we have zy € C({xo ¥ z1,20 I 21,21 3 xo}), in which case, by DT,
we get ((zo J 1) Jxo) € C({mo Y 21,21 T 20}), and so, by (2.7) and (2.9),
we eventually get zg € C'({xo ¥ x1,21 3 2o}) (in particular, by DT, (2.3) is
satisfied in C'). Then, Lemma 3.4, (i) and (2.8) complete the argument. [

Corollary 3.6. Let M be a class of [Y-disjunctive] X-matrices and C the logic of
M. Then, C is Jd-implicative if[f] all elements of M are so.
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Proof. The “if” part is immediate. [Conversely, assume C' is J-implicative, in which
case, by Theorem 3.5(ii), it is Wo-disjunctive as well as is Y-disjunctive, and so
C(xo W 1) = (C(x0) N C(21)) = C(x0 Y 21). Then, by (2.9) = ((xo T 1) W5 x0)
and the structurality of C, we have C(&) = C((xg O z1) W5 z9) = C((zop 3
21) Y xg) 3 ((mo 3 x1) ¥ 2¢), in which case the Y-axiom (x¢p 3 x1) Y xg, being
satisfied in C, is true in every A € M C Mod(C) as well as both (2.6) and (2.7) are
so, for they are satisfied in C, and so A, being Y-disjunctive, is J-implicative.] O

3.2.2. Disjunctive consistent finitely-generated models of finitely-valued weakly dis-
Junctive logics.

Lemma 3.7. HH1(M)) C H 1(H(M)), for any class of Y-matrices M.

Proof. Let A and B be S-matrices, C € M and (hlg) € hom3(B,C|.A). Then, by
Remark 2.8(i), (ker(h|g)) € Con(B), in which case (ker(h|g)) C 6 = O(B) € Con(B),
and so, by the Homomorphism Theorem, (v o (h|g) ") € hom$(C|.A, B/6). O

Lemma 3.8 (cf. the proof of Lemma 2.7 of [25]). Let M be a (finite) class of
(finite) X-matrices and A a (truth-non-empty) [non-[simple denumerably-generated
(more specifically, finite{ly-generated}) model of the logic of M. (Suppose A is
{generated by a subset} of cardinality n € w.) Then, there are some (finite) set I

(of cardinality < Y zomn!Pl), some C € Si*>(M)I and some its subdirect product
in H™Y(A[/D(A)]).

Lemma 3.9. Let M be a class of weakly V-disjunctive X-matrices, I a finite set,
C € ML, and D a consistent Y-disjunctive subdirect product of it. Then, there is
some i € I such that (m;]D) € hom3(D,C;).

Proof. By contradiction. For suppose that, for every i € I, (m;[D) ¢ homg (D,C),
in which case D? C (m;[D)”'[D%] = (D N, Y[D%)), for (m]D) € hom(D,C;)
is surjective, and so there is some a; € (D \ DP) such that m;(a;) € D%. By
induction on the cardinality of any J C I, let us prove that there is some b €
(D \ DP) such that m;(b) € D%, for all j € J, as follows. In case J = &, take any
b e (D\ DP) # @, for D is consistent. Otherwise, take any j € .J, in which case
K 2 (J\ {j}) C I, while |K| < |J|, so, by the induction hypothesis, there is some
c € (D\ DP) such that m(c) € D, for all k € K. Then, by the V-disjunctivity of
D, b= (cVY® a;) € (D\ DP), while m;(b) € D%, for all i € J = (K U {j}), because
(m;|D) € hom(D,€;), while C; is weakly V-disjunctive. In particular, when J = T,
there is some b € (D \ DP) such that 7;(b) € D%, for all i € I. This contradicts to

the fact that DP = (DN, m; '[D]), as required. O

By Lemmas 3.7, 3.8, 3.9 and Remark 2.10(ii), we immediately have:

Theorem 3.10. Let M be a finite class of finite weakly V-disjunctive S-matrices,
C' the logic of M and A a finite[ly-generated] consistent ¥-disjunctive model of C.
Then, A € H™1(H(S.(M))).

3.2.2.1. Theorems of weakly disjunctive finitely-valued logics versus truth-empty
submatrices of defining matrices.

Corollary 3.11. Let C be a X-logic. (Suppose it is defined by a finite class M of
finite [weakly ¥-disjunctive] 3-matrices.) Then, (i) (ii)< (i) (< (v)), where:

(i) C is purely-inferential;

(ii) C has a truth-empty model;
(iil) C has a one-valued truth-empty model;

)

(iv Pi][jmo]( «(MN[USL(M)] has a truth-empty element.
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Proof. First, (ii)=-(i) is immediate. The converse is by the fact that, by Remark
2.12, (§ms, C(@)) is a model of C.

Next, (ii) is a particular case of (iii). Conversely, let A € Mod(C) be truth-
empty. Then, x* is singular, in which case 64 = A% € Con(2), and so, by (2.14)
and Remark 2.10(ii)(b), (A/84) € Mod(C) is both one-valued and truth-empty.

(Finally, (iv)=-(ii) is by (2.14). Conversely, (iii)=(iv) is by Remark 2.10(ii)(b)
and Lemma 3.8 [resp., Theorem 3.10 as well as the consistency and Y-disjunctivity
of truth-empty X-matrices].) O

3.2.2.1.1. Inconsistent formulas of weakly conjunctive finitely-valued logics versus
inconsistent submatrices of defining consistent matrices. Applying the matrix truth-
duality to the ([])-optional version of Corollary 3.11(i)<(iv), we also get:

Corollary 3.12. Let M be a finite class of consistent finite weakly N-conjunctive
Y-matrices and C the logic of M. Then, C has an inconsistent formula iff ST*}(M)
has no inconsistent element.

3.2.3. Non-paraconsistency versus Resolution. Given any Y-logic C, by C® we de-
note the extension of C' relatively axiomatized by the Resolution rule (cf. [29]):

(33) {:UOYxl,Zxonl} |—.’1?1.
Applying Lemma 3.4 and (2.4) to (2.10) twice, we have:
Lemma 3.13. (3.3) is satisfied in any Y-disjunctive non-1-paraconsistent 3-logic.

Theorem 3.14. Let M be a finite class of finite V-disjunctive X-matrices and
C the logic of M. Then, C® is defined by the class S of all non-1-paraconsistent
elements of S«(M), and so is Y-disjunctive but is not -paraconsistent.

Proof. Then, C is ¥Y-disjunctive, while the logic of S is a both finitary, Y-disjunctive
(in view of Remark 2.10(ii)(a)) and non--paraconsistent extension of C, and so an
extension of C®, in view of Lemma 3.13. Conversely, consider any n € (w \ 1),
any I' C Fm% and any ¢ € (Fm% \C®(T)), in which case, by (2.13) with a = n,
o & CT) = Cofy(T) 2 Cnpy(T), and so T 2 {T € By, | T C T % ¢} # @.
Then, since n as well as both M and all elements of it are finite, the class {(A4, h) |
A € M;h € hom(Fmy, )} is a finite set, in which case the set By, is finite, and
sois T C By, Let m £ |T] € (w\ 1) and T : m — T bijective, in which case,
for each ¢ € m, there is some A4; € M and some h; € hom(Fmy,2;) such that
I C T, = hi'[D4] # ¢, and so B; £ (imgh;) forms a subalgebra of 2;, while
Bi & (Ai[B;) € S(M), whereas h; '[DB] = T; (in particular, B; is consistent, for
hi(¢) € (B; \ D?%)), as well as h; € hom(Fm¥%,B;) (In particular, T; € Bs. m))-
We prove, by contradiction, that, for some ¢ € m, B; is not !-paraconsistent. For
suppose each B;, where i € m, is -paraconsistent. By induction on any j € (m+1),
we set Z; = ({p{*y Vo | k€ 2,9 € Tj1 2 W, ¢ € Zj_1}) C FmY, whenever
j =|# 0, respectively, and prove that

(3.4) o € CREy),
(3.5) Ej C (C(T)NC(E)),

for all ¢ € j. The case, when j = 0 = &, is evident. Otherwise, (j — 1) € (mnNj),
in which case B;_; is ~-paraconsistent, and so there is some ¢ € T;_; such that
W € Tj—1. In particular, for each ¢ € ;-1 and every k € 2, (*y V ¢) € Ej,
in which case, by (3.3)[x0/t, x1/¢] and the structurality of CR, ¢ € C®(E;), and
so, by the induction hypothesis, ¢ € C®(Z;_;) C C®(E;). Thus, (3.4) holds.
Likewise, by the ¥-disjunctivity of C, for each ¢ € E;_1, every £ € 2 and all
¢ € Tj_1 such that 1) € Tj_q1, we have (*¢ VY ¢) € (C(E;-1) N C(Tj-1)) (in
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particular, (3.5) with ¢ = (§ — 1) holds), and so, by the induction hypothesis as
well as (3.5) with ¢ = (j — 1), we get (3.5), for all ¢ € (j — 1). Thus, (3.5) holds,
foralli € ({ —1}U(j —1)) = j. In this way, by (3.4) with j = m, we have
En ¢ CR(T) 2 C(T) = Cnjy(T), in which case, by (2.13) with a = n, we get
Z € Cny(T), and so there is some T' € By such that ' C T 2 =,,. In that case,
if T contained ¢, that is, included Zg, then, by (3.5) with j =m and i =0 € m,
for m # 0, we would have =,, C C(T), and so, by (2.13) with & = n, would get
Em C Cny(T) = T. Therefore, ¢ ¢ T, in which case T € T, and so T = T;, for
some [ € m. Hence, by (3.5) with j = m and ¢ = [, we have E,, C C(T), in which
case, by (2.13) with o = n, we get =, C Cny(T) = T, and so this contradiction
shows that there is some ¢ € m, such that B; is not (-paraconsistent. In this way,
B; € S, in which case ¢ ¢ Cnjp (I') 2 Cng(I'), and so, by (2.13) with a = n,
¢ & Cng ('), as required, for p,(Fm) C U, g (1) 9(Fms). O

3.3. Implicative matrix semantics of implicative finitary logics.

Lemma 3.15. Let C be an J-implicative ¥-logic. Then, any member of ({Fms}x
MI(img C')) is J-implicative.

Proof. Consider any T € MI(img C), any ¢,% € Fm$ and any ¢ € (C(TU{¢}) N
C(T U{¢ T v})), in which case, by DT and (2.7), (¢ O3 ¢) € C(T U{p T ¢}), so
p € C(TU{p O1}). Then, by DT, ((¢ J¢) J¢) € C(T) =T, in which case, by
(2.7) and (2.9), p € T, 50 T = (C(TU{p}) N C(T'U{¢ T 4})). Hence, T, being
meet-irreducible in img C, is equal to either C(T' U {¢}) 2 ¢, in which case ¢ € T,
or C(TU{¢ 3v}) > (¢ %), in which case (¢ T 1) € T, so, by (2.6) and (2.7),
(§my, T) is T-implicative. O

This, by Remarks 2.1 and 2.12 (as well as 2.8(iv), 2.10(ii)(a) and (2.14)), imme-
diately yields:

Theorem 3.16. Any [finitary] X-logic C is Jd-implicative if[f] it is defined by a
class of (simple) {consistent} J-implicative X-matrices.

3.4. Some peculiarities of false-singular matrices.
3.4.1. Subdirect products of consistent submatrices of weakly conjunctive matrices.

Lemma 3.17. Let A be a false-singular weakly o-conjunctive X-matriz, f € (A\
DAY, I a finite set, B € S,(A)! and D a subdirect product of it. Then, (I x {f}) €
D.

Proof. By induction on the cardinality of any J C I, let us prove that there is some
a € D including (J x {f}). First, when J = @, take any a € D # &, in which
case (J x {f}) = @ C a. Now, assume J # &. Take any j € J C I, in which case
K £ (J\{j}) C I, while |K| < |J|, and so, as B; is a consistent submatrix of the
false-singular Y-matrix A, we have f € B; = m;[D]. Hence, there is some b € D
such that m;(b) = f, while, by induction hypothesis, there is some ¢ € D including
(K x {f}). Therefore, since J = (K U{j}), while A is both weakly o-conjunctive
and false-singular, we have D > a £ (co® b) 2 (J x {f}). Thus, when J = I, we
eventually get D > (I x {f}), as required. O

3.4.2. Models of weakly implicative logics.

Lemma 3.18. Let A be a false-singular ¥-matriz. Suppose (2.5), (2.6) and (2.7)
are true in A. Then, A is J-implicative. In particular, any false-singular X-matriz
is J-implicative iff its logic is [weakly] so.

Proof. Then, for all a,b € (A\ D*), we have a = b, in which case, by (2.5), we get
(a 3% b) = (a 7% a) € DA, and so (2.6) and (2.7) complete the argument. O
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3.5. Logic versus model congruences.

Lemma 3.19. Let C be a X-logic, § € Con(C), A € Mod(C) and h € hom(Fms,
A). Then, h[f] C O(A).

Proof. Then, ¥ £ (J{g[f] | g € hom(Fm,2A)}) is symmetric, for 6 is so. And
what is more, since § C =%, while 4 € Mod(C), ¢ C 6. Next, consider
any a € A. Let g 2 [z1/alkew € hom(FmE,A). Then, since (zg,zo) € 6,
(a,a) = g({xo,x0)) € g[f] C ¥, and so Ay C . Now, consider any ¢ € ¥ of
arity n € w, any i € n, any {(a,b) € ¥ and any ¢ € A"~!. Then, there are some
(p,9) € 0 and some f € hom(Fms,A) such that a = f(¢) and b = f(¢). Let
V & (Var(¢) U Var(y) U {z;}) € p.(Var,), in which case | Var, \V| = w > (n — 1),
for | Var,, | = w is infinite, and so there is some injective v € (Var, \V)"~!. Let
¢ = (s(zn)[zj/vj; 2 /vE-1]jeiken\ (i+1))) € Fm$ and g € hom(Fms, A) extend
(f1(Var,, \(imgv)))U(cov1), in which case (p[z; /], ¢[z:/1]) € 0, so (p*[z;/a; v/
cilien—1), ¢ [2i/b;vi/ctliem—1)) = g((¢lzi/], ¢lwi/¥])) € gl6] € 9. Thus, unary
algebraic operations of 2 are ¥-monotonic. Therefore, = Tr(¥J) is a congruence
of A. And what is more, 6 D 9, being transitive, includes 7, in which case
n € Con(A), and so h[f] C 9 Cn CO(A). O

3.5.1. Simple models versus intrinsic varieties. As a particular case of Lemma 3.19,
we first have (from now on, we follow Definition 2.3 tacitly):

Corollary 3.20. Let C be a X-logic. Then, mo[Mod*(C)] C IV(C).

Corollary 3.21. Let C be a X-logic. Then, O(C) is fully-invariant. In particular,
o(C) = 9(10\/(0)-

Proof. Consider any o € hom(gms, §ms) and any T € (img C), in which case, by
Remark 2.12, Ay £ (3m&,T) € Mod(C), so, by Lemma 3.19, ¢[2(C)] C D(Ar).
Then, o[2(C)] € 0 £ (EqNN{2(Ar) | T' € (imgC)}) C (EqgNN{04 | T €
(img C)} = =¢. Moreover, for each T € (imgC), O(Ar) € Con(Fmy,), in which
case 6 € Con(gms:), and so o[0(C)] C 6 C o(C). O

Lemma 3.22. Let M be a class of Y-matrices, K = m[M] and C the logic of M.

Then, 0 C =¢, in which case 8 C O(C), and so IV(C) C V(K).

Proof. Then, for any (¢,v¢) € 8¢, A € M and h € hom(Fms,A), A € K, in which

case (h(¢),h(¥)) € Ay C 64, and so ¢ =% 1. O
By Corollary 3.20 and Lemma 3.22, we then have:

Corollary 3.23. Let M be a class of S-matrices, K £ m[M] and C the logic of
M. Then, mo[Mod*(C)] C V(K).

Theorem 3.24. Let M be a class of simple S-matrices, K 2 m5[M] and C' the logic
of M. Then, IV(C) = V(K).

4. SELF-EXTENSIONAL LOGICS VERSUS SIMPLE MATRICES

Theorem 4.1. Let C be a Y-logic and V = IV(C) (as well as M a class of
{simple} S-matrices, K 2 m[M] and o 2 ([IU)(w N U{|A4] | A € M})) [un-
less ¥ contains a nullary connective]). (Suppose C is defined by M.) Then,
(D)e (i) e (i) ({=(iv)=}(v)=)(vi)=(i), where:
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(iv) for all distinct a,b € F}, there are some A € M and some h € hom(gy,A)
such that x*(h(a)) # xA(h(b));

(v) there is some class C of X-algebras such that K C V(C) and, for each A € C
and all distinct a,b € A, there are some B € M and some h € hom(%, B)
such that xB(h(a)) # xB(h(b));

(vi) there is some S C Mod(C) such that V C V(m[S]) and, for each A €S, it
holds that (A2N{0° | B€S,B=A}) C Aa.

Proof. In that case, by Corollary 3.21 (as well as by {both Corollary 3.20 and}

Lemma 3.22), O(C) = 6y (as well as V C V(K){C V} {and so 6 = 6¢}). Then,

(1)< (iil) is immediate, while (ii) is a particular case of (iii), whereas the converse

is by the inclusion O(C) C =¢.

({Next, assume (iii) holds. Then, §* 2 =& = 02 = 03 € Con(%m%’)7 for
all X-ranks o' (in particular, for ¢/ = «). Furthermore, consider any distinct
a,b € F¢. Then, there are some ¢,1¢ € Fmy, such that vpe(¢) = a # b = vy (9),
in which case, by (2.13), Cny(¢) # Cnp(¢), and so there are some A € M and
some g € hom(Fm, A) such that x*(g9(¢)) # x(g(¢)). In that case, 0~ C (ker g),
and so, by the Homomorphism Theorem, h £ (g o v,.') € hom(Fg,2A). Then,
h(a/b) = g(¢/1), in which case x*(h(a)) # x*(h(b)), and so (iv) holds.

Now, assume (iv) holds. Consider any 2 € K and the following cases:

o |A] < a. Let h € hom(Fms;, A) extend any surjection from Var,, onto A, in which
case it is surjective, while 6 £ 63 = 02 C (ker h), and so, by the Homomorphism
Theorem, g £ (hov, ') € hom(F,2) is surjective. Thus, 2 € V().

e |A] £ a. Then, @ = w. Consider any Y-identity ¢ ~ ¢ true in Fy and any
h € hom(Fmg,A), in which case, we have 6 £ 6 = 0% C (ker h), and so, since
vp € hom(Fms, §Y), we get (¢, 9) € (kervg) C (kerh). Thus, A € V(F).

In this way, (v) with C £ {3} holds}.

Further, assume (v) holds. Let C' £ {2 € C| |A| > 1} and S £ {(”A,h~1[D5)) |
A e C,Be M,h € hom(,B)}. Then, for all A € C', each B € M and every h €
hom(®, B), h is a strict homomorphism from C £ (2, h~![D5]) to B, in which case,
by (2.14), C € Mod(C), and so S € Mod(C), while x¢ = (h o x®), whereas, since
any Y-identity is true in any one-element X-algebra, by (v), mo[S] = C’ generates
the variety V(C) D V(K) D V. In this way, (vi) holds.)

Finally, assume (vi) holds. Consider any ¢,v¢ € Fmy such that ¢ =g ¢, any
A €S and any h € hom(Fms, A). Then, for each B € S with B = 2, h(¢) 65 h(v),
in which case h(¢) = h(¢)), so A = (¢ = ). Thus, V C V(m[S]) = (¢ = 1), so (ii)
holds, as required. O

When both M and all elements of it are finite, « is finite, in which case §Y is
finite and can be found effectively, and so, taking (2.14) and Remark 2.8(iv) into
account, the item (iv) of Theorem 4.1 yields an effective procedure of checking the
self-extensionality of any logic defined by a finite class of finite matrices. However,
its computational complexity may be too large to count it practically applicable.
For instance, in the unitary n-valued case, where n € (w\ 1), the upper limit n™" of

|F\| as well as the predetermined computational complexity n™" of the procedure
involved become too large even in the three-/four-valued case. And, though, in
the two-valued case, this limit — 16 — as well as the respective complexity —
216 — 65536 — are reasonably acceptable, this is no longer matter in view of:

Example 4.2. Let A be a ¥-matrix. Suppose it is both false- and truth-singular (in
particular, two-valued as well as both consistent and truth-non-empty [in particu-
lar, classical]), in which case 84 = A 4, for x is injective, and so A is simple. Then,
by Theorems 3.24 and 4.1(vi)=-(i) with S = { A}, the logic of A is self-extensional,
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its intrinsic variety being generated by 2. Thus, by the self-extensionality of infer-
entially inconsistent logics, any two-valued logic is self-extensional. O

Nevertheless, the procedure involved is simplified much under hereditary simplic-
ity as well as either implicativity or both conjunctivity and disjunctivity of finitely
many finite defining matrices upon the basis of the item (v) of Theorem 4.1.

4.1. Self-extensionality of conjunctive disjunctive logics versus distribu-
tive lattices.

Remark 4.3. Let C be a A-conjunctive or/and V-disjunctive X-logic and ¢ ~ ¢ a
semi-lattice/ “distributive lattice” identity for A or/and Y. Then, ¢ =& 1. O

Theorem 4.4. Let C be a o-conjunctive/-disjunctive X-logic (defined by a class
M of simple X-matrices) and i = (0/1) (as well as K = m[M]). Then, C is self-
extensional iff the following hold:

(i) each element of IV(C)(= V(K)) is a o-semi-lattice;

(i) for all p € (FmLX)?2, (v1 € C(p0))<|=AV(C) & (v; = (¢o 0 ¢1))-

Proof. The ”if” part is by Theorem 4.1(ii)=-(i) and semi-lattice identities (more
specifically, the commutativity one) for ¢. Conversely, if C' is self-extensional,
then, by Theorem 4.1(i)=(iii), we have =¢ = 0[5y, in which case, since C' is
o-conjunctive/-disjunctive, (i) is by Remark 4.3 (and Theorem 3.24), while, for all
¢ € (Fmg)?, (¢1 € Clpo)) & (pi =¢ (w0 © 1)), so (ii) holds. O

Lemma 4.5. A [truth-non-empty A-conjunctive] S-matriz A is a (2\ 1)-model of
a [finitary A-congunctive] X-logic C if[f] A € Mod(C) (cf. Definition 2.9).

Proof. The “if” part is trivial. [Conversely, assume A € Mody\;(C). Consider any
¢ € O(2) and any h € hom(Fm,2), in which case V £ Var(p) € g, (Vary),
and so (Var, \V) # @, for, otherwise, we would have V' = Var,,, and so would
get w = |Var, | = |[V| € w. Take any v € (Var, \V) and any a € D* # @. Let
g € hom(Fmy, A) extend (R[(V \ {v})) U[v/a]. Then, p € C(v), {v} € po\1(Fm3)
and g(v) = a € D#, in which case h(p) = g(p) € DA, for A € Mody\;(C), and so
A € Mody(C). By induction on any n € w, let us prove that A € Mod,,(C). For
consider any X € g, (Fm$), in which case n # 0. In case | X| € 2, X € po(Fm$),
and so C'(X) C Cn(X), for A € Mody(C). Otherwise, | X| > 2, in which case there
are some distinct ¢, € X, andso Y = ((X\{¢, ¥} )U{pAY}) € pn_1(Fm$). Then,
by the induction hypothesis and the A-conjunctivity of both C and A, C(X) =
C(Y) C Cny(Y) = Cn%(X). So, A € Mod(C), asw = (| Jw), and C'is finitary.] O

Theorem 4.6. Let C be a A-conjunctive [Y-disjunctive] Y-logic and V = TV(C)
(as well as M a class of simple X-matrices defining C, and K = m9[M]). {Suppose
C is finitary (in particular, both M and all elements of it are finite).} Then,
(i) (i){=} (iii) (= (v) )= (i), where:
(i) C is self-extensional;
(ii) for all ¢,v € Fms, it holds that (v € C(¢)) & | = (V E (¢ = (¢ AY))),
while every element of V is a A-semi-lattice [resp., distributive (A, Y)-lattice];
(iil) every truth-non-empty A-conjunctive [consistent Y- disjunctive] YL-matriz
with underlying algebra in V is a model of C, while every element of V is a
A-semi-lattice [resp., distributive (A, Y)-lattice/;
(iv) any truth-non-empty A-conjunctive [consistent VY- disjunctive] X-matriz with
underlying algebra in K is a model of C, while every element of K is a A-
semi-lattice [resp., distributive (A,V)-lattice].

{(In particular, (i-iv) are equivalent.)}
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Proof. First, (1)< (ii) is by Remark 4.3 and Theorem 4.4 with ¢ = 0 and ¢ = A.
{Next, (ii)=-(iii) is by Lemma 4.5.} (Further, (iv) is a particular case of (iii), in
view of Theorem 3.24.) Finally, assume (iii) (resp., (iv)) holds. Let S be the class
of all truth-non-empty A-conjunctive [consistent Y- disjunctive] X-matrices with
underlying algebra in V (resp., in K). Consider any A € S and any a € (42\A4), in
which case, by the semi-lattice identities (more specifically, the commutativity one)
for A, a; # (a; A% a1_;), for some i € 2, andso B= (A, {b€ A|a; = (a; \*b)}) €S
[resp., by the Prime Ideal Theorem, there is some B € S| such that B = 2 and
a; € DB % ay_;. In this way, (i) is by Theorem(s) 4.1(vi)=-(i) (and 3.24). O

Theorem 4.7. Let M be a (finite) class of (finite simple) X-matrices (with [not]
merely simple submatrices), K = mo[M] and C the logic of M. (Suppose C is both
A-conjunctive and Y-disjunctive {in particular, every member of M is so}.) Then,
C' is self-extensional if(f), for each A € K and all distinct a,b € A, there are some
B € [HS.]M and some [surjective] h € hom (2, B) such that xB(h(a)) # x5 (h(b)).

Proof. The “if” part is by [(2.14) and] Theorem 4.1(v)=-(i) with C = K [and HS.M
instead of M]. (Conversely, assume C is self-extensional. Consider any 2 € K and
any @ € (A%2\ Aa). Then, by Theorem 4.6(i)=(iv), 2 is a distributive (A,Y)-
lattice, in which case, by the commutativity identity for A, a; # (a; A* ay_;), for
some i € 2, and so, by the Prime Ideal Theorem, there is some A-conjunctive V-
disjunctive ¥-matrix D with ® = A such that a; € DP ¥ ai_;, in which case
D is both consistent and truth-non-empty, and so is a model of C. Hence, by
Theorem 3.10 and Remark 2.8(ii), there are some B € [HS.]M and some strict
[surjective] h € hom(D, B) C hom(2,B), in which case h(a;) € DB # h(a;_;), and
so XB(h(a;)) =1 # 0 = xB(h(a1_;)), as required.) O

In view of (2.14) and Remark 2.8(ii), this yields an effective algebraic criterion
of self-extensionality of conjunctive disjunctive finitely-valued logics.

4.2. Self-extensionality of implicative logics versus implicative intrinsic
semi-lattices. A Y-algebra 2 is called an J-implicative intrinsic semi-lattice [with
bound (a)], provided it is a W—-semi-lattice [with bound (a)] and satisfies:

(4.1) (.1‘0 | 1‘0) ~ (1‘1 ] 1‘1),
(42) ((LL‘O | 1‘0) | 1‘1)

in which case it is that with bound @ 3% a, for any a € A.

Q

Ty,

Remark 4.8. Let C be a [self-extensional] ¥-logic and ¢, € C(@), in which case
¢ =¢ ¢ [and so IV(C) = (¢ = )] O

Theorem 4.9. Let M be an J-implicative X-logic C (defined by a class M of simple
Y-matrices and K = mg[M]). Then, C is self-extensional iff, for all ¢, € Fm$,
it holds that (v € C(4))=|=1IV(C) E (¥ = (¢ W v))), while each element of
IV(C)(= V(K)) is an J-implicative intrinsic semi-lattice.

Proof. First, by (2.5), Remark 4.8 and the strucuruality of C, (4.1) € =¢. Likewise,
by (2.5), (2.6) and (2.7), (4.2) € =%. Then, Theorems 3.5(ii) and 4.4 with ¢ = 1
and ¢ = W complete the argument. O

Lemma 4.10. Let C' be a finitary X-logic and C" a 1-extension of C' (cf. Def-
inition 2.4). Suppose C' has DT with respect to 1, while (2.7) is satisfied in C".
Then, C" is an extension of C'.

Proof. By induction on any n € w, we prove that C” is an n-extension of C’. For
consider any X € p,(Fm$), in which case n # 0, and any ¢» € C’(X). Then, in case
X = @, we have X € p1(Fm$), and so ¢ € C'(X) C C"(X), for C” is a 1-extension
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of C'. Otherwise, take any ¢ € X, in which case Y = (X \ {¢}) € pn_1(Fm$),
and so, by DT with respect to 1, that C’ has, and the induction hypothesis, we
have (¢ O ¢) € C'(Y) C C”(Y). Therefore, by (2.7)[zo/¢, 21 /1] satisfied in C”, in
view of its structurality, we eventually get v € C"(Y U {¢}) = C”(X). Hence, as
w = (Jw), we conclude that C” is an extension of C’, for this is finitary. O

Theorem 4.11. Let M be a (finite) class of (finite simple) ¥-matrices (with [not]
merely simple submatrices), K £ mo[M] and C the logic of M. (Suppose C is 1-
implicative {in particular, every member of M is so}.] Then, C is self-extensional
if(f), for each A € K and all distinct a,b € A, there are some B € [HS.]M and
some [surjective] h € hom (R, B) such that xB(h(a)) # xB(h(b)).

Proof. The “if” part is by [(2.14) and] Theorem 4.1(v)=-(i) with C = K [and HS..M
instead of M]. (Conversely, assume C' is self-extensional. Consider any 2 € K
and any @ € (A%2\ A4). Then, by Theorem 4.9, 2 € IV(C) is an J-implicative
intrinsic semi-lattice, in which case, by the commutativity identity for W—, a1_; #
(a; W2 ai_;), for some i € 2. Let n = |A] € (w\ 1). Take any bijective ¢ :
n — A. Let g € hom(Fmg,2) extend [z;/cj;2r/co]jenske(w\n), in Which case
A = (imge) C (imgg) C A, and so there is some ¢ € (Fm$)? such that g(@) = a.
Then, by (2.14), S £ ¢ '[Fg2(2)] € Fic(Fms). Let us prove, by contradiction,
that ¢1_; ¢ T = C(S U {y;}). For suppose p;_; € T, in which case, by DT,
(pi T p1-i) € C(S), and so (¢; T w1-i) = o(p; T p1—4) € S, for o[S] =5 C S,
where o is the diagonal -substitution. Then, (a; 2% a;_;) € Fgh(®). Clearly,
by (2.5), F £ {a; 3% a;} C Fg2 (). Conversely, consider any ¢ € C(@) and any
e € hom(Fms,A), in which case, by the structurality of C, ¢'(¢) € C(&), where
o’ is the X-substitution extending [z;/%i11]icw, and so, by (2.5) and Remark 4.8,
e(¢) = €' (0'(¢)) = € (zo T x0) = (a; 3% a;) € F, where €’ € hom(Fm¢,2l) extends
[z0/ai; Tma1/€(Tm)]mew (in particular, D = (A, F) € Mod;(C); cf. Definition
2.9). And what is more, by (4.2), (2.7) is true in D, in which case, by Lemma
4.10, F € Fig(2), and so Fga(@) C F (in particular, Fga (@) = F). In this
way, (a; 2% a1—;) = (a; 3% a;), in which case, by (4.2), (a; W2 a1—;) = ((a; 2%
a;) 0% a1-;) = a1—;, and so this contradiction shows that ¢1_; ¢ 7. Hence, by
Remark 2.1, there is some U € MI(img C) such that (S U {p;}) C U Z 14,
in which case, by Remark 2.12 and Lemma 3.15, £ = (Fmyg,U) € Mod(C) is 3-
implicative, and so Wo-disjunctive. Clearly, U C g~1[g[U]]. Conversely, consider
any ¢ € g~1[g[U]], in which case g() € g[U], and so case there is some & € U such
that g(§) = g(¢). Therefore, by (2.5), g(¢ T ¢) = g(§ O &) € Fgo(@), in which
case (£ J¢) € SCU>E, and so, by (2.7), ¢ € U. Then, U = g~![g[U]], in which
case a; = g(p;) € glU] 2 g(v1—:) = a1y, for p; € U & p1_;, while g is a surjective
strict homomorphism from € onto G = (2, g[U]), and so, by (2.14) and Remark
2.10(ii)(a,b), G is a consistent W—-disjunctive model of C| for & is so. Therefore, by
Theorems 3.5(i), 3.10 and Remark 2.8(ii), there are some B € [HS.]M and some
[surjective] A € homg(G, B) C hom(2A,B), in which case h(a;) € D® % h(a;_;), and
so XB(h(a;)) =1 # 0 = xB(h(a1_;)), as required.) O

In view of (2.14) and Remark 2.8(ii), this yields an effective algebraic criterion
of self-extensionality of implicative finitely-valued logics.

4.3. Self-extensionality of uniform finitely-valued logics versus truth dis-
criminators. A truth discriminator for/of a Y-matrix A is any h : img[@4\ A 4] —
hom(2, ) such that, for every {a,b} € (domh), (a,b) & ker(h(,py o x*). Then,
since Ay € hom(2,2l), by Theorems 4.7 and 4.11, we have:
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Corollary 4.12. Let A be a [finite hereditarily] simple [either implicative or both
conjunctive and disjunctive] Y-matriz and C the logic of A. Then, C is self-
extensional if[f] A has a truth discriminator.

The effective procedure of verifying the self-extensionality of the logic of an n-
valued, where n € (w\ 1), hereditarily simple either implicative or both conjunctive
and disjunctive Y-matrix resulted from Corollary 4.12 has the computational com-
plexity n"*2 that is quite acceptable for (3]|4)-valued logics. And what is more,
it provides a quite useful heuristic tool of doing it, manual applications of which
(suppressing the factor n"*2 at all) are presented below. First, we have:

Corollary 4.13. The logic of any no-less-than-three-valued hereditarily simple
either implicative or both conjunctive and disjunctive 3-matriz A without non-
diagonal non-singular endomorphism of A (cf. pp. 3,4) is not self-extensional.

Proof. By contradiction. For suppose the logic of A is self-extensional, in which
case, as |[A| > 3 £ 2, x is not injective, and so there are some distinct a, b € A such
that x“(a) = x(b). Then, by Corollary 4.12, there is some h € hom(2, ) such
that xA(h(a)) # x*(h(b)), in which case h(a) # h(b), and so h is not singular (in
particular, diagonal). Hence, x*(a) = x*(h(a)) # x*(h(b)) = x*(b) = x*(a). O

4.3.1. Self-extensionality versus equational implications and unitary equality deter-
minants. According to [21], given any m,n € w, a [finitary] (X-)equational FI7-
{sequent } definition for/of a ¥-matrix A is any U € g, (Eq ™) such that, for all
a € A™ and all b € A", it holds that (((imga) C D*) = (((imgb) N DA) # @)) &
A = (AO)[xi/ai; Tm+i/bliemsjen). Equational l—(l)/l-deﬁnitions are also referred
to as equational “truth [predicate] definitions” /implications /(cf. [23]). Some kinds
of equational sequent definitions are equivalent for implicative matrices, in view of:

Remark 4.14. Given a(n J-implicative) X-matrix A, (i) holds (as well as (ii-iv) do
s0), where:
(i) given a [finitary] equational F3-definition U for A, U[z(2.4)4+j/%:)ijez I8 a
[finitary] equational implication for A (cf. Theorems 10 and 12(ii)=-(iii) of
21]);
(ii) given any [finitary] equational implication U for A, Ulzo/(xo 3 xo), x1/T0] is
a [finitary] equational truth definition for A;
(iii) given any [finitary] equational truth definition U for A, Ulzo/(z¢ 3 (21 3
(z2 W x3)))] is a [finitary] equational F3-definition for A;
(iv) in case A is truth-singular, {zo ~ (x¢ 3 o)} is a finitary equational truth
definition for it. O

In this way, taking Theorems 10, 12(i)«<(ii) and 13 of [21] as well as Remark
4.14 into account, an either implicative or both conjunctive and disjunctive no-less-
than-two-valued finite ¥-matrix M with unitary equality determinant has a finitary
equational implication iff the multi-conclusion two-side sequent calculus g/(\’fll% (cf.
[20] as well as the paragraph -2 on p. 294 of [21] for more detail) is algebraizable
(in the sense of [18, 17]). Then, by Lemma 9 and Theorem 10 of [21] as well as

Corollary 4.13, we immediately get:

Corollary 4.15. The logic of any no-less-than-tree-valued either implicative or
both conjunctive and disjunctive Y-matrixz with unitary equality determinant and
equational tmplication is not self-extensional.

As a first generic application of the “implicative” parts of Remark 4.14 and
Corollary 4.15, we have:
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Corollary 4.16. The logic of any no-less-than-tree-valued implicative truth-singu-
lar X -matriz with unitary equality determinant is not self-extensional.

A

Example 4.17 (Lukasiewicz’ finitely-valued logics; cf. [8]). Let n € (w\ 2), ¥ =
(24 U{~,D}) with binary D (implication) and unary ~ (negation) and A the X-
matrix with (A[X) 2 D,, (cf. Subparagraph 2.2.1.2.1), DA £ {1}, ~% £ (1 — q)
and (a D% b) £ min(1,1—a+b), for all a,b € A, in which case A is both consistent,
truth-non-empty, A-conjunctive, V-disjunctive and non-~-paraconsistent as well as
has both an equational implication, by Example 7 of [21], and a unitary equality
determinant, by Example 3 of [20] (cf. Proposition 6.10 of [22] for a constructive
proof of it), while 2 forms a subalgebra of 2, whereas A2 is canonically ~-classical.
and so, by (2.14), the logic of A is ~-subclassical but, unless n = 2, by Corollary
4.15, is not self-extensional (in particular, by Example 4.2, is not ~-classical). On
the other hand, by induction on any m € (w \ 1), define the secondary unary
connective m ® xy of ¥ setting ((1[+m]) ® z¢) £ ([~ D (M®]xp), in which case
(m ®%* a) = min(1,m - a), for all @ € A, and so A is ((n — 1) ® ~x¢)-negative (in
particular, is implicative, for it is disjunctive; cf. Remark 2.10(i)(b)). In this way,
the above negative result equally ensues from Example 3 of [20] and Corollary 4.16.
And what is more, (A2U(((n+(n—1))\2)x{3}) € homg (£, 1%~ 401, L35~ 1.01),
in which case, by (2.14), the X 4 o1-fragment of L,, is equal to that of Ls. O

This provides one of most representative applications of Corollary 4.16, another
being discussed in Subparagraph 6.2.2.4.3 below (cf. Corollary 6.71 therein). On
the other hand, in view of Theorem 10 and Lemma 8 of [21], Example(s) 4.2 [with
Y =310 and A = Dy01; cf. Subparagraph 2.2.1.2.1] (and 4.17 with n = 2)
as well as the self-extensionality of inferentially inconsistent {in particular, one-
valued} logics, the stipulation “no-less-than-tree-valued” cannot be omitted in the
formulation of Corollary 4.15 [4.13] (4.16).

Example 4.18. By Example 2 of [20], Remark 1 as well as Theorem 10 and
Lemma 9 of [21] and Corollaries 4.13 and 4.15, arbitrary three-valued expansions of
both the logic of paradox LP [13] and Kleene’s three-valued logic K L3 [6] are not
self-extensional, for the matrix defining the former has the equational implication
(xo A (21 V ~21)) = (20 A 1), discovered in [16], while the matrix defining the
latter has the same underlying algebra as that defining the former. Likewise, by
“both Lemma 4.1 of [15] and Remark 4.14(i,iii)” / “Proposition 5.7 of [23]” as well
as Corollary 4.15, arbitrary three-valued expansions of P1/H Z [30]/[5] are not self-
extensional, for their being defined by implicative/ matrices with equational “truth
definition” /implication. O

Other generic applications of our universal elaboration presented in this section
are discussed in Section 6.

5. STRUCTURAL COMPLETIONS VERSUS FREE MODELS

Let M be a [finite] class of [finite] -matrices, C' the logic of M, K £ 75[M] and «
a [finite] X-rank. Then, for any A € M and any h € hom(Fm$;, ), h € homg(5, .A),
where B 2 (Fm$, h~![D4]), in which case, by Remark 2.8, we have 0% C (ker h) =
h1[A4] € 1[04 = 65, and so 0% C 67, where D £ (Fm$, Cny(2)) € Mod(C),
in view of (2.13,2.14) and Remark 2.12. Thus, 68 € Con(D), in which case, by
(2.14), F& £ (D/62) € Mod(C), while § = F& [in particular, Fg is finite],
whereas I[= Ig] £ ((BG[N2)[U{(A, f) | A € M, f : Var, — A}]) is a [finite] set
[more precisely, [ I < (3 4em a!41)], and so choosing [resp., setting], for each i € I,
such A;[2 mo(i)] € M and h;[2 71(i)] € hom(Fm$,2A;) that by '[DA] = ile By,
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respectively, and then setting & = (A;[(img h;)), being the submatrix of A; gen-
erated by h;[Var,][= (img h;) to be found effectively], we eventually conclude that
020z = (EqsNN;er(kerhy)), g : Fm§ — (ITic; Ei)s ¢ — (hi(@))ier is a strict sur-
jective homomorphism from D onto the subdirect product Gy = (([T,¢; &)1 (img g))
of (€)ier, being the submatrix of [[,.; & generated by g[Var,] [to be found effec-
tively], (ker g) = 6, and thus, by the Homomorphism Theorem, e £ (vy Log)is an
isomorphism from Fy}; onto Gg;.

Theorem 5.1. Let ¥ be a signature [with(out) nullary symbols], M a [finite] class
of {denumerably-generated [more specifically, finite]} (weakly Y-disjunctive) %-
matrices, C the logic of M, [f € ] sem 9win1)(A),] & £ (@[N(AU)Usem [F (A
and B a submatriz of G§;. Suppose every A € M is a surjectively homomorphic
image of B, unless B = Gy, [and is generated by f(A)]. Then, the structural
completion of C is defined by B. In particular, C is structurally complete iff,
for each denumerably-generated {non-proper} [non-|simple consistent submatriz
E of any (VY-disjunctive) element of M, there are some [finite] (one-element) set
I[€ (alBl41)], some C € S.(A)! and some its subdirect product in H=1(E[/D(£)]).

Proof. First, by (2.14), the logic C’ of QKJA[/Q] is defined by D, [/q] £ <Sm;[/a],
Cn“hjl[/‘“](@» € Mod(C), in view of the structurality of C' [/and (2.13)], in which
case it is an extension of C, and so C(@) C C'(@). For proving the converse
inclusion, consider the following complementary cases:
e a=uw.
Then, applying the diagonal ¥-substitution, we get C’(2) C DPv = C(2).
e aFw.
Consider any A € M, in which case it is generated by f(A) of cardinality
< a, and so there is some surjective h € hom(Fm$,2A). Then, DP> =
Cngy (@) C h~'[D4], in which case h € hom®(D,,.A), and so, by (2.15),
C'(9) C C(2).
Next, D,, is a model of any axiomatically-equivalent extension C” of C’, in view of
Remark 2.12 [and so is its submatrix D,, in view of (2.13) and (2.14)], in which
case C’ is the structural completion of C'. Further, by (2.14), B is a model of C".
Conversely, if B = {#}G5;, then {each A € M is a surjectively homomorphic image
of B, in which case, by (2.15)} Cnp(@) = C'(2), and so C’, being structurally
complete, is defined by B. Finally, as | Var,, | = w, any X-matrix is a model of a -
logic iff each denumerably-generated submatrix of it is so. Then, (2.14) and Lemma
3.8 [resp., Remarks 2.8(ii,iii), 2.10(ii)(a,b) and Theorem 3.10] end the proof. [

Taking Remark 2.12 into account, Theorem 5.1 provides [effective] algebraic
criteria of admissibility of [finitary] rules in and structural completeness of [finitely-
valued] logics [so implying the decidability of these problems]. [On the other hand,
the computational complexity of resulting effective procedures may be to large to
count them practically applicable, except for the trivial one-valued case, when one-
valued matrices are either inconsistent or truth-empty, in which case their logics are
inferentially inconsistent, and so are a priori structurally complete. For instance,
when M consists of a single (without loss of generality, simple; cf. (2.14) and
Remark 2.8(iv)) consistent truth-non-empty (cf. Remarks 2.13 and 2.7) n-valued
Y-matrix, where n € (w \ 2), n is the upper limit of «, in which case n™ is the
upper limit of |I], and so the upper limit of |B| is n(®"). In particular, the
procedure of verifying admissibility of finitary >-rules of rank m € w in C' has the
computational complexity (n(""))™, being relatively acceptable, only if either n = 2
and m < 26 or n = 3 and m < 2. Likewise, in case the unique element of M is
disjunctive, the computational complexity of the procedure of verifying structural
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completeness of C'is (n(™"))", being relatively acceptable, only if n = 2. Otherwise,
the situation is even much worse (more, precisely, the computational complexity

s (n(7)
of the procedure of verifying structural completeness of C' is p(() >),

being absolutely unacceptable, even if n = 2, especially taking refusal of Windows
calculator to compute even its degree d even in advanced mode, because even the
degree of d, being highly exponential, is not admissible, into account). These general
evaluations make the quite effective algebraic criteria of structural completeness to
be obtained in the next section and suppressing such hyper-combinatorial factors
at all more than acute.]

These general evaluations make the universal structural incompleteness result to
be obtained in the next subsection as well as the quite effective algebraic criteria
of structural completeness to be obtained in the next section and suppressing such
hyper-combinatorial factors at all more than acute.]

5.1. Structural incompleteness of both subclassical and either implicative
non-classical or paraconsistent logics. A -relative semi-implication for/of a
class M of Y-matrices is any p € Fm3, such that, for each A € M, every a € D4 and
all b e (DA|(A\ (DA U ) ' [DA]))), it holds that p%(b,1%a) & | € DA. (Clearly,
ro O x1 is a -relative semi-implication for any consistent non--paraconsistent -
implicative ¥-matrix.)

Lemma 5.2 (Key Structural Incompleteness Lemma). Let M be a class of %-
matrices, C the logic of M, B a model of C and C’ the logic of B. [Suppose either
of the following holds:
(i) C(') is (not) :-paraconsistent (in particular, 1-classical);
(ii) the following hold:
(a) there is some p € (C'(2)\ C(2)) such that either of the following holds:
(1) W F ¢ is satisfied in C;
(2) C’ is not :-paraconsistent (in particular, 1-classical);
(b) M has a 1-relative semi-implication but no truth-empty element.]
Then, the logic C" of M' £ {Ax B | A€ M} is a [proper] aziomatically-equivalent
extension of C [in which case C is not structurally complete]. [More precisely,
there is a finitary X-rule satisfied in C" but not satisfied in C'.]

Proof. Clearly, for each A € M, (mo[(A x B)) € hom(A x B, A) is surjective,
so, by (2.15), C” is an axiomatically-equivalent extension of C. [Consider the
corresponding cases (we use Remark 2.10(i)(c) tacitly):

(i) holds, in which case, by the following claim, the finitary 3-rule (2.10) is
satisfied in C” but is not satisfied in C:

Claim 5.3. Let I be a set, F an I-tuple of N-matrices, G a submatriz of
[Lic; Fi, i€ 1, T CFmy and v € (Var, \(U Var[l'])). Suppose F; is consis-
tent and satisfies I' = v. Then, G satisfies I' - v.

Proof. By contradiction. For suppose I' F v is not true in G, in which case
there is some h € hom(Fms, &) such that h[['] € DY, and so 7;[h[T]] € D%".
Take any a € (F; \ D7) # @, for F; is consistent. Let g € hom(Fms,F;)
extend ((h[(Var, \{v})) o m;) U [v/a], in which case g[I'] = m;[h[[']] € DT ¥
a = g(v), so I' - v is not true in F;. This contradiction ends the proof. O

(ii) holds, in which case ¢ is true in B, while there are some A € M and some
h € hom(Fm$,2l) such that a £ h(p) ¢ DA, whereas V £ Var(p) C Var, is
finite, and so 2| = 2 C w = | Var, | = | Var,, \V/, for w is infinite. Take any
injective v : 2 — (Var, \V). Consider the following complementary subcases:
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e *a € DA, in which case h(lp) € DA % a = h(y), and so neither the
finitary Y-rule R £ (¢ I vg) is true in A under (h[(Var, \{vo}))U[vo/a]
nor i b ¢ is true in A under h (in particular, it is not satisfied in C).
Therefore, C” is not -paraconsistent, in which case, by its structurality
and transitivity as well as (2.10)[xo/¢, x1/vo], R is true in B, for ¢ is so,
and so in M/, in view of Claim 5.3.

e %a ¢ DA. Take any b € DA # @ and any l-relative semi-implication
p for M > A, in which case p®(a,?®b) € DA, and so the finitary Y-rule
R £ ({vo, p(, w0)} F v1) is not true in A under (h[(Vary, \{vo,v1})) U
[vo/b,v1/a]. On the other hand, {xo, z1, p(zo,x1)} F z2 is true in M {in
particular, in B € Mod(C)}, applying [zo/¢; Zit1/vi]ice to which, by
the structurality and the transitivity of C’, we conclude that R’ is true
in B, for ¢ is so, and so in M, in view of Claim 5.3.] O

Theorem 5.4. Any “T-implicative [non-1-paraconsistent”] {(non-1-classical)” /-
paraconsistent} Y-logic C {with a consistent non-l-paraconsistent proper (more
specifically, 1-classical) extension} is {not} structurally complete [iff it is maxi-
mally (inferentially) consistent].

Proof. {Then, by Remark 2.12; there is some consistent non--paraconsistent B €
Mod(C), the logic C” of which is a proper extension of C', and so C'is not structurally
complete, whenever it is axiomatically-equivalent to C’. Likewise, by Remark 2.12
and the optional version of Lemma 5.2(i), C' is not structurally complete, whenever
it is -paraconsistent. Now, assume C' is neither -paraconsistent, in which case it
is J-implicative, nor axiomatically-equivalent to C’, in which case the finitariza-
tion Cy of C, being a finitely-equivalent sublogic of C, is an J-implicative non-1-
paraconsistent sublogic of C’, axiomatically-equivalent to C [in particular, Cy is
not axiomatically-equivalent to C’ #; (', and so, by Theorem 3.16, C, being
finitary, is defined by a class M of consistent J-implicative [in particular, truth-
non-empty| non--paraconsistent X-matrices [in particular, xg 3 1 is a -relative
semi-implication for M]. Then, by the optional version of Lemma 5.2(ii)(a)(2)
with C5 instead of C, there is some 3-logic C" axiomatically-equivalent to Cy [in
particular, to C' =1 C4] and satisfying a finitary X-rule R not satisfied in C5 [in
particular, in C' =, C4]. Thus, ((imgC"”) N (imgC)) > C(©) is a closure sys-
tem over Fmy, closed under inverse X-substitutions, in which case the dual closure
operator C"" over Fm$ is an extension of both C” [in particular, C"" # C, for
R, being satisfied in C”, and so in its extension C"’, is not satisfied in C] and
C, axiomatically-equivalent to C, and so C' is not structurally complete.} Then,
Remarks 2.5 and 2.10(i)(c) as well as (2.5) complete the argument. O

Perhaps, a most representative application of this theorem is given by Example
4.17, others being discussed in the next section. In this connection, it is remarkable
that, though the structural incompleteness of Lukasiewicz’ finitely-valued logics is
well-known within Algebraic Logic, the advanced algebraic technique used for prov-
ing it is based upon the rather esoteric algebraic conception of ternary discriminator
(cf., e.g., [23]), while Theorem 5.4 provides a new, purely-logical and much more
transparent insight into this issue, thus justifying the thesis of the first paragraph
of Section 1.

6. APPLICATIONS TO NO-MORE-THAN-FOUR-VALUED LOGICS

All along throughout this section, (Il =]~)/ D is supposed to be a primary
unary/binary connective of ¥ viewed as negation/implication [unless otherwise
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specified]/. Let AN | £ ({~HUZ ) [USe (U{D ) {U(img<)}) [(cf. Subpara-

~(+)[01
graph 2.2.1.2.1)] {where < is a finite sequence of primary connectives not belonging
=)
to ZN(+)[01]}.

6.1. Uniform four-valued expansions of Belnap’s four-valued logic. A [bo-
unded] De Morgan lattice [18] is any Y. ;[o1)-algebra, with [bounded] distributive
lattice 3 [p1j-reduct satisfying:

(61) ~~To R X,
(62) N(Io V Il) =~ (NLZEO A N.Il),

By ©Myj01) we denote the non-Boolean diamond [bounded] De Morgan lattice
with (DMypo1] [T p01]) £ D3pgy and ~2Phen (G, j) £ (15,1 1), for all 4,5 € 2.
In this connection, we use standard abbreviations going back to [2]:

t=(1,1), f£(0,0), b £ (1,0), n = (0,1),

Here, it is supposed that ¥ D X _ ;01 and (A]Y) = (A]V). Fix a Y-matrix A
with (ATE. yjo1]) = DMyjo1) and DA £ (22 Ny ' [{1}]). Then, A as well as its
submatrices are both A-conjunctive and V-disjunctive as well as both consistent and
truth-non-empty (cf. Remark 2.10(ii)(a,b)), while {xg, ~zo} is a unitary equality
determinant for them (cf. Example 2 of [20]), so they are hereditarily simple (cf.
Lemma 3.1). Let C be the logic of A. Then, since DMyj1] £ (AIE. 1 [o1]) defines
[the bounded version/expansion of] Belnap’s four-valued logic Byjor) [2] (cf. [18,
25, 24, 27]), C is a uniform four-valued expansion of Byjg;). Conversely, according
to Corollary 4.9 of [25], any uniform four-valued expansion of Bygy) is defined by
a unique expansion of D Myjg1}, in which case A is uniquely determined by C, and
so is said to be characteristic for/of C. Moreover, by (2.14), Remark 2.8(ii) and
Theorem 3.10, C' is ~-subclassical iff A, forms a subalgebra of 2, in which case
A2 is isomorphic to any ~-classical model of C, and so defines a unique ~-classical
extension of C' (cf. Theorem 4.20 of [25]), in its turn, denoted by CF© and relatively
axiomatized according to Corollary 6.3 below. Also, by Corollary 3.6 with ¥ = Vv,
we have:

Corollary 6.1. C is J-implicative iff A is so.

Given any i € 2, put DM3 _ ; = (22\ {(i,1 — i)}). Then, we have the submatrix
As; generated by DM3 _ ; with carrier (not) distinct from the generating set (in
particular, when, e.g., ¥ = ¥ ,[01]), taking (2.14) into account, the logic Cs;
of which is a both V-disjunctive and A-conjunctive {for its defining matrix is so}
as well as inferentially consistent {for its defining matrix is both consistent and
truth-non-empty} uniform no-more-than-four-valued extension of C' (and a three-
valued expansion of [the bounded version/expansion LPyi|KLs o1 of] “the logic
of paradox”|“Kleene’s three-valued logic” LP|KLs [13]|[6], whenever ¢ = (0[1),
for DM ;01 £ (As, Y~ +j01]) defines LPyj|K Lgp17), in which case it is ~-
paraconsistent|(V, ~)-paracomplete, and so is not ~-classical, in view of Remark
2.10(i)(c|d).

6.1.1. Miscellaneous kinds of expansions.

6.1.1.1. Classically-negative expansions. Next, C is referred to as a (purely) classi-
cal(ly-negative) {uniform four-valued} expansion of By o1}, provided (X Q)E:,H,Ol]
C ¥, where = — classical negation — is unary, and =%(i,j) £ (1 —i,1 — j), for
all 4,7 € 2, in which case (we set DMBy o1 £ A, while) A is —-negative, and so,
being V-disjunctive, is 1y -implicative (in particular, C' is so), in view of Remark
2.10(1) (b).
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6.1.1.2. Bilattice expansions. Likewise, C' is referred to as a (purely) bilattice {uni-
form four-valued} expansion of By 1], provided (¥ Q)E:’i[’ou C ¥, where I
and LI — knowledge/information conjunction and disjunction — are binary, and
(¢, 5) (ML) (k, 1)) £ ((min | max)(i, k), (max | min)(j,1)), for all 4, j, k, [ € 2.
6.1.1.3. Implicative expansions. Finally, C is referred to as a (purely) (canonically)
implicative {uniform four-valued} expansion of Byj o1, provided (3 Q)227+[,01] C
Y and ((,5) D% (k,1)) = (max(1 — i, k), max(1 — i,1)), for all 4,5, k,1 € 2, in which
case A is D-implicative, and so is C.

6.1.2. Structural completeness versus maximal paracompleteness, paraconsistency
and consistency as well as inconsistency of resolutional extensions and inconsistent
formulas.
Lemma 6.2. The following are equivalent:

(i) D3 1 does not form a subalgebra of A?;

(ii) A371 = .A,‘

(iii) As1 is ~-paraconsistent;

(iv) C® # C31;

(v) providing C does [not] have theorems, C® is not [inferentially] (V,~)-para-
complete;

(vi) providing C does [not] have theorems, CR = C[PJF%], if C is ~-subclassical
(i.e., {f,t} forms a subalgebra of A%), and C® is [inferentially] inconsistent,
otherwise;

(vii) C® is not an expansion of K Ls;

(Vlll) 03’1 =C.

Proof. First, (i)<(ii)<«=(iil) are immediate, while (viii) is a particular case of (ii),
whereas (viii)=>(iii) is by the ~-paraconsistency of A. Next, by Theorem 3.14, C®
is not ~-paraconsistent, so (iii)=-(iv) holds. Likewise, as A3 1|K L3 is (inferentially)
(V, ~)-paracomplete, (iv|vii) is a particular case of (v). Furthermore, (iv/vii)=(i)
is by (2.14) and Theorem 3.14. Further, (vi)=-(v) is by Remarks 2.7, 2.10(i)(d)
and the structurality of C®. Finally, (i)=(vi) is by Theorem 3.14 and Corollary
3.11(i)<(iv) [as well as Remark 2.7]. O

Then, by Corollary 2.9 of [25], Remarks 2.7, 2.10(i)(d), Lemma 6.2(iv)=-(i)=(vi)
and the (V, ~)-paracompleteness of Aj 1, we immediately have:

Corollary 6.3. If C is ~-classical (i.c., {f,t} forms a subalgebra of A?), then
CFC is relatively aziomatized by {x¢ \V ~x0,(3.3)}.

A {quaternary} (truth) inverter of /for Ais any . € Fm such that «®° ((f,f), (t,t)
, (b, b, (n,b)) € (DA x (A\ D*4)). (Clearly, 3 3 x is an inverter for A, whenever
this is J-implicative. Likewise, tx3 is an inverter for it, whenever it is :-negative.)

Theorem 6.4. [Providing C has no theorem (i.e., {n} forms a subalgebra of A)]
(i[i]-iv) are equivalent to one another, where:

(i) C is structurally complete;
(i1) C is maximally [inferentially] (V,~)-paracomplete;
(iii/iv) the following hold:

(a) CR is [inferentially] inconsistent (viz., A has no non-~-paraconsistent
[truth-non-empty] consistent submatriz), that is, the following [but (A)]
hold:

(A) C has a theorem (i.e., {n} does not form a subalgebra of A);
(B) C is not ~-subclassical (i.e., {f,t} does not form a subalgebra of
A);
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(C) CR is not [inferentially] (V,~)-paracomplete (i.e., DMs _ 1 does

not form a subalgebra of A);
(b) either of the following holds:

(1) A has no inverter (i.e., the carrier of the subalgebra of A% gen-
erated by Apn, , U{(n,b)} is disjoint with DA x (A\ DA)), in
which case A is non-implicative, and so is C;

(2) A has no non-(V, ~)-paracomplete/proper [truth-non-empty/ con-
sistent submatriz (viz., “in view of (a)(B), DMs _ o does not form
a subalgebra of A7/ “none of p(A)\{A, d,{b}[,{n}]} forms a sub-
algebra of A” {i.e., C is mazimally ~-paraconsistent/ “[inferenti-
ally] consistent”} );

(3) A has an inconsistent submatriz (viz., {b} forms a subalgebra of
2A {i.e., C has no inconsistent formula} ).

In particular, providing C is implicative (viz., A is so), it is “structurally com-
plete”| “mazimally [inferentially] (V,~)-paracomplete” iff both C® is inconsistent
{i.e., neither C® is (\V, ~)-paracomplete nor C is ~-subclassical} and C either has

no inconsistent formula or is mazximally (~-para)consistent.

Proof. First, (i) is a particular case of the non-optional version of (ii), in view
of Remark 2.5, while (iii) is a particular case of (iv), in view of the (V,~)-pa-
racompleteness of A. Furthermore, the carriers of submatrices of A are those of
subalgebras of 2 (in particular, those of subalgebras of (A[X. ) = DMy), in
which case they belong to the set {22, Ay} U J{{2%\ {a},{a}} | a € (22\ A1)},
and so, by Corollary 3.11|3.12, C has alan theorem| “inconsistent formula” iff A has
no truth-empty|inconsistent submatrix, that is, {n|b} does not form a subalgebra
of A (cf. Lemma 4.11]4.12 of [25]), whereas any consistent| submatrix of A is ~-
paracounsistent|(V, ~)-paracomplete iff its carrier contains n|b, respectively. Let &
be the submatrix of A generated by {f,t}, in which case it is both consistent and
truth-non-empty, for E 3 f ¢ D4 5 t € E. Now, assume the optional version
of (iii) holds. Consider any inferentially (V,~)-paracomplete extension C’ of C,
in which case (zg V ~z0) € T = C’'(z1) > z1, while, by Remark 2.12, (§m$,T)
is a model of C’ (in particular, of its sublogic C), and so is its finitely-generated
(V, ~)-paracomplete truth-non-empty submatrix B £ (Fmy, T N Fm$), in view of
(2.14). Then, by Lemma 3.8, there are some finite set I, some C € S%(A)! and
some subdirect product D € H™1(B/9(B)) of it, in which case, by (2.14), D is a
(V, ~)-paracomplete model of C’, for B is so, and so there is some a € D such that
{t,b,n} 2 b 2 (a V® ~®a) ¢ D* (in particular, J = {i € I | m;i(a) = n} # @,
because, for any ¢ € {t,b,f}, (c V¥ ~%*c) € D4). Furthermore, by Claim 4.17 of
[25], f = (I x {f}) € D >t 2= (I x {t}). On the other hand, by (iii)(a), £, being a
both consistent and truth-non-empty submatrix of A, is ~-paraconsistent, that is,
b € E, in which case there is some ¢ € Fm% such that ¢%(f,t) = b, and so D 5 d &
#®(f,t) = (I x{b}). Lete: A2 — Al (c,g) — ((J x{c})U((I\J)x{g})), in which
case D > (f|t|d) = e(((f|t|b), (f|t|b))), and so D > h £ ((dV® ~®b)A®b) = e((n,b)).
Consider, the following complementary cases:

e J =1, inwhichcase D 3 h = (Ix{n}),and so,as I = J # &, {{c, I x {c}) |
¢ € A} is an embedding of A into D € Mod(C”) (in particular, by (2.14),
C’'=0).

e J #£ I, in which case, as J # @, e is injective. Let F be the submatrix of
A? generated by G £ (Apu, _, U{{n,b)}), in which case e[G] C D, and
so e[ F' is an embedding of F into D € Mod(C”) (in particular, by (2.14),
F € Mod(C")). Consider the following complementary subcases:
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— {b} forms a subalgebra of 2, in which case, since A is generated by
{b,n}, ¢ : A — Al ¢+ e({c,b)) is an embedding of A into D €
Mod(C"), for €'[{b,n}] = {d,h} C D, and so, by (2.14), C' = C.
— {b} does not form a subalgebra of 2. Consider the subsubcases:
* A has an inverter, in which case it has no non-(V, ~)-paracomp-
lete truth-non-empty consistent submatrix, in view of (iii)(b),
and so &, being a both consistent and truth-non-empty sub-
matrix of A, is (V,~)-paracomplete, that is, n € E. Then,
there is some ) € FmZ such that % (f,t) = n, in which case
D > 9®(f,t) = (Ix{n}),and so, since I O J # &, {{c, I x {c}) |
¢ € A} is an embedding of A into D € Mod(C”’) (in particular,
by (2.14), C"' = C).
* A has no inverter, in which case F is disjoint with D4 x (A\ D4),
and so (| F) € hom$(F, A), for m[G] = A (in particular, by
(2.14), C' = O).
Thus, the optional version of (ii) holds. Conversely, assume the optional version of
(iv) does not hold. Consider the following complementary cases:

e (a) holds, in which case & is ~-paraconsistent, and so b € F, that is, there
is some £ € Fm% such that £€%(f,t) = b, as well as (b) does not hold, that
is, neither of (1-3) holds, that is, .4 has both an inverter ¢ and a proper
consistent truth-non-empty submatrix H, and so, by Claim 4.18 of [25],
{f,t} C H, that is, H 2 E > b, while {b} does not form a subalgebra of 2,
that is, there is some 7 € Fmy, such that n*(b) # b. Then, ¢ £ (o V ~o),
not being true in A under [zo/n], is true in H, for n ¢ H (in particular,
H = {f,t,b}), because, otherwise, H D {f,t,b} would include A, that
is, H would be equal to A. Hence, n*(b) # n, for, otherwise, H > b,
forming a subalgebra of A, would contain n. Let (7]6) £ ~'%(n) € Fmy, >
¢ 2 &(x,~r0) and @ 2 ((xg V) V ~p(¢)) € Fmy, 3 A 2 (~azo V (29 A
@o(w(~x0))), in which case (*(f) = b, while v¥(f) € {f,b}, for H = {f,t,b}
forms a subalgebra of 2 as well as ©*[A] C {t,b,n}, whereas (7|§)®(b) =
(f|t), for n*(b) € {f,t} D (¢*[{f,t}] U~*[{f,t}]), and so both w?(f|b) = b
and A?(t|bln) = (b|bln). Therefore, t(y(w(z1)),d(w(21)), @w(x1),A) is a
~-relative semi-implication for A. And what is more, ~p F ¢ is clearly
true in A, in view of its A-conjunctivity and V-disjunctivity as well the
truth of both (6.1) and (6.2) in 2. Thus, by the optional version of Lemma
5.2(ii)(a)(1) with H instead of B, the logic of A x H, being truth-non-empty,
for both A and H are so, is a proper axiomatically-equivalent (in particular,
inferentially (V,~)-paracomplete, for A is so) extension of C.

e (a) does not hold, in which case A has a non-~-paraconsistent consistent
truth-non-empty submatrix B’, and so, by the optional version of Lemma
5.2(i) with B’ instead of B, the logic of A x B’, being truth-non-empty, for
both A" and B’ are so, is a proper axiomatically-equivalent (in particular,
inferentially (V,~)-paracomplete, for A is so) extension of C.

In this way, in any case, neither (i) nor the optional version of (ii) holds. Finally,
any Y-logic with theorems is consistent|(V, ~)-paracomplete iff it is inferentially so.
In this way, Theorems 4.16, 4.20 and 4.31(i)<(iv) of [25] as well as Remark 2.13,
Lemmas 6.1, 6.2(1)<(v)<(vi) and (2.5) complete the argument. O

This provides an effective algebraic criterion of “maximal [inferential] (V,~)-
paracompleteness” / “structural completeness” of uniform four-valued expansions
of By positively covering both arbitrary bilattice uniform four-valued expansions
of Byo1 [as well those of By]/ (cf. Corollary 5.2 of [25]) and non-~-subclassical
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classically-negative uniform four-valued expansions of By 1y (cf. Corollary 5.1(i)
therein) but negatively covering /both ~-subclassical {in particular, purely} clas-
sically-negative uniform four-valued expansions of By 1y /“and purely-inferential
{in particular, purely} bilattice uniform four-valued expansions of Bs” as well as
[purely canonically implicative uniform four-valued expansions of] By 1), because
they are ~-subclassical (cf. Corollary 5.3 therein).

6.1.3. No-more-than-four-valued extensions and their self-extensionality.

Lemma 6.5 (Key 4-valued Lemma). Let B € Mod(C). Then, the following hold:

(i) B is V-disjunctive, whenever it is either inconsistent or truth-empty or ~-
negative or [non-~-classically-defining or] no-more-than-(4]—1])-valued;

(ii) providing B is V-disjunctive [and (not) truth-empty| “either ~-negative or ~-
classically-defining”|| ~-paraconsistent/ (V,~)-paracomplete], it is a strictly
surjectively homomorphic counter-image of a submatrix of A with carrier in
Sapr(yoicpp/ea) = ({01}, 42,2 U{Ds—y | 1€ 2H)[NO)({{01}A2}{22,
DM; o })).

Proof. (i) By contradiction. For suppose B is not V-disjunctive. Then, tak-
ing Remarks 2.8(iv), 2.10(ii)(a,b) and (2.14) into account, without loss of
generality, one can assume that B is simple, in which case, by Corollary
3.20 and Theorem 3.24, 8 belongs to the variety generated by 2, and so
BIE~ + is a De Morgan lattice (in particular, B[¥ is a distributive lat-
tice), for (AL~ +) = DMy is so. And what is more, B € Mod(C) is both
A-conjunctive and weakly V-disjunctive, for C' is so. Hence, since B is not V-
disjunctive, there are some a,b € (D \ D®), in which case ¢ £ (a A® b) ¢ DB,
such that d £ (a V® b) € D® (in particular, B is both consistent and truth-
non-empty), in which case d ¢ {a,b,c}, and so |[{a,b,c,d}| = 4. There-
fore, if B was ~-negative, then, by its A-conjunctivity and (6.2), we would
have DB % ~Bd = (~Ba A® ~®b) € DB. Thus, |B| < 4, in which case
B = {a,b,c,d} (in particular, |B] = 4 £ 3), and so B is not ~-classically-
defining. In this way, B is a distributive (A, V)-lattice with zero ¢ and unit
d, in which case, by (6.1) and (6.2), ~®(c¢|d) = (d|c), and so, by (6.1),
~B[{a,b}] C {a,b}, for ({a,b} N {c,d}) = @. Consider the following cases:

e ~%a = a, in which case, by (6.1), ~®b = b, and so e = {(a, 10), (b,01), (c,
00), (d,11)} is an isomorphism from B[ ;+ onto DMYy. Furthermore,
by Lemma 3.8, there are some finite set I, some C € S.(A)!, some
subdirect product D of it and some h € homg(D,B), in which case,
({hoetU{mID |i e I} € p,(hom(D[E. +,DM4)), while, by Remark
2.10(ii)(b), D is consistent (in particular, I # @), for B is so, whereas
(Nyes ker(miID)) = Ap C ker(hoe) # D?, for img(hoe) = DMy = 2% is
not a singleton, and so, by Theorem 3.8 of [25], there is some i € T such
that ker(m;[D) = ker(h o e) = (kerh), for e is injective. Therefore, by
the Homomorphism Theorem, as (imgh) = B, h=! om; is an embedding
of B into A, in which case, by Remark 2.10(ii)(a), B is V-disjunctive.

e ~Bg # a, in which case ~Pa = b, and so, by (6.1), ~®b = a. Then,
for each ¢’ € B, (¢/(A[V)E~Te') = (c|d) ¢ | € D®, in which case B,
being A-conjunctive, satisfies both xg V ~xzy and (3.3). And what is
more, {c,d} forms a subalgebra of 9B, in which case, by (2.14), B[{c, d}
is a ~-classical model of C, and so this is ~-subclassical. Then, by
Corollary 6.3, B € Mod(CF®). Conversely, the logic of the consistent
truth-non-empty model B of C' is an inferentially consistent extension of
C, in which case, by Theorem 4.21 of [25], B is ~-classically-defining.
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(ii) Since Sa4(—yp|c|p/pc) is the set of the carriers of all [those] elements of S, (A)
[which are (not) truth-empty| “either ~-negative or ~-classically-defining” ||~-
paraconsistent/(V, ~)-paracomplete], (2.14), Remarks 2.8 (ii), 2.10(ii)(a,b)
and Theorem 3.10 complete the argument. (]

By Theorem 4.10 of [25], (2.14), Examples 4.2, 4.18, Lemma 6.5 and the self-ex-
tensionality of inferentially inconsistent logics, we first have:

Theorem 6.6. Let C’ be a uniform no-more-than-four-valued proper (in particular,
no-more-than-three-valued) extension of C. Then, the following are equivalent:
(i) C’ is self-extensional;
(ii) C" is either inferentially inconsistent or ~-classical;
(iii) for each i € 2, if DMs _ ; forms a subalgebra of A, then C' # Cs ;.

Since DM4[{01} is the only truth-empty submatrix of DMy, while {01} C [¢
JDMs3 _ 1—1) 2 Az, by Theorem 4.10 of [25], (2.14) and Lemma 6.5, we also get:

Theorem 6.7. Let M be a class of no-more-than-four-valued models of C, C’
the logic of M, Mf{z)l[lw}/%] the class of all (truth-non-empty) [~-classicaly-/non-
~-classically-defining] {~-paraconsistent|(V, ~)-paracomplete} consistent elements
of M and My = (Mg N'My). Then, C' is defined by {A | My # @} U{A[{01} |
(M\M") # & = M{7 = Ma}U{AIAs | (Ujea ;™) = Ma = & # M™FUUjp {435 |
M;-k’76 # @ = My}, In particular, C is defined by any both ~-paraconsistent
and (V,~)-paracomplete no-more-than-four-valued model, so it has no both ~-
paraconsistent and (V,~)-paracomplete no-more-than-three-valued model.

Taking (2.12), Theorems 6.6, 6.7, Remark 2.7 and Example 4.2 into account, it
only remains to study the following no-more-than-four-valued extensions of C.
6.1.3.1. Double three-valued non-iniform and non-proper extensions. By (2.14),
(providing, for each ¢ € 2, D M3 ; forms a subalgebra of 2) the logic C5 of {A3; | i €
2} is a both V-disjunctive and A-disjunctive {for its defining matrices are so} as well
as inferentially-consistent {for its defining matrices are both consistent and truth-
non-empty } (proper) extension of C' (for this is minimally four-valued; cf. Theorem
4.10 of [25]). Let p: 22 — 22 (i,j) — (j,i) be the mirror/specular function.

Theorem 6.8 (cf. [24, 27]). It does hold that (v)<(i)<(il)<(iil)=(iv)[=(iii)],
where:

(i) Cpg) is self-extensional;

(ii) [for each/some i € 2] (u[[Asz;]) € hom (U3 1, A);

(iii) A has a(n injective) non-singular non-diagonal [partial] endomorphism — cf.

pp- 3,45

(iv) A has no equational implication — cf. Subsubsection 4.5.1;

(v) Csy is ~-subclassical.
In particular, C3 is self-extensional, whenever C' is so.

Proof. First, the fact that (iv) is equivalent to the ()-non-optional []-optional version
of (iii) is due to Theorems 10, 13 and 15 of [21], while the []-optional version of (iii)
is a particular case of the [|-non-optional one, whereas the ()-non-optional version of
(i) is a particular case of the ()-optional one, being, in its turn, a particular case of
(ii), for p is injective. Next, the fact that (i) implies the ()-non-optional version of
(iii) is by Theorem 4.7, for DA[NDMj,_ o] has two distinct elements. [Furthermore,
by the injectivity of 4 and the fact that, for any ¢ € 2, u[DMs __ ;] = DM3 _ 1,
while 2 = {i,1 — i}, the alternatives in (ii) are equivalent.] Further, assume (ii)
holds. Consider [any i € 2 and] any distinct a,b € Af3,}, in which case there is some

j € 2 such that m;(a) # m;(b), and so yAB] (hj(a)) # YA k) (hj(b)), where [ko|; =
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(i|(1 —4)) and] ho;; = (Aap (11 A45,])) € hom(™Az4,A). In this way, Theorem
4.7 yields (i). Now, assume the ()-non-optional version of (iii) holds. Then, there is
some non-diagonal homomorphism h from [a subalgebra of] 2 to 2 with B £ (img h)
not being a singleton, in which case B forms a non-one-element subalgebra of 2, and
so does D £ (dom h). Hence, Ay C (BN D). Then, both of (B|D) = (A[(B|D)) are
(A, V)-lattices with zero/unit (0/1,0/1), for 2 is so, in which case, as b € hom(D, B)
is surjective, by Lemma 2.2, h[As is diagonal, and so, since h is not so, there is
some i € 2 such that DM3 _ ; C D {in particular, A ;) € D}, while h({1 —4,4)) #
(1 —4,4). On the other hand, for all @ € A, it holds that (~*a = a) & (a € Ay), in
which case ~*h({1 —1i,i)) = h(~*(1 —i,4)) = h((1 —4,4)), and so k({1 —i,i)) =
(4,1 —4). And what is more, [if A3 ; = A, then] (i,1 — i) € D, in which case we have
((i,1 =) (A|V)®(1 —4,4)) = (0]1,0|1), and so, by the diagonality of h[Ag, we get
(R((i, 1 = a))(AIV)™ (i, 1 = i) = (h((i,1 —@))(AIV)*h({1 —4,i))) = h((0]1,0]1)) =
(0|1,0/1) (in particular, h((i,1 —d)) = (1 —4,4)). In this way, hom(®D,A) > h =
(#ID), in which case, as Az ;) € D, (p[[As;]) € hom(U5;1,2A), and so (ii) holds.
Finally, if Ao(= (;co PM3,— i) € ([);c2 As,i)) does not form a subalgebra of 2,
then there are some ¢ € ¥ of arity n € w and some @ € A} such that b = ¢*(a) €
(A \ Ag) [where i £ mi(b) € 2], in which case u(b) # b = ¢*(po @), and so
(]I As,:]) & hom(Aj35),2). Thus, (ii)=-(v) is by (2.14), so, as the [|-optional version
of (ii) is a particular case of the non-[|-optional one, (i)<(ii) ends the proof. O

The non-optional version of Theorem 6.8(i)<(ii) has been plagiarized by A.
Prenosil under the editorial complicity of J. Rafftery (ALUN), who provided back-
dating publication of Prenosil’s paper, as well as both C. Franks, M. Fitting, A.
Pillay and R. Goldblatt (NDJFL), who rejected its submission to NDJFL, referred
by A. Prenosil, thus providing him with a nice opportunity to plagiarize the rest of
this work as well, that he, having a rich experience of doing it, would apparently
not miss, so appearance of this material under his authorship would definitely con-
firm it (this equally concerns another referee of it — A. Avron, who has a more
than rich experience of both plagiarizing my submissions, while referring them [in
particular, under the editorial complicity of both M. Fitting, J. Malinowski and R.
Wojcicki {SL}] and declining to acknowledge my publications).

As p is not diagonal, according to Example 11 of [21], the optional and non-
optional versions of the item (ii) of Theorem 6.8 are non-equivalent to one another,
and so are those of (i/iii) (in particular, the converse of the final assertion of Theo-
rem 6.8 does not hold). Theorem 6.8(ii)=>(i) positively covers both Byfo1}(3) and the
purely classically-negative expansion of Byfo1y, the underlying algebra D9MB 4101y
of the characteristic matrix of which though has no three-element subalgebra. In
view of Theorem 6.8(i)=-(iv), the self-extensionality of these three instances of
uniform four-valued expansions of By provides a new insight and a new proof (con-
vergent with those given by [21]) to the non-algebraizability of the sequent calculi
associated (according to [20]) with their characteristic matrices, proved originally in
[18] by a quite different (though equally generic) method based upon universal tools
elaborated in [17]. This well justifies the thesis of the first paragraph of Section
1. Conversely, using Theorem 6.8(i)=(iv) /“and Remark 4.14”, we immediately
conclude that arbitrary bilattice/implicative uniform four-valued expansions of By
/ “as well as their double three-valued extensions in the purely implicative case” are
not self-extensional, for their /D-implicative characteristic matrices have equational
“implication {(((.’EQ (] N.’L‘o) [ (.%‘1 (] Nl‘l)) A\ mo) é (((.’170 [ N.’L‘Q) [ (.’L‘l L N.%‘l)) V 1‘1)},
in view of the proof of Theorem 4.30 of [18])”/“truth definition {xg = (z¢ D x0)}”.
According to Corollary 5.2/5.3 of [25], this does equally/not ensue from Theorem
6.8(1)=(v)/*, so refuting the inverse”.
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Finally, since inferentially inconsistent logics are self-extensional, by (2.12), The-
orems 6.6, 6.7, 6.8(1)«<(iii)=-(iv)[=-(iii)], Remark 2.7 and Example 4.2, we get:

Theorem 6.9. Let M be a class of no-more-than-four-valued models of C and
C’ the logic of M. Then, C' is self-extensional iff either M contains no non-~-
classically-defining truth-non-empty consistent element or there are a non-diagonal
non-singular homomorphism from [a subalgebra of] A to A fi.e., A has no equa-
tional implication] as well as both ~-paraconsistent and [truth-non-empty] (V,~)-
paracomplete [distinct] element[s] of M. In particular, any inferentially consistent
non-~-classical no-more-than-four-valued extension of C is self-extensional only if
it is both ~-paraconsistent and (V,~)-paracomplete.

6.1.3.1.1. Theorems versus bounds.

Corollary 6.10. Suppose C is self-extensional (i.e., ju is an endomorphism of 2;
c¢f. Theorem 6.8(i)& (ii)). Then, the following are equivalent:
(i) C has a theorem (in particular, is implicative; cf. (2.5));
(i) T®Pao1 s term-wise definable in 2U;
(iii) L®%01 s term-wise definable in 2A.

Proof. First, assume (i) holds. Then, by Remark 2.6, there is some ¢ € (C(2&) N
Fmy.), in which case, by the structurality of C, for each i € 2, 1; £ ¢(z;) € C(@),
and so, by Remark 4.8 and Theorem 6.8(i)=>(v), for all a € A, we have 93 (a) =
V& xo/a, v1/1] = v [xo/a, 21/1] = P¥[r1/1] € (Ag N DA) = {t}. Thus, (ii) holds.
Next, (ii)<>(iii) is by the fact that ~*(kk) = ((1—k)(1 —k)), for all k € 2. Finally,
(ii)=-(i) is by the fact that t € DA. O

6.1.3.1.2. Implicativity versus maximal paraconsistency.

Theorem 6.11. Suppose C' is self-extensional (i.e., p is an endomorphism of AU;
cf. Theorem 6.8(i)< (ii)). Then, the following are equivalent:

i) A is implicative (viz., C is so; cf. Lemma 6.1);
A is negative;

(vi) C is mazimally ~-paraconsistent and has a theorem;

In particular, C' is maximally ~-paraconsistent, whenever it is both implicative and
self-extensional.

Proof. First, (ii)=(i) is by Remark 2.10(i)(b) and the V-disjunctivity of \A. Con-
versely, if A is J-implicative, then, by Corollary 6.10(i)=-(iii), there is some ¢ €
Fmy, such that ¢%(a) = (00), for all a € A, in which case A is -negative, where
(o) £ (zo 3 ), and so (ii) holds.

Next, (ii) is a particular case of (iii). Conversely, assume A is ¢-negative. Then,
by Theorem 6.8(i)=(v), ™*(ii) = ((1 —i)(1 — 7)), for each i € 2. And what is
more, if, for any j € 2, *(j(1 — j)) was not equal to ((1 — j)j), then it would
be equal to ((1 — 5)(1 — j)), in which case we would have ((1 — j)(1 — j)) =
(1= §)(1— ) = p(@R G =) = B0 — ) = (1 - §)7), and s0 would get
(1—3)=m*(1 —4)j) = (1 —(1—4)) = 3. In this way, (iii) holds.

Further, (iii)=(v) is by (iii)=>(i), (2.5) and the fact that =°¥®4n = b ¢
DMs; ;1 > n. Conversely, assume (v) holds. Then, there is some ¢ € Fm$, such
that ¢*(n,t,f) = b. Moreover, by Corollary 6.10(i)=-(ii), there is some ¢ € Fmy,
such that ¢®(a) =t, for all a € A. Let £ £ (¢p[2i11/~"]ica) € Fmy,, in which case
€¥(n) = b, and so n = u(b) = £*(u(n)) = £*(b). And what is more, by Theorem
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6.8(1)=>(v), £*[A2] € Ag. Let k £ mo(y*(f)) € 2 and ¢ & ((~FEV ~a) A7) €
Fmy,, in which case ¢* = =284 and so (iii) holds.

Furthermore, (iv)<(v) is by the fact that u[DMs;] = DMs;_,, for all | € 2.
Finally, (iv)<(vi) is due to Theorem 4.31(vi)< (i) of [25]. O

6.2. Uniform three-valued logics with subclassical negation.

6.2.1. U3VLSN wersus super-classical matrices. A [3-valued] ¥-matrix A with ~-
reduct having a (canonical) ~-classical submatrix B ([{and carrier 3 = 2}]) is said
to be ([{3-}/canonical(ly)) ~-super-classical, in which case, by (2.14), ~ is a sub-
classical negation for its logic, and so this is inferentially consistent, while, by
Remark 2.10(ii)(b), A is both consistent and truth-non-empty, for B is so, whereas,
by Remark 2.10(i1)(a), ¢ 2 (x® U (Aays[0\Aa s DHUIA\ B) x {)}])), be.
ing injective, is an isomorphism from A onto the [{3-}]canonical ~-super-classical
S-matrix Cizy £ (e[A], e[DA]), called the [{3-}/canonization of A. (Then, A is
said to be [genuinely| {weakly} o-conjunctively/-disjunctively/-implicatively”] clas-
sically hereditary, provided 2 forms a subalgebra of 2 [while A[2 is “genuinely
~~classical” | “{weakly} o-conjunctive/-disjunctive/-implicative”], in which case, by
(2.14), A2 is a canonically ~-classical model of the logic of A, and so this is ~-
subclassical. Likewise, a ternary [(canonical) anti-Jequalizer of/for A is any T €
Fm3, such that, for all a € (A4\2), 7% ((0, 1[=1]), (1,0[+1]), (1,a)) € ([22\]A ) [(and
72(0,1,1) = 0), in which case ~'7, where i = 7%(0,1,1) € 2, is a canonical anti-
equalizer for A (while 7(z1, ~x1,20) is a ~-relative semi-implication for A, when-
ever this is truth-singular)]. {Clearly, 1z2 is a ternary /canonical equalizer/anti-
equalizer for A, whenever this is both false-/truth-singular and (-negative /“as
well as classically hereditary, unless ! = ~”. Likewise, if A is both truth-singular,
classically hereditary and J-implicative, then xo 1 z( is a ternary canonical anti-
equalizer for it.})

Theorem 6.12. Let A be a (no-more-than-(2[+1))-valued) L-matriz. Then, ~ is a
subclassical negation for the logic of A if(f) A is ~-[super-]classical. In particular,
any uniform three-valued %-logic with subclassical negation ~ is minimally so iff it
is mot ~-classical.

Proof. The “if” part is by (2.14). (Conversely, assume ~ is a subclassical negation
for the logic of A. First, by (2.16) with m = 1 and n = 0, there is some a € DA
such that ~%*a ¢ DA, Likewise, by (2.16) with m = 0 and n = 1, there is some
b € (A\ DA) such that ~*b € D4, in which case a # b, and so |A| # 1. Then, if
|A| = 2, we have A = {a,b}, in which case A is ~-classical, and so ~-super-classical.
[Now, assume |A| = 3.

Claim 6.13. Let A be a three-valued S-matriz, a € A% and i € 2. Suppose ~ is a
subclassical negation for the logic of A, and, for each j € 2, (a; € DA) & (~%a; &
DA) & (a1—; & DA). Then, either ~*a; = a1_; or ~*~%a; = a;.

Proof. By contradiction. For suppose both ~%a; # a;_; and ~*~%a; # a;. Then,
in case a; € / € DA, as |A| = 3, we have both (D*/(A\ D#)) = {a;}, in which
case ~%a;_; = a;, and ((A\ DA)/DA) = {a;_;, ~a;}, respectively. Consider the
following exhaustive cases:

o ~A~ g =ay_;. Then, ~*~*~*q; = q;. This contradicts to (2.16) with

(n/m) =0 and (m/n) = 3, respectively.
o ~A Mg, = ~*q;. Then, for each ¢ € ((A\ DA)/DA), ~3~ e = ~2q; ¢
/ € DA. This contradicts to (2.16) with (n/m) = 3 and (m/n) = 0.

Thus, in any case, we come to a contradiction, as required. O
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Set dy £ a and d; £ b. Consider the following complementary cases:

e for each k € 2, ~*d, = d;_;. Then, {a,b} forms a subalgebra of A[{~},
(Al{~})[{a, b} being a ~-classical submatrix of A[{~}, as required.

e for some k € 2, ~%dy, # d,_},, in which case, by Claim 6.13, ~*~%d;, = d,
so {dy,~%d} forms a subalgebra of A[{~}, (A[{~})[{dk,~*dr} being a
~-classical submatrix of A[{~}, as required.]) O

The “only if” part of Theorem 6.12 does not, generally speaking, hold for no-
less-than-four-valued logics, in view of:

Example 6.14. Let n € w and A any Y-matrix with 4 £ (nU (2 x 2)), DA £
{(1,0), (1, 1)}, ~*(i,7) & (1 —4,(1 —i+j) mod 2), for all i,j € 2, and ~%k £
(1,0), for all k € n. Then, for any subalgebra 9B of A[{~}, we have (2 x2) C B, in
which case 4 < |BJ, and so A is not ~-super-classical, for 4 £ 2. On the other hand,
2x2 forms a subalgebra of A[{~}, while B £ (A[{~})[(2x2) is ~-negative, in which
case 8 € Con(B), and so h = x® is a surjective strict homomorphism from B onto
the classically-canonical (in particular, two-valued) {~}-matrix C = (h[B], {1}), (in
particular, by Remark 2.10(ii)(a), C is ~-classical, so, by (2.14), ~ is a subclassical
negation for the logic of A). O

Likewise, U3VLSN need not be minimally so, in view of Example 6.22 below.

Throughout the rest of this subsection, unless otherwise specified, C' is supposed
to be the logic of an arbitrary but fixed 3-canonical ~-super-classical X-matrix A
(that exhausts all uniform three-valued Y-logics with subclassical negation ~, in
view of Theorem 6.12 and (2.14)), in which case this is false-singular iff it is not
truth-singular iff k4 £ XA(%) =1, and so:

Remark 6.15. Any [(non-~-paraconsistent) 3-Jcanonically ~-[super-]classical ¥-ma-
trix B is [either] truth-singular, in which case D® = {1}, and so ~T[DF] =
~B[{1}] = {0} [or false-singular, in which case (B \ D®) = {0}, and so B is
weakly ~-negative, as ~T0 = 1 # 0 (while, for each a € D®, ~®a ¢ DB, be-
cause, otherwise, (2.10) would not be true in B under [z¢/a,x1/0], and so B is
~-negative, whereas {0} = ~®[{1}] C ~®[D?] C (B \ DP) = {0})] (in particular,
(~ED~EDPI]) = (~ED{0H] = {1}). O
Remark 6.16. If A is ~-paraconsistent, then {%, wm%} C DA, for ~%1 =0 ¢ DA,
in which case D4 = {1,% , and so A is false-singular (in particular, weakly ~-
negative), that is, not truth-singular. 0
Remark 6.17. Suppose A (viz., C) is both weakly Y-disjunctive and (¥, ~)-para-
complete, in which case, for each j € 2, as {j,1—j} =23 1 € DA, (jY¥~*j) € DA,
and so (3 V¥ ~*1) & DA, Hence, {5, ~%1} is disjoint with DA ¥ 0, in which case
DA = {1}, that is, A is truth-singular, and so is not ~-paraconsistent, in view of
Remark 6.16. O

And what is more, any proper submatrix B of A is either ~-classical or one-
valued, in which case B is simple, and so A is simple iff it is hereditarily so. Finally,
A is [weakly]| o-conjunctive/-disjunctive|-implicative iff C' is so, in view of:

Lemma 6.18. Let B be a Y-matriz and C' the logic of B. Suppose B is [either]
false-singular [or both no-more-than-three-valued and ~-super-classical]. Then, the
following are equivalent:
(i) C" is Y-disjunctive;
(ii) B is ¥-disjunctive;
(iii) (2.2) withi=0, (2.3) and (2.4) [as well as (3.3)] are satisfied in C' (viz., in
B).
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Proof. First, (ii)=(i) is immediate. Next, assume (i) holds. Then, (2.2) with ¢ = 0,
(2.3) and (2.4) are immediate. [And what is more, once B is not false-singular,
it is both no-more-than-three-valued (and so truth-singular) and ~-super-classical,
in which case it is not ~-paraconsistent, and so is C’. Then, by (i) and Lemma
3.13, (3.3) is satisfied in C”.] Thus, (iii) holds. Finally, assume (iii) holds. Consider
any a,b € B. Then, by (2.2) with ¢ = 0 and (2.3), C’ is weakly Y-disjunctive,
and so is B, in which case (a Y® b) € DB, whenever either a or b is in D®. Now,
assume ({a,b} N DB) = @. Then, in case a = b (in particular, B is false-singular),
by (2.4), we get DB ¥ (a V® a) = (a Y® b). [Otherwise, B is not false-singular,
in which case it is no-more-than-three-valued (in particular, truth-singular) and
~-super-classical, while (3.3) is true in B, and so, for some ¢ € (B \ D?) = {a, b},
it holds that ~®¢ € DB, while ~®~®¢ = ¢. Let d be the unique element of
{a,b}\ {c}, in which case {a,b} = {c,d}. Then, since ~®¢ € D®, we conclude that
(cV® d) = (~B~Bc VP d) & DB, for, otherwise, by (2.2) with i = 0 and (3.3), we
would get d € DB. Hence, by (2.3), we eventually get (a Y% b) ¢ D5 ] O

Corollary 6.19. Let C' be a Y-disjunctive non-~-paraconsistent ¥-logic, B a finite
false-singular ~-negative (in particular, ~-classical) model of C' and C" the logic
of B. Suppose C' is axiomatically-equivalent to C”. Then, C' = C".

Proof. In that case, by Lemma 3.13, C’ satisfies (3.3), and so, being weakly V-
disjunctive, (2.7) with 72 3¢, And what is more, by Lemma 6.18, B € Mod(C"),
being false-singular, is Y-disjunctive, in which case it, being ~-negative, is -
implicative, in view of Remark 2.10(i)(b), and so C", being defined by the two-
valued J-implicative ¥-matrix B, both is finitary and has DT with respect to .
In this way, Lemma 4.10 completes the argument. (|

Then, by Theorem 3.5(ii) as well as both Corollary 3.6 and Lemma 6.18 with
vV =4, we get:

Corollary 6.20. A is J-implicative iff C is so.
Remark 6.21. A is not ~-negative iff it has unitary equality determinant {xq, ~zo}.

Next, A is said to be (~-)involutive, provided Nm% = %, that is, the Y-identity
~rxg & T is true in 2, in which case A is not ~-negative. Further, A is said to be
extra-classically-hereditary, provided A\ 2 forms a subalgebra of 2, in which case
A is involutive. Likewise, A is said to be quadro-classically hereditary, whenever
Ly & (A?\ (22 U A,)) forms a subalgebra of 2%, in which case A is involutive,
and so A%[ L, is ~-negative, Finally, A is said to be classically-valued, provided, for
all ¢ € %, (imgs®) C 2, in which case A is [not extra-|classically-hereditary [more
specifically, not involutive].
6.2.1.1. Miscellaneous examples.
6.2.1.1.1. Kleene-style logics. Let ¥ £ Y. 401 and A both involutive and truth-
/false-singular with (%[ [01]) = D3p01)- Then, A is both A-conjunctive, V-dis-
junctive and non-~-negative, in which case it is (V, ~)-paracomplete/~-paracon-
sistent, and so, by Remark 2.10(i)(c)/(d), C is not ~-classical, as well as both
classically-hereditary and [not] extra-classically-hereditary, while 2 is a distributive
(A, V)-lattice with zero 0 and unit 1, whereas C is [the bounded version|expansion
KLs01/ LPy of] “Kleene’s three-valued logic” /“the logic of parador” KLs/LP
6]/[13]-
6.2.1.1.2. Godel-style logics. Let ¥ £ 2/3+’01 and A [not] truth-singular as well
as neither ~-negative nor involutive with (A3, 1) £ D301 (in which case ~% is
the [dual] pseudo-complement operation)/“ as well as D% being the [dual] relative
pseudo-complement operation”. Then, A is both A-conjunctive, V-disjunctive and
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[not] (V, ~)-paracomplete as well as [not] non-~-paraconsistent, and so, by Remark
2.10(i)(c,(d)), C is not ~-classical, while A is classically-hereditary but not extra-
classically-hereditary, whereas C' is [the (~-)paraconsistent counterpart PG;/ of |
“the implication-less fragment G of” / Godel’s three-valued logic G [3]. And what
is more, by (2.14), B £ (A, {3,1}[\{3}]) € Mod(C), as x® € hom(B, A) is strict,
in which case any Y-rule I' - ¢ is satisfied in C iff, for each h € hom(Fms, ),
min(h[[']) < h(p), and so G3 is weakly D-implicative, since D* is the pseudo-
complement operation.

6.2.1.1.3. Hatkowska-Zajac’ logic. Let ¥ = ¥ _, and A both false-singular and
involutive with 2 being the distributive (A, V)-lattice with zero % and unit 1. Then,
A is ~-paraconsistent (in particular, C' is not ~-classical; cf. Remark 2.10(i)(c))
as well as both classically- and extra-classically-hereditary but weakly neither A-
conjunctive nor V-disjunctive, C' being the logic HZ [5]. On the other hand, since
the identity ~~xz &~ xg is true in 2, A is a distributive (V~, A™)-lattice (cf. Remark
2.10(i)(a) for definition of these secondary binary connectives) with zero ~*1 = 0
and unit Nm% = % Then, A is both V~-conjunctive and A~-disjunctive.

6.2.1.1.4. Sette-style logics. Let ¥ £ ¥2 and A classically-valued, non-~-negative,
D-implicative (in particular, W5-disjunctive) and [not] false-singular. Then, A is
[not] ~-paraconsistent as well as [not] non-(W-, ~)-paracomplete, and so, by Re-
mark 2.10(i)(c,d), C, being [the intuitionistic/( (W, ~)-)paracomplete counterpart
IP! of] P! [30], is not ~-classical.

6.2.2. Minimal USVLSN. Let AT £ Ay € 22 and A, = (A?\ Ay) € 22,
Generally speaking, C, though being three-valued, need not be minimally uni-
formly three-valued (viz., non-~-classical), in view of:

Example 6.22. Let © £ ¥ | 3 and (B/D)|€ the [A-conjunctive V-disjunctive] 3-
canonical|canonical “~-negative false-/truth-singular ~-super-classical” |~-classical
Y-matrix [with (((B/D)|€)[S) £ D3jp (cf. Subparagraph 2.2.1.2.1), L(B/P)€ &
((0/3)]0) and T(B/PIE 2 ((1/1)1), respectively, in which case (B/D)|€ has tau-
tology T and, in view of Remark 2.10(i)(b), is OJ-implicative]. On the other hand,
in the non-optional case, A, forms a subalgebra of (%/@)2, in which case, by
(2.14), (B/D)2 A5 is a truth-empty model of the logic of B/D, and so, by Corol-
lary 3.11(ii)=(i), this has no tautology. Then, x?/P € hom3(B/D,£). Therefore,
by (2.14), B/D define the same ~-classical ¥-logic of £, in which case, by Remark
2.10(i)(c), this is non-~-paraconsistent, and so is any extension of it. And what is
more, by Remark 2.10(ii)(c), B and D are non-isomorphic [as well as B and © are
s0, because the X-identity (g A~xg) = ~~_L, being true in 9B, is not so in D under
[20/4]], while h : (B/D) — (B/D) : a + (max /min)(0/1,x%/P(a) — / + 1) is a
non-diagonal (for 2(1/0) = 3 # (1/0)) strict homomorphism from B/D to itself, so
this does not have a unitary equality determinant, in view of Theorem 3.3, whereas
[(T/L)B/® =1 &2, in which case] B/D, being ~-negative (and so non-involutive),
is not quadro-classically hereditary [as well as not classically so]. O

On the other hand, ~-classical Y-logics are self-extensional, in view of Example
4.2. This makes the purely algebraic criterion of the minimality of U3VLSN to be
obtained here especially acute.

Lemma 6.23 (Key 3-valued Lemma). Let B be a 3-canonical ~-super-classical
Y-matriz, D a submatriz of A and h € hom(D,B). Then, providing A is invo-
lutive, whenever both B is so and § € (imgh) (in particular, either A = B or
hom(B[(imgh),A) # &), the following hold {cf. p. 3}:
(i) providing h is not singular, 2 C D, while h[2] = 2, in which case h[2 is
injective, and so belongs to {AF, AS};



SELF-EXTENSIONALITY OF FINITELY-VALUED LOGICS 39

(i) providing h 2 A [in particular, h € hom(D, B)] is injective, it is diagonal.
In particular, the following hold:

(a) any partial automorphism {cf. Subsubsection 3.1.1} of A is diagonal;
(b) any isomorphism from A onto B is diagonal, in which case A =B, and so A
and B are equal, whenever they are isomorphic.

Proof. First, note that the carrier of any subalgebra of (2|%B)[{~} (in particular,

D|(img h)) belongs to {A|B,2,{3}}. And what is more, for each a € (A4|B), we

have (~*®a = a) = (a = 1). In particular, for any g € hom(D|(B[(img h)), B|A)

with % € (dom g), providing ~*®1 = 1 we have ~®?g(3) = g(3), in which case
1 BlAL - LB1 1

we get g(3) = 1, and so ~ 1. While proving (i,ii), assume (~®1 = 1) =
_ 1 1

(~*1 = 1), whenever 1 € (imgh).

(i) Assume h is not singular, in which case 1 < |imgh| < |DJ, and so D 2
2 C (imgh). Then, as 2 forms a subalgebra of 2A[{~}, h[2] forms a no-more-
than-two-element subalgebra of B[{~}, in which case h[2] € {2,{1}}, and
so h[2] = 2, for, otherwise, we would have both (imgh) = h[D] 2 h[2] =
{3} > 3 and ~®1 = 1, in which case we would get ~*1 = 1 as well as, since
|imgh| # 1, both 3 € D = (domh) and h(3) € 2, and so would eventually
get 25 h(3) = 1.

(ii) Assume h is injective, while {h € hom(D, B), in which case Ay > (1,0) & h,
for (1/0) € | ¢ DAB, and so} Ay ¢ h. Then, h: D — (imgh) is bijective.
Therefore, in case h is singular, we have (imgh) = {3} = D, and so h =
{(3.2)} is diagonal. Otherwise, by (i), 2 C D, while (h[2) C h is diagonal.
In particular, h = (h[2) is diagonal, whenever D = 2. Otherwise, D = A,
while 1 ¢ 2, in which case, by the injectivity of h, we have h(3) ¢ h[2] = 2,
and so we get h(3) = 3 (in particular, % is diagonal).

Then, (a/b) is by (ii) with (B/D) = A and and /bijective h € hom(D, B) /“as well
as h™1 € hom(B,2)”. O

Corollary 6.24. The following are equivalent:

(i) A has no [unitary] equality determinant;
(ii) A is a strictly (surjectively) homomorphic counter-image of a ~-classical -
matrix;
(i) A is not {hereditarily} simple;
(iv) 64 € Con(A) (in which case X is a strict surjective homomorphism from A
onto C4 = (xA[A], {1}), being, in its turn, canonically ~-classical).

Proof. First, (1)< (iil) is by Lemmas 3.1, 6.23(a) and Theorem 3.3.

Next, (ii)=(iii) is by Remark 2.8(i,ii), for |A] =3 £ 2.

Further, (iii)=“0* € Con(2)” is by the fact img[0” \ A4] = {{},k"}} is a
singleton.

Finally, assume 64 € Con(2), in which case h £ xA is a strict surjective ho-
momorphism from A4 onto the classically-canonical (in particular, two-valued) -
matrix C4, and so h[2, being diagonal, is a strict surjective homomorphism from
the ~-negative X-matrix (A[{~})[2 onto C4[{~}. Then, by Remark 2.10(ii)(a),
Cal{~} is ~-negative, and so is C4, in which case this is canonically ~-classical.
Thus, the optional part of (iv) holds, and so does (ii). O

Next, a (2([+1]))-ary semi-conjunction for/of a (3-)canonical ~-(super-)classical
Y-matrix B is any ¢ € Fm;([ﬂ]) such that ©®(0[1,1[0([, 1])) = | # (0|1). (Clearly,
any binary semi-conjunction for A is both a ternary one and a ternary equalizer
for it. Likewise, providing A is classically hereditary, binary semi-conjunctions for
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A2 are exactly those for A.) Finally, a quasi-negation for/of A is any x € Fm,
such that k*[{3,1}] C {0,3}. (Clearly, ~2( is a quasi-negation for A, whenever
this is either involutive or both false-singular and ~-negative.)

Lemma 6.25. Let B be a [3-] canonically ~-[super-]classical X-matriz, I a finite
set, C € S.(B)! and D a subdirect product of it. Then, the following hold:

(i) providing [in case B is ~-paraconsistent but not weakly conjunctive, both B
s classically hereditary but not extra-classically hereditary, and either D is
~-negative or either B has a binary semi-conjunction or both D is truth-non-
empty and B has either a quasi-negation or ternary equalizer, as well as] D is
truth-non-empty [unless B is ~-paraconsistent], (I x{j}) € D, for some/each
JjE2;

(ii) providing I # @ (in particular, D is consistent) as well as, for some j €
2, (I x {j}) € D, for each ¥’ C %, {{a,I x{a}) | a = ¢T(0,1),¢ €
(Varg[UFm%,])} is an embedding of [the submatriz of] BIY' [generated by
2] into D]

Proof. Clearly, if (I x {j}) € D, for some j € 2, then, D > ~®(I x {j}) =
(I x{1—3}), in which case, as 2 = {j,1—j}, (I x {k}) € D, for each k € 2, and so
(ii) as well as, since 2 # &, the equivalence of alternatives in (i) hold. For proving
the former alternative in (i), consider the following complementary cases with using
Remark 2.10(i)(c) tacitly:

e Bis ~-paraconsistent, in which case it is false-singular, and so DA = {%, 1}.
Consider the following complementary subcases:
— B is weakly conjunctive, in which case, by Lemma 3.17, (I x {0}) € D.
— B is not weakly conjunctive, in which case it is classically hereditary
but not extra-classically hereditary, and so there is some ¢ € lez
such that 1® : B — 2, while either D is ~-negative or B has a binary
semi-conjunction or both D is truth-non-empty and B has either a
quasi-negation or a ternary equalizer. Take any b € D # &, in which
case c =P (b) € (DN2!). Let J & {i € I | mi(c) = 1} and (I|m|n) &
¥®(0]1]3) € 2. Consider the following complementary subsubcases:
* Bhas a binary semi-conjunction ¢, in which case D 3 ¢® (c,~®¢)
— (1 x {0}).
* BB has no binary semi-conjunction, in which case [ # m, for, oth-
erwise, ~'¢) would be a binary semi-conjunction for B, and so
{l,m} = 2 5 n. Consider the following complementary subsub-
subcases:
- either of J/(I\ J) is empty, in which case D 5 ¢ = (I x
{0/1}).
- J # @ # (I\J), in which case, as 0 ¢ D5, D > ¢ ¢
DP % ~®¢ € D, and so D is not ~-negative. Then, D is
truth-non-empty, while B has either a quasi-negation or a
ternary equalizer. Take any d € DP = (DN {3,1}) # @.
Consider the following complementary (for n € 2 = {l,m})
subsubsubsubcases:
*x n =m, in which case D > ®(d) = (I x {n}).
* n = [. Consider the following complementary subsub-
subsubsubcases:
o B has a quasi-negation x. Then, D 3> ®(k®(d)) =
(I x {n}).
o B has no quasi-negation, in which case it has a ternary
equalizer 7, and so D 2 e = 72 (c,~%¢,d) = (I x {b}),
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for some b € B. Let £ £ ¢®() € 2. Then, D >

VP (e) = (I x {£}).
e B3 is not ~-paraconsistent, in which case D is truth-non-empty. Take any
f € DP = (Dn (D®)) # @, in which case, by Remark 6.15, for each
i € I, m(~2f) = ~®m(f) € ~®m[(DP)]] = ~®[DP] = {0}, and so
D3> ~?f=(Ix{0}). O

Let hy /s : 22 — A (i, j) — ”TJ be the arithmetical mean mapping.

Theorem 6.26. C is ~-classical (viz., non-minimally uniformly three-valued; cf.

Theorem 6.12) iff either of the following holds:

(i) 64 € Con(A) (i.e., A “has no {unitary} equality determinant”| “is not (he-

reditarily) simple”| “is a strictly [surjectively| homomorphic counter-image

of a ~-classical Y-matriz) [in which case C4 = (x[A],{1}) is a canonical

~-classical YX-matriz, being a strictly surjectively homomorphic image of A,
and so defines CJ;

(ii) A is both truth-singular and classically hereditary, while hy 5 € hom((2 12)2,
A) fin which case hy 5 € hom§((A]2)%,A), and so Al2 is a canonical ~-
classical X-matriz defining C, whereas A is neither conjunctive nor disjunc-
tive].

Proof. Assume both C' is ~-classical, in which case, by (2.14), C is defined by a
canonical ~-classical (and so both simple and having no proper submatrix) -
matrix B, and 4 ¢ Con(2A), in which case, by Corollary 6.24(iii)=(iv), A is
hereditarily simple, and so, by Lemma 3.8 with M = {B|A}, there is some fi-
nite set I|.J, some C|D € S,(BJ.A)!lY some subirect product £|F of it and some
(hlg) € homS(E|F, A|B) (in particular, 2B belongs to the variety generated by
B|2(). Then, A is truth-singular (in particular, non-~-paraconsistent), for B is so,
while truth-singularity is clearly preserved under P as well as under both S and
H, in view of Remark 2.10(ii)(c). And what is more, by Remark 2.10(ii)(b), £|F is
both truth-non-empty and consistent, for A|B is so. Then, by Lemma 6.25(i) with
j = (0[+1]), (E|F) 2 (a|b)['] £ ((I|J)x{j}). Let G be the submatrix of A generated
by 2, in which case it is simple, for A is hereditarily so, and so, by Remark 2.8(ii)
and Lemma 6.25(ii), eo g, where e is an embedding of G into F, is an embedding of
G into B (in particular, is an isomorphism from G onto B, for this has no proper sub-
matrix). Thus, |G| = |B| = |2| = 2, in which case G D 2 is equal to 2, and s0 2 = G
forms a subalgebra of 2, while (A[2) = G is canonically ~-classical and isomorphic
(and so equal) to B. And what is more, by the truth-singularity of A, h(a’) = 1,
for (a/|1) € DM, in which case h(a) = h(~%a’) = ~*1 = 0, and so there is some
¢ € (E\ {a,d'}) such that h(c) = 3. Then, I # K £ {i € I | m;(c) = 1} # &,
in which case f = {{(k,1),(K x {k}) U ((I\ K) x {I})) | k,1 € 2} is an embedding
of B% into &, and so (f o h) € hom(B?, A). Clearly, f((1,1)) = a’, f({0,0)) = a,
f((1,0)) = ¢, and so f((0,1)) = f(~%2<170>) = ~%c. Furthermore, the Y-identity
~~To R Tg, being true in B, is so in 2, for this belongs to the variety generated by
93, in which case wam% = % ¢ 2, and so Nm% = % Thus, (foh) = hy/s. Finally,
if A was o-conjunctive/-disjunctive, then, by Remark 2.10(ii)(a), (i)(a) and Lemma
6.18, it would be Y-disjunctive, where ¥ £ o~/ for B would be so, in which case,
by Theorem 3.10, A would be a strictly homomorphic counter-image of B, and so,
by Corollary 6.24(ii)=(iv), 8 would be a congruence of 2. In this way, (2.14) and
Corollary 6.24 complete the argument. (]

In view of Example 1 of [20], this implies that U3VLSN are covered by the
universal sequent approach elaborated therein and recently advanced in [26, 28]
towards Hilbert-style axiomatizations. On the other hand, the item (ii) cannot be
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omitted in the formulation of Theorem 6.26, even if C' is both weakly conjunctive
and weakly disjunctive, in view of Remark 6.21 and:

Example 6.27. Let ¥ £ Y. and A both truth-singular and involutive (in
particular, non-~-negative) with (L/T)* £ (0/1). Then, A is both weakly L-
conjunctive and weakly T-disjunctive. Though, 2 forms a subalgebra of 2, while
hy o € hom((A]2)2,2), in which case, by Theorem 6.26, C' is ~-classical. O

Perhaps, a most remarkable peculiarity of non-classical U3VLSN is as follows.
6.2.2.1. Characteristic matrices.

Theorem 6.28. Let B be a [ 3-canonical] ~-super-classical -matriz. Suppose
C' is non-~-classical and defined by B. Then, B is isomorphic [and so equal] to
A. In particular, any uniform three-valued expansion of C' is defined by a unique
expansion of A, unless C is ~-classical.

Proof. Then, the 3-canonization D of B is isomorphic to B, in which case, by (2.14),
C is defined by D, and so, by Theorem 6.26, both A and D are simple. Hence,
by Remark 2.8(ii) and Lemma 3.8, (A|D) € H(PSP(S(D|A))) (in particular, A is
truth-singular iff D is so, for truth-singularity is preserved under P as well as both
S and H; cf. Remark 2.10(ii)(c)). Therefore, there are some finite set I, some
C € S(A)T, some subdirect product & of it and some h € hom$ (€, D), in which
case, by (2.14) and Remark 2.10(ii)(b), £ is a both consistent and truth-non-empty
model of C, for D is so, and so I # &. Consider the following complementary cases:
o (Ix{j}) € E, for some j € 2, in which case E > ~(I x {j}) = (I x{1—j}),
and so, as 2 = {4j,1 — j}, E contains both of (a|b) = (I x {1|0}). Consider

the following complementary subcases:

— (I x{%}) € E, in which case, as [ # @, g £ {(d/,] x {a'}) | a’ € A}
is an embedding of A into &£, and so, by Remark 2.8(ii), g o h is an
embedding of A into D (in particular, is an isomorphism from .4 onto
D, because |A| =3 <, fornol € 3 =|D|).

— (Ix{4}) € E, in which case € is non-~-paraconsistent, and so is 3, in
view of (2.14) (in particular, A is so). Then, 2 forms a subalgebra of 2,
for, otherwise, there would be some ¢ € Fm% such that ¢%(1,0) = %,

in which case E would contain ¢®(a,b) = (I x {3}), and so, by (2.14),
F £ (A]2) is a canonical ~-classical model of C' (in particular, the logic
C' of F is a ~-classical extension of C). Moreover, as a € D¢ # b,
for I # @, h(a) € DP # h(b), in which case h(b/a) = (0/1), whenever
D is false-/truth-singular, respectively, and so (1/0) = ~®(0/1) =
h(~%(b/a)) = h(a/b) (in particular, h[{a,b}] = 2). And what is more,

as h[E] = D, there is some ¢ € E such that h(c) = 3. Let G be

the submatrix of £ generated by {a, b, c}, in which case ' £ (h|G) €
hom3 (G, D), for h[{a,b,c}] = A, and so, by (2.14), C, being defined by
D, is defined by G. Hence, J £ {i € I | m;(c) = 1} # @, for, otherwise,
27 D {a,b} would contain ¢, in which case it, 