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FOUR-VALUED EXPANSIONS OF BELNAP’S LOGIC:
INHERITING BASIC PECULIARITIES

ALEXEJ P. PYNKO

Abstract. The main results of the paper are that:

(1) any four-valued expansion L4 of Belnap’s four-valued logic B4 (cf. [3]):

(a) is defined by a unique expansion M4 of the four-valued matrix DM4 over the De Morgan truth lattice diamond
{f, n, b, t} defining B4 as such;

(b) holds Relevance Principle iff it is has neither a theorem nor an inconsistent formula;
(c) has no proper extension holding Relevance Principle;
(d) is minimally four-valued;

(e) is defined by no truth/false-singular matrix;
(f) has an extension defined by an expansion of a consistent submatrix B of DM4 iff the underlying set of B forms a

subalgebra of the underlying algebra A4 of M4;
(g) is subclassical iff {f, t} forms a subalgebra of A4, in which case the logic of M4�{f, t} defines a unique classical

extension of L4 being also an extension of any inferentially consistent extension of L4;
(h) is [inferentially ]maximal iff M4 has no proper consistent submatrix[ other than that with carrier {n}];
(i) is maximally paraconsistent iff {f, b, t} does not form a subalgebra of A4 iff the proper axiomatic extension LEM

4 of
L4 relatively axiomatized by the Excluded Middle law axiom is either classical, if L4 is subclassical, or inconsistent,
otherwise, iff LEM

4 is not (maximally )paraconsistent iff LEM
4 is not an expansion of the logic of paradox LP = BEM

4

and, otherwise, providing L4 is subclassical and every primary operation of A4 is either regular or both b-idempotent

and no more than binary, LEM
4 has exactly two proper consistent extensions forming a chain, the greatest one being

classical and relatively axiomatized by the Modus ponens rule for material implication, the least one being relatively
axiomatized by the Ex Contradictione Quodlibet rule, both being non-axiomatic and LEM

4 being the only proper
consistent axiomatic extension of L4, whenever A4 is regular;

(j) has no theorem/inconsistent formula iff {n/b} forms a subalgebra of A4;

(k) [providing L4 has a/no theorem, ]L4 has the distributive lattice of its disjunctive [arbitrary/merely non-pseudo-
axiomatic ]extensions being dual isomorphic to the one of all lower cones of the set of all [truth-non-empty ]consistent

submatrices of M4 (in particular, to be found effectively, whenever the expanded signature is finite) and is a sublattice

of the nine[six]-element non-chain distributive lattice of all disjunctive [non-pseudo-axiomatic ]extensions of B4;
(l) has its proper disjunctive extension LR

4 relatively axiomatized by the Resolution rule that:

(i) is paracomplete iff the carrier of the subalgebra of A4 generated by {n} does not contain b;

(ii) is not inferentially paracomplete iff it is inferentially either classical, if L4 is subclassical, or inconsistent,
otherwise, iff {f, n, t} does not form a subalgebra of A4 iff LR

4 is not an expansion of Kleene’s three-valued logic

K3 = BR
4 ;

(m) has the entailment relation equal to the set of all inequalities identically true in A4 iff L4 is self-extensional iff
it has the Property of Weak Contraposition iff the specular permutation on {f, n, b, t} retaining both f and t but

permuting n and b is an endomorphism of A4 iff the extension of L4 relatively axiomatized by the Modus Ponens[Ex

Contradictione Quodlibet] rule is defined by[ the direct product of M4 and] 〈A4, {t}〉, in which case:
(i) L4 is subclassical;

(ii) there is either no, if L4 is maximally paraconsistent, or exactly one, otherwise, non-pseudo-axiomatic consistent

non-classical proper self-extensional extension of L4, any self-extensional extension of L4 being disjunctive;
(iii) {n[, f, t]} forms a subalgebra of A4 iff {b[, f, t]} does so, in which case:

(A) L4 holds Relevance Principle iff it has no theorem/inconsistent formula;

(B) LEM
4 is (maximally )paraconsistent iff LR

4 is inferentially paracomplete, in which case, providing A4 is

regular, LR
4 is maximally inferentially paracomplete, while any extension of L4 is both paraconsistent and

inferentially paracomplete iff it is a sublogic of LEM
4 ∩ LR

4 .;

(C) [providing L4 has a/no theorem,] disjunctive [arbitrary/merely non-pseudo-axiomatic ]extensions of L4 form
the nine[six]-element non-chain distributive lattice isomorphic to that of B4;

(D) providing A4 is regular[ and L4 has a/no theorem], [arbitrary/merely non-pseudo-axiomatic ]extensions of

LEM
4 ∩ LR

4 form the eleven[seven]-element non-chain distributive lattice, those of LR
4 being all disjunctive,

proper ones being inferentially either classical or inconsistent, and so not inferentially paracomplete, in which

case LR
4 is maximally (inferentially )paracomplete, as opposed to its implicative expansions;

(2) any three-valued (disjunctive/conjunctive )paraconsistent logic L3 with subclassical negation:
(a) is defined by a( unique disjunctive/conjunctive) superclassical matrix over {f, b, t}, referred to as characteristic one

of L3;

(b) is maximally paraconsistent iff either {b} does not form a subalgebra of the underlying algebra A of any characteristic
matrix of L3 or there is a ternary b-relative weak conjunction for A, viz., a ternary formula ϕ such that ϕA(b, f, t) =

f = ϕA(b, t, f), in which case a characteristic matrix of L3 is unique(;

(c) has no proper paraconsistent disjunctive/conjunctive extension/, in which case it is maximally paraconsistent);
(d) is minimally three-valued;

(e) is subclassical if(f) {f, t} forms a subalgebra of the underlying algebra of its characteristic matrix, in which case (L3

is maximally paraconsistent, while )the logic of the restriction of its characteristic matrix on {f, t} defines a( unique)
classical extension of L3(/, being also an extension of any consistent extension of L3);

(3) for every n > 2, there is a minimally n-valued maximally paraconsistent subclassical[ both conjunctive and disjunctive]
logic.

2000 Mathematics Subject Classification. 03B50, 03B99, 03C05, 03G10, 06B10, 06D05, 06D30, 08B05, 08B10, 08B15, 08B26.
Key words and phrases. propositional logic/calculus, [axiomatic ]extension, self-extensional logic, matrix, para-complete/-consistent logic|matrix,

Belnap’s four-valued logic, expansion, [bounded ]distributive/De Morgan/Kleene/Boolean lattice, conjunctive/disjunctive logic|matrix, congru-
ence/equality determinant.
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1. Introduction

Perhaps, the principal value of universal mathematical investigations consists in discovering uniform transparent points
behind particular results originally proved ad hoc as well as in providing powerful generic tools enabling one ”to kill as much
as possible birds with as less as possible stones”. This thesis is the main paradigm of the present study.

Belnap’s ”useful” four-valued logic (cf. [3]) arising as the logic of first-degree entailment in relevance logic R (FDER, for
short) has been naturally expanded by additional connectives in [16]. The present paper pursues the study of such expansions
with regard to certain generic aspects in addition to those of functional completeness and both sequential and equational
axiomatizations comprehensively explored therein collectively with [20].

More precisely, we study how four-valued expansions of FDER (as well as their extensions) inherit certain remarkable
features of FDER as such. This marks the primary framework of the paper. On the other hand, it is closely related to certain
more (secondary) issues additionally studied here (especially because this study uses the generic tools initially elaborated for
solving exactly the secondary tasks alone and only then applied to primary ones).

First of all, FDER holds Relevance Principle (viz., Variable Sharing Property) in the sense that it holds the entailment
φ→ ψ only if φ and ψ have a common propositional variable. This clarifies the items (1b,1c,1j) of the Abstract.

Moreover, the four-valued matrix defining FDER has four proper consistent submatrices, each defining a consistent proper
extension of FDER. This explains the item (1f) of the Abstract.

In particular, FDER is subclassical in the sense that the classical logic is an extension of it. When exploring this peculiarity
within the framework of expansions of FDER, we inevitably deal with formally miscellaneous classical logics as those which
are defined by classical matrices, that is, two-valued matrices with classical negation. In case such is conjunctive with respect
to any (possibly, secondary) binary connective (in particular, is a model of an expansion of FDER), the logic defined by such a
matrix is nothing but a definitional copy of the standard classical logic, because any two-valued operation is definable via the
classical negation and conjunction. We equally follow this paradigm, when studying three-valued and n-valued paraconsistent
logics. This clarifies the items (1g) and (2e) of the Abstract.

The four-valuedness typical of FDER and its expansions also implies their both [inferential ]paracompleteness (viz., refuting
the[ inferential version of] Excluded Middle law axiom) and paraconsistency (viz., refuting the Ex Contradictione Quodlibet
rule). It is this joint peculiarity of FDER that has predetermined its profound applications to Computer Science and Artificial
Intelligence. This inevitably raises the issue of exploring how extensions of( four-valued expansions of) FDER retain such
peculiarities (cf. the items (1i,1l) of the Abstract).

In this connection, the issue of strong[ inferential] maximality typical of the classical logic in the sense of having no proper
[inferentially ]consistent extension becomes equally acute as for four-valued expansions of FDER. The thing is that [purely-
]bilattice expansions of FDER with[out] truth and falsehood constant are [inferentially ]maximal, as it ensues from the general
characterization of the maximality (cf. the item (1h) of the Abstract). Taking [18] into account, particular cases of such
maximality have actually been proved in [16] ad hoc.

And what is more, four-valued expansions of FDER normally (but not at all generally) have three-valued paraconsis-
tent/paracomplete extensions, defined by three-valued submatrices of characteristic four-valued matrices (cf. the items (1f,1i/l)
of the Abstract), shown here to be relatively axiomatized by the Excluded Middle law axiom/ the Resolution rule in that case.
Then, their defining three-valued paraconsistent submatrices appear to be conjunctive and superclassical in the sense of the
reference [Pyn 95b] of [14], according to which any logic defined by such a matrix is maximally paraconsistent in the sense of
having no proper paraconsistent extension (cf. the items (2b,2c) of the Abstract and historically the paragraph after Theorem
2.1 of [14]).1 Particular cases of such three-valued maximal paraconsistency have been proved ad hoc in [14], [19] as well as in
[23] taking [18] into account. On the other hand, as it follows from our characterization of the maximal paraconsistency (cf.
the item (1i) of the Abstract), any (including constant-free purely) bilattice expansion is maximally paraconsistent, though is
not subclassical, in view the item (1g) of the Abstract, as opposed to the expansion by classical (viz., Boolean) negation.

In this way, we conclude that the maximal paraconsistency is not at all a prerogative of three-valued logics. As a matter of
fact, we argue that, for every n > 2, there is a minimally n-valued (in the sense of not being defined by a matrix with less than
n values; cf. the items (1d,2d) of the Abstract in this connection) maximally paraconsistent subclassical logic (cf. the item
(3) of the Abstract). In this connection, it is remarkable that existence of non-minimally n-valued maximally paraconsistent
subclassical logic has been actually due to [14], because the logic of paradox [11] is equally defined by an n-valued matrix.
Among other things, such generic minimally n-valued example is defined by a false-singular matrix, as opposed to four-valued
expansions of FDER (cf. the item (1e) of the Abstract).

Furthermore, FDER is disjunctive. This raises the problem of finding all disjunctive extensions of (four-valued expansions
of )FDER (cf. the item (1k) of the Abstract). (Although, likewise, FDER is conjunctive, the conjunctivity is immediately
inherited by extensions, so this point is just taken for granted.)

After all, a one more quite remarkable peculiarity of FDER is that its entailment relation is defined (semi)lattice-wise in
the sense that FDER holds the entailment φ→ ψ iff the inequality φ / ψ (viz., the equality (φ∧ψ) ≈ φ) is identically true in
the diamond De Morgan lattice, i.e, in the variety of De Morgan lattices. Within the framework of four-valued expansions of
FDER, this property appears to be equivalent to the so-called self-extensionality (cf. Theorem 4.56(i)⇔(v)), profound study of
which has been due to [15] that has provided a generic algebraic (more specifically, lattice-theoretic) approach to conjunctive
non-pseudo-axiomatic self-extensional logics (cf. Section 4.1 therein) properly enhanced here by omitting the stipulation ”non-
pseudo-axiomatic”. Recall that a propositional logic is said to be self-extensional, provided its interderivability relation is a

1Though being prepared and announced by 1995, the fundamental material of the both references [Pyn 95a] and [Pyn 95b] of [14] has never been
published for a quarter of century, while certain quirky kleptomaniacs all over the world (like Avron & Co.; Tribus, Skura, at al.; Font & Co. —

including Prenosil, et al.) have succeeded in plagiarizing it as well as other contributions announced in [14]. This is why we take the opportunity to
eventually present them here.
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congruence of the formula algebra, in which case any fragment of it is self-extensional as well (cf. [15]), while the converse
is far from being generally valid. Any axiomatic extension of the intuitionistic logic as well as any inferentially consistent
two-valued logic (including the classical one and its fragments) is self-extensional. This explains the meaning of the item (1m)
of the Abstract.

The rest of the paper is as follows. The exposition of the material of the paper is entirely self-contained (of course,
modulo very basic issues concerning Set Theory, Lattice Theory, Universal Algebra, Model Theory and Mathematical Logic
not specified here explicitly, to be found, e.g., in [2], [4], [6], [8] and [9]). Section 2 is a concise summary of basic issues
underlying the paper, most of which have actually become a part of logical and algebraic folklore. Section 3 is devoted to
certain key preliminary issues concerning false-singular matrices, disjunctivity, equality determinants and De Morgan lattices.
In Section 4 we formulate and prove main results of the paper concerning solely four-valued expansions of FDER. Section 5 is
entirely devoted to the issue of (especially, maximal) paraconsistency within both three-valued and generic n-valued framework.
Then, in Section 6, we exemplify the previous three sections by applying them to three general classes of expansions, including
those introduced in [16], with providing quick argumentations/refutations of their properties under consideration and finding
all disjunctive extensions of (first of all, self-extensional non-maximally paraconsistent) expansions of FDER as well as all
extensions of the unique proper non-classical self-extensional non-pseudo-axiomatic extension of any regular self-extensional
non-maximally paraconsistent expansion of FDER (in particular, FDER itself), as well as to certain well-known three-valued
paraconsistent logics. Finally, Section 7 is a brief summary of principal contributions and open problems of the paper as well
as an outline of further related work.

2. Basic issues

Notations like img, dom, ker, hom, πi and Con and related notions are supposed to be clear.

2.1. Set-theoretical background. We follow the standard set-theoretical convention, according to which natural numbers
(including 0) are treated as finite ordinals (viz., sets of lesser natural numbers), the ordinal of all them being denoted by ω.
The proper class of all ordinals is denoted by ∞.

Likewise, functions are viewed as binary relations, the left/right components of their elements being treated as their argu-
ments/values, respectively. Then, to retain both the conventional prefix writing of functions and the fact that (f ◦ g)(a) =
f(g(a)), we have just preferred to invert the conventional order of relation composition components. In particular, given two
binary relations R and Q, we put R[Q] , (R ◦Q ◦R−1).

In addition, singletons are often identified with their unique elements, unless any confusion is possible.
Given a set S, the set of all subsets of S[ of cardinality ∈ K ⊆ ∞] is denoted by ℘[K](S). A subset T ⊆ S is said to

be proper, if T 6= S. Further, given any equivalence relation θ on S, as usual, by νθ we denote the function with domain S
defined by νθ(a) , [a]θ , θ[{a}], for all a ∈ S, in which case ker νθ = θ, whereas we set (T/θ) , νθ[T ], for every T ⊆ S.
Next, S-tuples (viz., functions with domain S) are often written in either sequence t̄ or vector ~t forms, its s-th component
(viz., the value under argument s), where s ∈ S, being written as either ts or ts. Given two more sets A and B, any relation
R ⊆ (A× B) (in particular, a mapping R : A → B) determines the equally-denoted relation R ⊆ (AS × BS) (resp., mapping
R : AS → BS) point-wise, that is, R , {〈ā, b̄〉 ∈ (AS × BS) | ∀s ∈ S : as R bs}. Likewise, given a set A, an S-tuple B of
sets and any f̄ ∈ (

∏
s∈S B

A
s ), put (

∏
f̄) : A→ (

∏
B), a 7→ 〈fs(a)〉s∈S . (In case I = 2, f0 × f1 stands for (

∏
f̄).) Further, set

∆S , {〈a, a〉|a ∈ S}, relations of such a kind being referred to as diagonal, and S+ ,
⋃
i∈(ω\1) S

i. Then, any binary operation
� on S determines the equally-denoted mapping � : S+ → S as follows: by induction on the length l = dom ā of any ā ∈ S+,
put:

�ā ,

{
a0 if l = 1,
(�(ā�(l − 1))) � al−1 otherwise.

Given any f : S → S, by induction on any n ∈ ω, define fn : S → S, by setting:

fn(a) ,

{
a if n = 0,
f(fn−1(a)) otherwise.

for all a ∈ S. Finally, given any R ⊆ S2, Tr(R) , {〈π0(π0(r̄)), π1(πl−1(r̄))〉|r̄ ∈ Rl, l ∈ (ω \ 1)} is the least transitive binary
relation on S including R, referred to as the transitive closure of R.

In general, we use the following standard notations going back to [3]:

t , 〈1, 1〉, f , 〈0, 0〉,

b , 〈1, 0〉, n , 〈0, 1〉.

In addition, the mapping µ : 22 → 22, 〈a, b〉 7→ 〈b, a〉 is said to be specular, in which case µ−1 = µ, so µ is bijective, i.e., a
permutation on 22.

Let A be a set. An anti-chain of any S ⊆ ℘(A) is any N ⊆ S such that max(N) = N . Likewise, a lower cone of S is
any L ⊆ S such that, for each X ∈ L, (℘(X) ∩ S) ⊆ L. This is said to be generated by a G ⊆ L, whenever L = (G)O

S ,
(S ∩

⋃
{℘(X) | X ∈ G}) (the subscript S is normally omitted, whenever it is clear from the context). (Clearly, in case A is

finite, the mappings N 7→ (N)O
S and L 7→ max(L) are inverse to one another bijections between the sets of all antichains and

lower cones of S.) A U ⊆ ℘(A) is said to be upward-directed, provided, for every S ∈ ℘ω(U), there is some T ∈ U such that
(
⋃
S) ⊆ T . A subset of ℘(A) is said to be inductive, whenever it is closed under unions of upward-directed subsets. Further,

any X ∈ T ⊆ ℘(A) is said to be K-meet-irreducible (in/of T ), where K ⊆ ∞, provided it belongs to every U ∈ ℘K(T ) such
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that (A ∩
⋂
U) = X (in which case X 6= A, whenever 0 ∈ K), the set of all them being denoted by MIK(T ).2 A closure

system over A is any C ⊆ ℘(A) such that, for every S ⊆ C, it holds that (A ∩
⋂
S) ∈ C, in which case the poset 〈C,⊆ ∩ C2〉

to be identified with C alone is a complete lattice with meet A ∩
⋂

. In that case, any B ⊆ C is called a (closure )basis of
C, provided C = {A ∩

⋂
S|S ⊆ B}. An operator over A is any unary operation O on ℘(A). This is said to be (monotonic)

[idempotent] {transitive} 〈inductive〉, provided, for all (B, )D ∈ ℘(A)〈resp., any upward-directed U ⊆ ℘(A)〉, it holds that
(O(B))[D]{O(O(D)} ⊆ O(D)〈O(

⋃
U) ⊆

⋃
O[U ]〉. A closure operator over A is any monotonic idempotent transitive operator

C over A, in which case imgC is a closure system over A, determining C uniquely, because, for every closure basis B of imgC
(including imgC itself) and each X ⊆ A, it holds that C(X) = (A ∩

⋂
{Y ∈ B|X ⊆ Y }), called dual to C and vice versa.

(Clearly, C is inductive iff imgC is so.)

Remark 2.1. As a consequence of Zorn’s Lemma, according to which any inductive non-empty set has a maximal element,
given any inductive closure system C, MI(C) is a closure basis of C, and so is MIK(C) ⊇ MI(C), where K ⊆ ∞. �

2.2. Algebraic background. Unless otherwise specified, abstract algebras are denoted by Fraktur letters (possibly, with
indices/prefixes/suffixes), their carriers (viz., underlying sets) being denoted by corresponding Italic letters (with same in-
dices/prefixes/suffixes, if any).

Let A be an algebra. Then, Con(A) is an inductive closure system over A2, in which case A is said to be simple/congruence-
distributive, whenever the lattice Con(A) is two-element/distributive. Next, A is said to be subdirectly irreducible, provided
∆A ∈ MI(Con(A)), in which case |A| > 1. (Clearly, any simple algebra is subdirectly irreducible.)

A (propositional) language/signature is any algebraic (viz., functional) signature Σ (to be dealt with by default throughout
the paper) constituted by function (viz., operation) symbols of finite arity to be treated as (propositional) connectives. Given
any α ∈ ℘∞\1(ω), put Vα , {xβ |β ∈ α} and (∀α) , (∀Vα). Then, we have the absolutely-free Σ-algebra Fmα

Σ freely-generated
by the set Vα, elements of which being viewed as (propositional) variables of rank α, referred to as the formula Σ-algebra of
rank α, its endomorphisms/elements of its carrier Fmα

Σ (viz., Σ-terms of rank α) being called (propositional) Σ-substitutions/-
formulas of rank α. A Σ-equation/identity of rank α is then any couple of the form φ ≈ ψ, where φ, ψ ∈ Fmα

Σ, to be identified
with the ordered pair 〈φ, ψ〉, the set of all them being denoted by EqαΣ. (In general, the reservation ”of rank α” is normally
omitted, whenever α = ω.) Given any [m, ]n ∈ ω, by σ[m:]+n we denote the Σ-substitution extending [xi/xi+n]i∈(ω[\m]).

The variety axiomatized by a given I ⊆ EqωΣ is the class of all Σ-algebras satisfying each identity in I. A θ ∈ Con(Fmω
Σ) is

said to be fully invariant, provided σ[θ] ⊆ θ, for every Σ-substitution σ, in which case θ is the set of all Σ-identities satisfied in
the variety axiomatized by θ. Conversely, the set θV of all Σ-identities satisfied in a variety V (clearly, axiomatized by θV) is a
fully invariant congruence of Fmω

Σ. In this way, the closure system of all fully invariant congruences of Fmω
Σ is dual isomorphic

to the lattice of all varieties of Σ-algebras.
A class K of Σ-algebras is said to be congruence-distributive, whenever every member of it is so. In general, the class

of all [non-one-element ]subalgebras/homomorphic images/isomorphic copies of members of K is denoted by (S/H/I)[>1]K,
respectively. Likewise, the class of all subdirectly irreducible members of K is denoted by Si(K). Finally, the variety generated
by K (viz., the least one including K), being clearly axiomatized by the set of all Σ-identities true in K, is denoted by V(K).
The variety V(∅), constituted by all one-element Σ-algebras, is said to be trivial.

Let I be a set, A an I-tuple of Σ-algebras and B a subalgebra of C ,
∏
i∈I Ai. Given any [prime ]filter F on I (viz., a

non-empty[ proper prime] filter of the lattice 〈℘(I),∩,∪〉), we then have θBF , {〈ā, b̄〉 ∈ B2 | {i ∈ I | ai = bi} ∈ F} ∈ Con(B),
congruences of such a kind being referred to as [prime ]filtral [, in which case:

(2.1) (C/θCF ) ∈ I(img A),

whenever both img A and all members of it are finite].
Recall the following useful well-known facts:

Lemma 2.2. Let A and B be Σ-algebras and h ∈ hom(A,B).( Suppose (img h) = B.) Then, for every ϑ ∈ Con(B),
h−1[ϑ] ∈ {θ ∈ Con(A) | (kerh) ⊆ θ}(, whereas h[h−1[ϑ]] = ϑ, while, conversely, for every θ ∈ Con(A) such that (kerh) ⊆ θ,
h[θ] ∈ Con(B), whereas h−1[h[θ]] = θ).

Remark 2.3 (cf., e.g., Theorem 1.3 of [10]). In view of Remark 2.1, given any member A of a variety V, Θ , MI(Con(A)) is a
basis of the inductive closure system Con(A) over A2, each (A/θ) ∈ V, where θ ∈ Θ, being subdirectly irreducible, in view of
Lemma 2.2, in which case ∆A = (A2∩

⋂
Θ), so e , (

∏
θ∈Θ νθ) : A→ (

∏
θ∈Θ(A/θ)) is an embedding of A into

∏
θ∈Θ(A/θ), and

so is an isomorphism from A onto the subdirect product (
∏
θ∈Θ(A/θ))�(img e) of the tuple 〈A/θ〉θ∈Θ constituted by subdirectly

irreducible members of V. In particular, V = V(Si(V)). �

Lemma 2.4 (cf., e.g., the proof of Theorem 2.6 of [10]). Let I be a set, A an I-tuple of Σ-algebras, B a congruence-distributive
subalgebra of

∏
i∈I Ai and θ ∈ MI(Con(B)). Then, there is some prime filter F on I such that θBF ⊆ θ.

Then, combining (2.1), Lemmas 2.2, 2.4 and the Algebra Homomorphism Theorem, we get:

Corollary 2.5 (cf., e.g., Theorem 2.6 of [10]). Let K be a finite class of finite Σ-algebras. Suppose V , V(K) is congruence-
distributive. Then, Si(V) ⊆ H>1S>1K. In particular, Si(V) = IS>1K, whenever every member of S>1K is simple, in which
case every member of Si(V) is simple.

And what is more, we also have:

Corollary 2.6 (Congruence filtrality). Let K be a finite class of finite Σ-algebras, I a set, A ∈ KI and B a congruence-
distributive subalgebra of C ,

∏
i∈I Ai. Suppose every member of S>1K is simple. Then, each element of Con(B) is filtral.

2In general, any mention of K is normally omitted, whenever K = ∞. Likewise, ”finitely-/pairwise-” means ”ω-/{2}-”, respectively.
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Proof. Consider any θ ∈ MI(Con(B)), in which case θ 6= B2. Then, by Lemma 2.4, there is some prime filter F on I such
that Con(B) 3 ϑ , θBF ⊆ θ, in which case we have η , θCF ∈ Con(C), while B2 6= ϑ = (B2 ∩ η) = ker(νη�∆B), and so, by
the Algebra Homomorphism Theorem and (2.1), we get (B/ϑ) ∈ IS>1(C/η) ⊆ IS>1IK ⊆ IS>1K. Hence, by Lemma 2.2, we
eventually get θ = ϑ. Thus, each element of MI(Con(B)) is filtral. In this way, Remark 2.1 and the fact that the set of all
filters on I is a closure system over ℘(I), while the mapping F 7→ θBF preserves intersections, complete the argument. �

By Corollary 2.6, we then immediately get:

Corollary 2.7 (Congruence inheritance). Let Σ′ ⊆ Σ, K a finite class of finite Σ-algebras, I a set, A ∈ KI and B a subalgebra
of

∏
i∈I Ai. Suppose every member of S>1(K�Σ′) is simple and B�Σ′ is congruence-distributive. Then, Con(B) = Con(B�Σ′).

2.3. Propositional logics and matrices. A Σ-rule is any couple 〈Γ, ϕ〉, where (Γ ∪ {ϕ}) ∈ ℘ω(Fmω
Σ), normally written in

the standard sequent form Γ ` ϕ, ϕ/any element of Γ being referred to as the/a conclusion/premise of it. A (substitutional
)Σ-instance of it is then any Σ-rule of the form σ(Γ ` ϕ) , (σ[Γ] ` σ(ϕ)), where σ is a Σ-substitution. As usual, Σ-rules
without premises are called Σ-axioms and are identified with their conclusions. A[n] [axiomatic ]Σ-calculus is any set C of
Σ-rules[-axioms], the set of all Σ-instances of its elements being denoted by SIΣ(C). Then, Γ ` ϕ is said to be derivable in C,
if there is a C-derivation of it, i.e., a proof of ϕ (in the conventional proof-theoretical sense) by means of axioms and rules in
Γ ∪ SIΣ(C).

A (propositional) Σ-logic is any closure operator C over Fmω
Σ that is structural in the sense that σ[C(X)] ⊆ C(σ[X]), for

all X ⊆ Fmω
Σ and all σ ∈ hom(Fmω

Σ,Fmω
Σ), or, equivalently, imgC is closed under inverse Σ-substitutions (we sometimes write

X `C Y for C(X) ⊇ Y ). A(n) (in)consistent set of C is any X ⊆ Fmω
Σ such that C(X) 6= (=) Fmω

Σ. Then, C is said to be
[inferentially ](in)consistent, provided ∅[∪{x0}] is a(n in)consistent set of C or, equivalently, in view of the structurality of C,
x1 6∈ (∈)C(∅[∪{x0}]). A Σ-rule Γ ` ϕ is said to be satisfied in C, provided ϕ ∈ C(Γ). A [proper ]extension of C is any Σ-logic
C ′ ⊇ C[ distinct from C], in which case C is said to be a [proper ]sublogic of C ′. Then, an extension C ′ of C is said to be
axiomatized by a Σ-calculus C relatively to C, provided it is the least extension of C satisfying each rule of C. The extension
CnC of the diagonal Σ-logic relatively axiomatized by C is said to be axiomatized by C and is referred to as the consequence
of C, in which case it is inductive and satisfies any Σ-rule iff this is derivable in C. (Conversely, any inductive Σ-logic is
axiomatized by the set of all Σ-rules satisfied in it.) An extension C ′ of C is said to be axiomatic, whenever it is relatively
axiomatized by an axiomatic Σ-calculus A, in which case, for all X ⊆ Fmω

Σ, it holds that C ′(X) = C(X ∪ SIΣ(A)). Next, C is
said to be [inferentially ]maximal, whenever it is [inferentially ]consistent and has no proper [inferentially ]consistent extension.
Further, C is said to be [weakly ]�-conjunctive (cf. [15]), where � is a (possibly, secondary) binary connective of Σ, provided
C(φ � ψ)[⊇] = C({φ, ψ}), for all φ, ψ ∈ Fmω

Σ. Next, C is said to have the Property of Weak Contraposition with respect to a
(possibly, secondary) unary connective o of Σ (cf. [13]), provided (ψ ∈ C(φ)) ⇒ (oφ ∈ C(oψ)), for all φ, ψ ∈ Fmω

Σ. Likewise,
C is said to be [maximally ]o-paraconsistent, provided x1 6∈ C({x0, ox0})[ and C has no proper o-paraconsistent extension].
Furthermore, C is said to be non-pseudo-axiomatic (cf. [15]), provided

⋂
k∈ω C(xk) ⊆ C(∅) (the converse inclusion always

holds by the monotonicity of C) or, equivalently (taking the structurality of C and the finiteness of the set of all variables
occurring in any Σ-formula into account), (imgC)\{∅} is a basis of imgC. Likewise, it is said to be purely-inferential, provided
C(∅) = ∅ or, equivalently, ∅ ∈ (imgC). In addition, C is said to hold Relevance Principle (viz., Variable Sharing Property ; cf.
[13]), provided, for every α ∈ (ω \ 1), all φ ∈ Fmα

Σ and all ψ ∈ Fmω\α
Σ , ψ 6∈ C(φ), in which case C neither is purely-inferential

nor has an inconsistent formula. Finally, C is said to be self-extensional (cf. [15]), provided ≡C , (EqωΣ ∩(kerC)) ∈ Con(Fmω
Σ),

in which case, by the sructurality of C, ≡C is fully invariant, the corresponding variety being called the intrinsic variety of C
and denoted by IV(C).

Remark 2.8. The following hold:
(i) given a Σ-logic C, the following hold:

a) (imgC) ∪ {∅} is a closure system over Fmω
Σ closed under inverse substitutions, so the dual closure operator C+0

over Fmω
Σ is the greatest purely-inferential sublogic of C, called the purely-inferential version/counterpart of C, in

which case ≡C = ≡C+0 ;
b) Taking the structurality of C and the finiteness of the set of all variables occurring in any Σ-formula into account,

it is routine checking that the closure operator C−0 over Fmω
Σ dual to the closure system over Fmω

Σ with basis
(imgC) \ {∅}, in which case C−0(X) = C(X), for all non-empty X ⊆ Fmω

Σ, and C−0(∅) = (
⋂
{C(ϕ) | ϕ ∈

Fmω
Σ}), is structural, and so C−0 is the least non-pseudo-axiomatic extension of C, called the non-pseudo-axiomatic

version/counterpart of C, in which case ≡C = ≡C−0 ;
(ii) Verifying inclusion/equality of dual closure systems, it is then easy to see that the mappings

C 7→ C+0,

C 7→ C−0,

are inverse to one isomorphisms between the poset of all non-pseudo-axiomatic( self-extensional) Σ-logics ordered by
⊆ and that of all purely-inferential ones. �

Remark 2.9 (cf. Theorem 4.8 of [15] for the ”non-pseudo-axiomatic” case). Since any inductive non-pseudo-axiomatic con-
junctive logic C ′′ is uniquely determined by ≡C′′ , while the conjunctivity is retained by extensions, in view of Remark 2.8,
we immediately conclude that, given any inductive non-pseudo-axiomatic/purely-inferential conjunctive self-extensional Σ-
logic C, the mapping C ′ 7→ IV(C ′) is a dual embedding of the poset of all inductive non-pseudo-axiomatic/purely-inferential
self-extensional extensions of C into the lattice of all subvarieties of IV(C). �

Since any logic is either purely-inferential or, otherwise, non-pseudo-axiomatic, Remark 2.9 actually enhances Theorem 4.8
of [15] beyond non-pseudo-axiomatic logics.
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A (propositional) Σ-matrix (cf. [7]) is any couple of the form A = 〈A, DA〉, where A is a Σ-algebra, called the underlying
algebra of A, while DA ⊆ A is called the truth predicate of A, elements of which being referred to as distinguished values of
A. (In general, matrices are denoted by Calligraphic letters (possibly, with indices/prefixes/suffixes), their underlying algebras
being denoted by corresponding Fraktur letters (with same indices/prefixes/suffixes, if any).) This is said to be n-valued/truth[-
non]-empty/(in)consistent/false-singular/ truth-singular, where n ∈ ω, provided |A| = n/DA = [6=]∅/DA 6= (=)A/|A \DA| ∈
2/|DA| ∈ 2. Next, given any Σ′ ⊆ Σ, put (A�Σ′) , 〈A�Σ′, DA〉, in which case A is said to be an expansion of A�Σ′. (Any
notation, being specified for single matrices, is supposed to be extended to classes of matrices member-wise.) Finally, the
Σ-matrix {(A) , 〈A, A \DA〉 is refereed to as complementary to/of A.

A Σ-matrix A is said to be finite/generated by a B ⊆ A, whenever A is so. Then, it is said to be K-generated, where K ⊆ ∞,
whenever it is generated by some B ∈ ℘K(A).

As usual, Σ-matrices are treated as first-order model structures (viz., algebraic systems; cf. [8]) of the first-order signature
Σ∪{D} with unary predicateD, any Σ-rule Γ ` φ being viewed as the Horn formula (

∧
Γ)→ φ under the standard identification

of any propositional Σ-formula ψ with the first-order atomic formula D(ψ).
Given any α ∈ ℘∞\1(ω) and any class M of Σ-matrices, we have the closure operator CnαM over Fmα

Σ defined by CnαM(X) ,
(Fmα

Σ ∩
⋂
{h−1[DA]|A ∈ M, h ∈ hom(Fmα

Σ,A), h[X] ⊆ DA}, for all X ⊆ Fmα
Σ, in which case we have:

(2.2) CnαM(X) = (Fmα
Σ ∩CnωM(X)),

because hom(Fmα
Σ,A) = {h�Fmα

Σ |h ∈ hom(Fmω
Σ,A)}, for any Σ-algebra A, as A 6= ∅. (Note that CnαM(∅) = ∅, whenever M

has a truth-empty member. Moreover, using either the ultra-product technique (cf. [8]) or the topological one (cf. [7]), CnαM
is shown to be inductive, whenever both M and all members of it are finite.) Then, CnωM is a Σ-logic called the one of M. A
Σ-logic C is said to be K-defined by M, where K ⊆ ∞, provided C(X) = CnωM(X), for all X ∈ ℘K(Fmω

Σ). A Σ-logic is said to
be [minimally ]n-valued, where n ∈ ω, whenever it is defined by an n-valued Σ-matrix[ but by no m-valued one with m < n].
A Σ-matrix A is said to be o-paraconsistent, where o is a (possibly, secondary) unary connective of Σ, whenever the logic of A
is so. (Clearly, the logic of any class of matrices is [inferentially ]consistent iff the class contains a consistent [truth-non-empty
]member.)

Remark 2.10. In view of Remark 2.8(i)a), given any class M of Σ-matrices and any non-empty class S of truth-empty Σ-matrices,
the logic of S ∪M is the purely-inferential version of the logic of M. �

Example 2.11. Let A be a two-valued consistent truth-non-empty Σ-matrix and C the logic of A. Then, ≡C is the set of all
Σ-identities true in A, i.e., in V(A), in which case C is self-extensional, while IV(C) = V(A). �

A Σ-matrix A is said to be a model of a Σ-logic C, provided C ⊆ CnωA, the class of all [simple of ]them being denoted by
Mod[∗](C). Next, A is said to be [weakly ]�-conjunctive, where � is a (possibly, secondary) binary connective of Σ, provided
({a, b} ⊆ DA)[⇐] ⇔ ((a �A b) ∈ DA), for all a, b ∈ A, that is, CnωA is [weakly ]�-conjunctive. Then, A is said to be [weakly
]�-disjunctive, whenever {(A) is [weakly ]�-conjunctive.

Given any[ axiomatic] Σ-calculus C, members of Mod(C) , Mod(CnC) are called its models as well. This fits well the above
model-theoretic conventions, according to which, in particular, given a class M of Σ-matrices, M∩Mod(C) is referred to as the
relative equality-free first-order [positive ]Horn model subclass of M relatively axiomatized by C.

Let A and B be two Σ-matrices. A (strict )[surjective ]homomorphism from A [on]to B is any h ∈ hom(A,B) such that[
h[A] = B and] DA ⊆ (=)h−1[DB],([ in which case A/B is said to be a strict surjective homomorphic counterimage/image of
B/A,]) the set of all them being denoted by hom[S]

(S)(A,B). Note that:

(2.3) homS(A,B) = homS({(A), {(B)).

And what is more, we have:

(2.4) (∀h ∈ hom(A,B) : [((img h) = B)⇒](hom(Fmα
Σ,B) ⊇ [=]{h ◦ g|g ∈ hom(Fmα

Σ,A)}),
and so we get:

(∃h ∈ hom[S]
S (A,B))⇒(CnαB ⊆ [=] CnαA),(2.5)

(∃h ∈ homS(A,B))⇒(CnαA(∅) ⊆ CnαB(∅)),(2.6)

for all α ∈ ℘∞\1(ω). Then, A is said to be a [proper ]submatrix of B, whenever ∆A ∈ homS(A,B)[ and A 6= B], in which case
we set (B�A) , A. Injective/bijective strict homomorphisms from A to B are referred to as embeddings/isomorphisms of/from
A into/onto B, in case of existence of which A is said to be embeddable/isomorphic into/to B/, viz., an isomorphic copy of B.

Given a class M of Σ-matrices, the class of all (truth-non-empty )[consistent ]submatrices/isomorphic copies/strict surjective
homomorphic {counter}images of members of M is denoted by (S(∗)

[∗] /I/H
{−1})(M), respectively.

Proposition 2.12. Let M be a class of Σ-matrices and A an axiomatic Σ-calculus. Then, the axiomatic extension of the
logic of M relatively axiomatized by A is defined by S∗(M) ∩Mod(A).

Proof. Put S , (S∗(M) ∩Mod(A)). Consider any (Γ ∪ {ϕ}) ⊆ Fmω
Σ.

First, assume ϕ ∈ CnωM(Γ ∪ SIΣ(A)). Consider any A ∈ S and any h ∈ hom(Fmω
Σ,A) such that Γ ⊆ h−1[DA], in which

case there is some B ∈ M such that A is a submatrix of B, and so h ∈ hom(Fmω
Σ,B) and Γ ⊆ h−1[DB]. Moreover, for every

Σ-substitution σ, (h ◦ σ) ∈ hom(Fmω
Σ,A), in which case SIΣ(A) ⊆ h−1[DA] ⊆ h−1[DB], and so ϕ ∈ h−1[(img h) ∩ DB] ⊆

h−1[A ∩DB] = h−1[DA].
Conversely, assume ϕ 6∈ CnωM(Γ ∪ SIΣ(A)). Then, there are some B ∈ M and some h ∈ hom(Fmω

Σ,B) such that (Γ ∪
SIΣ(A)) ⊆ h−1[DB] 63 ϕ, in which case A , (B�(img h)) is a subalgebra of B, and so A , (B�A) is a submatrix of B,
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h ∈ hom(Fmω
Σ,A) is surjective and (Γ ∪ SIΣ(A)) ⊆ h−1[DB] = h−1[A ∩DB] = h−1[DA] 63 ϕ. Finally, consider any ψ ∈ A and

any g ∈ hom(Fmω
Σ,A). Then, as (img h) = A, by (2.4), there is some Σ-substitution σ such that g = (h ◦ σ), in which case

g(ψ) = h(σ(ψ)) ∈ h[SIΣ(A)] ⊆ DA, and so ψ is true in A. Thus, A, being consistent, for h(ϕ) ∈ (A \DA), belongs to S, as
required. �

Let A be a Σ-matrix. Elements of Con(A) , {θ ∈ Con(A)|θ[DA] ⊆ DA} 3 ∆A are called congruences of A. Given any
∅ 6= Θ ⊆ Con(A) ⊆ Con(A), Tr(

⋃
Θ), being well-known to be a congruence of A, is then easily seen to be a congruence of

A. Therefore, a(A) , (
⋃

Con(A)) ∈ Con(A), in which case this is the greatest congruence of A (it is this fact that justifies
using the symbol a), while Con(A) = {θ ∈ Con(A)|θ ⊆ a(A)}. Then, A is said to be simple, provided a(A) = ∆A. Given
any θ ∈ Con(A[A]), we have the quotient Σ-matrix (A/θ) , 〈A/θ,DA/θ〉, in which case νθ ∈ homS

[S](A,A/θ). The quotient
<(A) , (A/a(A)) is called the reduction of A.

Corollary 2.13. Let A and B be Σ-matrices and h ∈ hom(S)
S (A,B). Then, for every ϑ ∈ Con(B), h−1[ϑ] ∈ {θ ∈ Con(A) |

(kerh) ⊆ θ}(, whereas h[h−1[ϑ]] = ϑ, while, conversely, for every θ ∈ Con(A) such that (kerh) ⊆ θ, h[θ] ∈ Con(B), whereas
h−1[h[θ]] = θ).

Proof. With using Lemma 2.2. First, consider any ϑ ∈ Con(B). Then, the fact that h−1[ϑ][DA] ⊆ DA is by the fact
that ϑ[DB] ⊆ DB, while DA = h−1[DB].( Conversely, consider any θ ∈ Con(A) such that kerh ⊆ θ. Then, the fact that
(h[θ])[DB] ⊆ DB is by the fact that θ[DA] ⊆ DA, while DA = h−1[DB].) �

By Corollary 2.13, we immediately have:

Corollary 2.14. Let A and B be Σ-matrices and h ∈ homS(A,B). Suppose A is simple. Then, h is injective.

Proposition 2.15 (Matrix Homomorphism Theorem). Let A, B and C be Σ-matrices, f ∈ homS
S(A,B) and g ∈ hom(S)

[S] (A, C).
Suppose (ker f) ⊆ (ker g). Then, h , (g ◦ f−1) ∈ hom(S)

[S] (B, C).

Proof. The fact that h ∈ hom(B,C)( and h[B] = C) is well-known due to the Algebra Homomorphism Theorem. Finally, we
also have h−1[DC ] = f [g−1[DC ]][=] ⊇ f [DA] = f [f−1[DB]] = DB, for f [A] = B, as required. �

Proposition 2.16. Let A and B be two Σ-matrices and h ∈ homS
S(A,B). Then, a(A) = h−1[a(B)] and a(B) = h[a(A)].

Proof. As ∆B ∈ Con(B), by Corollary 2.13, we have kerh = h−1[∆B ] ∈ Con(A), and so kerh ⊆ a(A), in which case, by
Corollary 2.13, we get:

h−1[a(B)] ⊆ a(A),
h[h−1[a(B)]] = a(B),

h[a(A)] ⊆ a(B),
h−1[h[a(A)]] = a(A).

These collectively imply the equalities to be proved, as required. �

Since, for any equivalence θ on any set A, it holds that νθ[θ] = ∆A/θ, as an immediate consequence of Proposition 2.16, we
also have:

Corollary 2.17. Let A be a Σ-matrix. Then, <(A) is simple.

Proposition 2.18. Let C be a Σ-logic and M a finite class of finite Σ-matrices. Suppose C if finitely-defined by M. Then, C
is defined by M. In particular, C is inductive.

Proof. In that case, C ′ , CnωM ⊆ C, for C ′ is inductive, while ≡C = ≡C′ . For proving the converse point-wise inclusion, it
suffices to prove that M ⊆ Mod(C). For consider any A ∈ M, any Γ ⊆ Fmω

Σ, any ϕ ∈ C(Γ) and any h ∈ hom(Fmω
Σ,A) such

that h[Γ] ⊆ DA. Then, α , |A| ∈ (℘∞\1(ω)∩ ω). Take any bijection e : Vα → A to be extended to a g ∈ hom(Fmα
Σ,A). Then,

e−1 ◦ (h�Vω) is extended to a Σ-substitution σ, in which case σ(ϕ) ∈ C(σ[Γ]), for C is structural, while σ[Γ∪{ϕ}] ⊆ Fmα
Σ. For

every B ∈ M, we have the equivalence relation θB , {〈a, b〉 ∈ B2 | (a ∈ DB)⇔ (b ∈ DB)} on B, in which case B/θB is finite, for
B is so. Moreover, as both α, M and all members of it are finite, we have the finite set I , {〈h′,B〉 | B ∈ M, h′ ∈ hom(Fmα

Σ,B)},
in which case, for each i ∈ I, we set hi , π0(i), Bi , π1(i) and θi , θBi . Then, by (2.2), we have θ , (≡C′ ∩ EqαΣ) =
(EqαΣ ∩

⋂
i∈I h

−1
i [θi]), in which case, for every i ∈ I, θ ⊆ h−1

i [θi] = ker(νθi
◦ hi), and so gi , (νθi

◦ hi ◦ ν−1
θ ) : (Fmα

Σ /θ) → Bi.
In this way, f , (

∏
i∈I gi) : (Fmα

Σ /θ) → (
∏
i∈I Bi) is injective, for (ker f) = ((Fmα

Σ /θ)
2 ∩

⋂
i∈I(ker gi)) is diagonal. Hence,

Fmα
Σ /θ is finite, for

∏
i∈I Bi is so, and so is (σ[Γ]/θ) ⊆ (Fmα

Σ /θ). For each c ∈ (σ[Γ]/θ), choose any φc ∈ (σ[Γ]∩ν−1
θ [{c}]) 6= ∅.

Put ∆ , {φc | c ∈ (σ[Γ]/θ)} ∈ ℘ω(σ[Γ]). Consider any ψ ∈ σ[Γ]. Then, ∆ 3 φ[ψ]θ ≡C ψ, in which case ψ ∈ C(∆), and so
σ[Γ] ⊆ C(∆). In this way, σ(ϕ) ∈ C(∆) = C ′(∆), for ∆ ∈ ℘ω(Fmω

Σ), so, by (2.2), σ(ϕ) ∈ CnαM(∆) ⊆ CnαA(∆). Moreover,
g[∆] ⊆ g[σ[Γ]] = h[Γ] ⊆ DA, and so h(ϕ) = g(σ(ϕ)) ∈ DA, as required. �

Proposition 2.19. Let M be a class of truth-non-empty Σ-matrices. Then, the logic of M is non-pseudo-axiomatic.

Proof. Consider any ϕ ∈
⋂
k∈ω CnωM(xk), any A ∈ M and any h ∈ hom(Fmω

Σ,A). Then, ϕ ∈ Fmk
Σ, for some k ∈ ω. Choose any

a ∈ DA 6= ∅. Let g ∈ hom(Fmω
Σ,A) extend (h�(Vω \ {xk})) ∪ {〈xk, a〉}. Then, g(xk) = a ∈ DA, and so h(ϕ) = g(ϕ) ∈ DA, as

required. �
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Given a set I and an I-tuple A of Σ-matrices, the Σ-matrix (
∏
i∈I Ai) , 〈

∏
i∈I Ai, A ∩

⋂
i∈I π

−1
i [DAi ]〉 is called the direct

product of A. (As usual, when I = 2, A0 ×A1 stands for the direct product involved. Likewise, if (imgA) ⊆ {A}[ and I = 2],
where A is a Σ-matrix, AI , (

∏
i∈I Ai) is called the direct I-power [square] of A.) Finally, any submatrix B of

∏
i∈I Ai is

referred to as a subdirect product of A, whenever, for each i ∈ I, πi[B] = Ai.

Lemma 2.20 (Subdirect Product Lemma). Let M be a[ finite] class of[ finite] Σ-matrices and A a {truth-non-empty }(simple
) ([ω∩](ω+1))-generated model of the logic of M. Then, there is some strict surjective homomorphism from a subdirect product
of a [finite ]tuple constituted by consistent {truth-non-empty }submatrices of members of M onto <(A) (resp., onto A itself).

Proof. Take any A′ ∈ ℘[ω∩](ω+1)(A) generating A and any a ∈ A 6= ∅, in which case A′′ , (A′ ∪ {a}) ∈ (℘[ω∩](ω+1)(A) \ 1),
and so α , |A′′| ∈ (([ω∩](ω + 1)) \ 1) ⊆ ℘∞\1(ω). Next, take any bijection from Vα onto A′′ to be extended to a surjective
h ∈ hom(Fmα

Σ,A), in which case it is a surjective strict homomorphism from B , 〈Fmα
Σ, X〉, where X , h−1[DA], onto A,

and so, by (2.5), B is a model of the logic of M. Then, applying (2.2) twice, we get CnαM(X) ⊆ CnαB(X) ⊆ X ⊆ CnαM(X).
Furthermore, we have the[ finite] set I , {〈h′,D〉 | h′ ∈ hom(B,D),D ∈ M, (img h′) * DD}, in which case, for every i ∈ I, we
set hi , π0(i), and so Ci , (π1(i)�(img hi)) is a consistent {truth-non-empty }submatrix of π1(i) ∈ M. Clearly, X = CnαM(X) =
(Fmα

Σ ∩
⋂
i∈I h

−1
i [DCi ]). Therefore, g , (

∏
i∈I hi) : Fmα

Σ → (
∏
i∈I Ci) is a strict homomorphism from B to

∏
i∈I Ci such that,

for each i ∈ I, (πi◦g) = hi, in which case πi[g[Fmα
Σ]] = hi[Fmα

Σ] = Ci, and so g is a surjective strict homomorphism from B onto
the subdirect product E , ((

∏
i∈I Ci)�(img g)) of C. Put θ , a(A)(= ∆A) and F , (A/θ). Then, f , (νθ ◦ h) ∈ homS

S(B,F).
Therefore, by Corollaries 2.13, 2.17 and Proposition 2.16, we have (ker g) = g−1[∆E ] ⊆ a(B) = f−1[∆F ] = (ker f), in which
case, by Proposition 2.15, e , (f ◦ h−1) ∈ homS

S(E ,F),( and so (ν−1
θ ◦ e) ∈ homS

S(E ,A),) as required. �

Given a class M of Σ-matrices, the class of all [sub]direct products of tuples( of cardinality ∈ K ⊆ ∞) constituted by
members of M is denoted by P[SD]

(K) (M). Clearly, Mod(C), where C is a Σ-logic, is closed under P.

Corollary 2.21. Let K and M be classes of Σ-matrices, C the logic of M and C ′ an extension of C. Suppose( both M and
all members of it are finite and) [<](PSD

(ω)(S∗(M))) ⊆ K {in particular, [<](S(P(ω)(M))) ⊆ K 〈in particular, K ⊇ M is closed
under both S and P(ω)[ as well as <]〉}. Then, C ′ is (finitely-)defined by S , (Mod[∗](C ′) ∩ K).

Proof. Clearly, C ′ ⊆ CnωS , for S ⊆ Mod(C ′). Conversely, consider any (Γ ∪ {ϕ}) ∈ ℘(ω)(Fmω
Σ), in which case( there is some

α′ ∈ (ω \ 1) such that (Γ ∪ {ϕ}) ⊆ Fmα′

Σ , and so) (Γ ∪ {ϕ}) ⊆ Fmα
Σ, where α , ((α′∩)ω) ∈ ℘∞\1(ω), such that ϕ 6∈ C ′(Γ).

Then, by the structurality of C ′, 〈Fmω
Σ, C

′(Γ)〉 is a model of C ′ {in particular, of C}, and so is its (α+1)-generated submatrix
A , 〈Fmα

Σ, C
′(Γ) ∩ Fmα

Σ〉, in view of (2.5), in which case ϕ 6∈ CnαA(Γ), by the idempotencity of C ′, and so ϕ 6∈ CnωA(Γ), in view
of (2.2). Therefore, by Lemma 2.20, there are some B ∈ PSD

(ω)(S∗(M)), in which case D , [<](B) ∈ [<](PSD
(ω)(S∗(M))) ⊆ K, and

some g ∈ homS
S(B,A/a(A)). Then, by (2.5), CnωD = CnωA, in which case[, by Corollary 2.17,] D ∈ S, and so ϕ 6∈ CnωS (Γ), as

required. �

Given any Σ-logic C and any Σ′ ⊆ Σ, in which case Fmα
Σ ⊆ Fmα

Σ′ and hom(Fmα
Σ′ ,Fmα

Σ′) = {h�Fmα
Σ′ |h ∈ hom(Fmα

Σ,Fmα
Σ),

h[Fmα
Σ′ ] ⊆ Fmα

Σ′}, for all α ∈ ℘∞\1(ω), we have the Σ′-logic C ′, defined by C ′(X) , (Fmω
Σ′ ∩C(X)), for all X ⊆ Fmω

Σ′ , called
the Σ′-fragment of C, in which case C is said to be an expansion of C ′. In that case, given also any class M of Σ-matrices
defining C, in its turn, C ′ is defined by M�Σ′.

As a matter of fact, the above purely-formal definition of paraconsitency appears to be too expansive, because any consistent
non-pseudo-axiomatic/truth-non-empty Σ-logic/-matrix (including the classical one) occurs to be o-paraconsistent, whenever
(ox0) , x0 (less trivial intuitively non-acceptable instances of such an odd ”paraconsistency” are provided by modal logics with
(ox0) , (�x0) and the necessity rule). Intuitively, it is clear that, when dealing with o-paraconsistency of a logic, o must be a
kind of negation for the logic. In its turn, this raises the question: what is negation? Refraining from vain attempts to specify
it completely and irrevocably, we just restrict our consideration by, so to say, subclassical negation. Intuitively, o is viewed
as a subclassical negation for a logic C, whenever the o-fragment of C is a sublogic of the negation fragment of the classical
logic. And what is more, formally speaking, we require refutation of merely most unacceptable oddity rules. Thus, a (possibly,
secondary) unary connective o of Σ is referred to as a subclassical negation for a Σ-logic C, provided:

(2.7) omx0 6∈ C(onx0),

for all m,n ∈ ω such that the integer m − n is odd. This declines the bizarre instances mentioned above, when m = 1 and
n = 0. Nevertheless, we retain the above definition of paraconsistency to prove most strong versions of maximal paraconsistency
results perfectly independent from specifying what is negation.

3. Preliminary key issues

3.1. Congruence and equality determinants. A [binary ]relational Σ-scheme is any ε ⊆ (℘ω(Fm[2∩]ω
Σ ) × Fm[2∩]ω

Σ ), in
which case, given any Σ-matrix A, we set θAε , {〈a, b〉 ∈ A2 | A |= (∀ω\2

∧
ε)[x0/a, x1/b]} ⊆ A2. Note that, given a one more

Σ-matrix B and an h ∈ hom(S)
S (A,B), we have:

(3.1) h−1[θBε ] ⊆ (=)[=]θAε .

A [unary ]unitary relational Σ-scheme is any Υ ⊆ Fm[1∩]ω
Σ , in which case we have the [binary ]relational Σ-scheme εΥ ,

{(υ[x0/xi]) ` (υ[x0/x1−i]) | i ∈ 2, υ ∈ σ1:+1[Υ]} such that θAεΥ , where A is any Σ-matrix, is an equivalence relation on A.
A [binary ]congruence/equality determinant for a class of Σ-matrices M is any [binary ]relational Σ-scheme ε such that, for

each A ∈ M, θAε ∈ Con(A)/ = ∆A, respectively.
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Then, according to [21]/[20], a [unary ]unitary congruence/equality determinant for a class of Σ-matrices M is any [unary
]unitary relational Σ-scheme Υ such that εΥ is a/an congruence/equality determinant for M. (It is unary unitary equality
determinants that are equality determinants in the sense of [20].)

Example 3.1 (cf. [21]). Given any Σ-matrix A, it is routine checking that the equivalence relation θA , θAεFmω
Σ
∈ Con(A).

Moreover, as x0 ∈ Fmω
Σ, we clearly have θA[DA] ⊆ DA. Thus, Fmω

Σ is a unitary congruence determinant for every Σ-matrix. �

Example 3.2 (cf. Example 1 of [20]). {x0} is a unary unitary equality determinant for any consistent truth-non-empty
two-valued matrix. �

Example 3.3. [cf. Example 2 of [20]] Let j ∈ 2, ~k ∈ 22, o a (possibly, secondary) unary connective of Σ and A a Σ-matrix.
Suppose A ⊆ 22, DA = (A ∩ π−1

j [{k1}]) and (oA)−1[DA] = (A ∩ π−1
1−j [{k0}]). Then, Υo , {x0, ox0} is a unary unitary equality

determinant for A. �

Lemma 3.4. Let A be a Σ-matrix and ε a congruence determinant for A. Then, a(A) = θAε . In particular, A is simple,
whenever ε is an equality determinant for it.

Proof. Consider any θ ∈ Con(A) and any 〈a, b〉 ∈ θ. Then, as Con(A) 3 θAε ⊇ ∆A 3 〈a, a〉, we have A |= (∀ω\2
∧
ε)[x0/a, x1/a],

in which case, by the reflexivity of θ, we get A |= (∀ω\2
∧
ε)[x0/a, x1/b], and so 〈a, b〉 ∈ θAε , as required. �

It is remarkable that Proposition 2.16 equally ensues from Lemmas 2.2, 3.4, (3.1) and Example 3.1.

Lemma 3.5. Let M be a class of Σ-matrices, C the logic of M and B ∈ Mod∗(C). Then, B ∈ V(π0[M]).

Proof. Consider any (φ ≈ ψ) ∈ EqωΣ being true in π0[M] and any h ∈ hom(Fmω
Σ,B). Take any ϕ ∈ Fmω

Σ and any
v : Vω\2 → B. Then, there is some k ∈ (ω \ 1) such that (φ ≈ ψ) ∈ EqkΣ. Put ϕ′ , σ1:+k(ϕ). Then, for each
A ∈ M and every g ∈ hom(Fmω

Σ,A), we have g(φ) = g(ψ), in which case g(ϕ′[x0/φ]) = g(ϕ′[x0/ψ]), and so the rules
(ϕ′[x0/φ]) ` (ϕ′[x0/ψ]) and (ϕ′[x0/ψ]) ` (ϕ′[x0/φ]) are true in M, and so in B. Let h′ ∈ hom(Fmω

Σ,B) extend (h�Vk) ∪
[xi+k/v(xi+1)]i∈(ω\1). Then, (σ1:+1(ϕ)[x0/h(φ); v]) = h′(ϕ′[x0/φ]) ∈ DB iff DB 3 h′(ϕ′[x0/ψ]) = (σ1:+1(ϕ)[x0/h(ψ); v]). Thus,
B |= (∀ω\2((σ1:+1(ϕ)[x0/x1]) ↔ σ1:+1(ϕ)))[x0/h(φ), x1/h(ψ)], for all ϕ ∈ Fmω

Σ. Hence, by Example 3.1, we eventually get
〈h(φ), h(ψ)〉 ∈ a(B) = ∆B , as required. �

Lemma 3.6. Let A and B be Σ-matrices, ε a/an congruence/equality determinant for B and h ∈ homS(A,B)/ injective.
Suppose either ε is binary or h[A] = B. Then, ε is a/an congruence/equality determinant for A.

Proof. In that case, by (3.1), we have θAε = h−1[θBε ]. In this way, Corollary 2.13/injectivity of h completes the argument. �

Lemma 3.7. Let A be a Σ-matrix with unary unitary equality determinant Υ, B a submatrix of A and h ∈ homS(B,A).
Then, h is diagonal.

Proof. Consider any a ∈ B and any υ ∈ Υ. Then, (υA(a) ∈ DA) ⇔ (υB(a) ∈ DB) ⇔ (υA(h(a)) ∈ DA). Thus, h(a) = a, as
required. �

3.2. False-singular consistent weakly conjunctive matrices. Given any consistent false-singular Σ-matrix A, the unique
element of A \DA is denoted by `A.

Lemma 3.8. Let � be a (possibly, secondary) binary connective of Σ, A a consistent false-singular weakly �-conjunctive Σ-
matrix, n ∈ ω, B an n-tuple constituted by consistent submatrices of A and C a subdirect product of B. Then, (n×{`A}) ∈ C.

Proof. In case n = 0, we simply have (n× {`A}) = ∅ ∈ C, for C 6= ∅.
Now, assume n 6= ∅. Define a c̄ ∈ Cn as follows. Consider any i ∈ n. Then, as Bi, being a submatrix of the false-

singular matrix A, is consistent, `A ∈ Bi. Therefore, since πi[C] = Bi, there is some ci ∈ C such that πi(ci) = `A. Finally, put
b , (�Cc̄) ∈ C. Then, for each i ∈ I, we have πi(b) = `A, for A is both weakly �-conjunctive and false-singular, as required. �

3.2.1. Classical matrices and logics. Fix any (possibly, secondary) unary o and binary � connectives of Σ.
A Σ-matrix A is said to be o-classical, provided A = {f, t}, DA = {t}, oAt = f and oAf = t, in which case it is two-valued,

truth-non-empty and both consistent and false-singular with `A = f but not o-paraconsistent.
A Σ-logic is said to be o-[sub]classical, whenever it is defined by [resp., has a model being] a o-classical matrix, in which case

o is a subclassical negation for it. Then, a Σ-logic is said to be inferentially o-classical, whenever it is either o-classical or the
purely inferential version of a o-classical Σ-logic.

Lemma 3.9. Let A be a o-classical weakly �-conjunctive Σ-matrix and B a (simple )consistent finitely-generated model of the
logic of A. Then, A is embeddable into <(B) (resp., into B).

Proof. Put E , <(B) (resp., E , B). Then, by Lemma 2.20 with M = {A}, there are some n ∈ ω, some n-tuple C constituted by
consistent submatrices of A, some subdirect product D of C and some g ∈ homS(D, E), in which case, by (2.5), D is consistent,
and so n 6= 0. Then, by Lemma 3.8, D 3 a , (n×{f}), and so D 3 oDa = (n×{t}). Hence, as n 6= 0, e , {〈b, n× {b}〉 | b ∈ A}
is an embedding of A into D, in which case (g ◦ e) ∈ homS(A, E), and so Corollary 2.14, Example 3.2 and Lemma 3.4 complete
the argument. �

Corollary 3.10. Any ∼-classical weakly �-conjunctive logic is maximal.
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Proof. Let A be a ∼-classical weakly �-conjunctive matrix. Consider any consistent extension C ′ of the logic C of A, in
which case x0 6∈ C ′(∅). Then, by the structurality of C ′, 〈Fmω

Σ, C
′(∅)〉 is a model of C ′ (in particular, of C), and so is its

consistent finitely generated submatrix B , 〈Fm1
Σ,Fm1

Σ ∩C ′(∅)〉, in view of (2.5). In this way, (2.5) and Lemma 3.9 complete
the argument. �

Corollary 3.11. Let A and B be ∼-classical weakly �-conjunctive Σ-matrices. Suppose B is a model of the logic of A. Then,
B = A. In particular, A and B are equal, whenever they define same logic.

Proof. In that case, B is both simple, by Example 3.2 and Lemma 3.4, and finite (in particular, finitely generated). Hence, by
Lemma 3.9, there is an embedding e of A into B, in which case (A�∅) = (B�∅) and e ∈ homS(A�∅,B�∅). Then, by Example
3.2 and Lemma 3.7, e is diagonal, and so A = B, for A = B, as required. �

3.3. Disjunctivity. Fix any set A and any δ : A2 → A. Given any X,Y ⊆ A, set δ(X,Y ) , δ[X × Y ]. Then, a Z ⊆ A is
said to be [weakly ]δ-disjunctive, provided, for all a, b ∈ A, it holds that (({a, b} ∩ Z) 6= ∅)⇔ [⇒](δ(a, b) ∈ Z), in which case,
for all X,Y ⊆ A, we have ((X ⊆ Z)|(Y ⊆ Z)) ⇔ [⇒](δ(X,Y ) ⊆ Z). Next, a closure operator C over A is said to be [weakly
]δ-disjunctive, provided, for all a, b ∈ A and every Z ⊆ A, it holds that

(3.2) C(Z ∪ δ(a, b))[⊆] = (C(Z ∪ {a}) ∩ C(Z ∪ {b})),
in which case the following [resp., (3.3) and (3.4) alone, being equivalent to the weak δ-disjunctivity of C] clearly hold, by (3.2)
with Z = ∅:

δ(a, b) ∈ C(a),(3.3)
δ(a, b) ∈ C(b),(3.4)

a ∈ C(δ(a, a)),(3.5)
δ(b, a) ∈ C(δ(a, b)),(3.6)

C(δ(δ(a, b), c)) = C(δ(a, δ(b, c))),(3.7)

for all a, b, c ∈ A.

Lemma 3.12. Let C be a closure operator over A and B a closure basis of imgC. Suppose each element of B is δ-disjunctive.
Then,

(3.8) (C(Z ∪X) ∩ C(Z ∪ Y )) = C(Z ∪ δ(X,Y )),

for all X,Y, Z ⊆ A. In particular, C is δ-disjunctive and the following holds:

(3.9) δ(C(X), a) ⊆ C(δ(X, a)),

for all (X ∪ {a}) ⊆ A.

Proof. First, for all a ∈ A, we have:

(a ∈ C(Z ∪X) ∩ C(Z ∪ Y ))

⇔ ∀W ∈ B : ((((Z ⊆W )&(X ⊆W ))⇒ (a ∈W ))

&(((Z ⊆W )&(Y ⊆W ))⇒ (a ∈W )))

⇔ ∀W ∈ B : (((Z ⊆W )&(X ⊆W |Y ⊆W ))⇒ (a ∈W ))

⇔ ∀W ∈ B : (((Z ⊆W )&(δ(X,Y ) ⊆W ))⇒ (a ∈W ))

⇔ (a ∈ C(Z ∪ δ(X,Y ))),

in which case (3.8) holds, and so immediately does its particular case (3.2). Finally, applying (3.8) with Z = ∅ twice, we also
get δ(C(X), a) ⊆ C(δ(C(X), a)) = (C(C(X))∩C(a)) = (C(X)∩C(a)) = C(δ(X, a)), in which case (3.9) holds, as required. �

Lemma 3.13. Let C be a δ-disjunctive closure operator over A and X ∈ (imgC). Then, X is δ-disjunctive iff it is pair-wise-
meet-irreducible in imgC, and so it is finitely-meet-irreducible in imgC iff it is δ-disjunctive and proper.

Proof. First, assume X is not δ-disjunctive. Then, in view of (3.3) and (3.4), X is weakly δ-disjunctive, so there is some
~a ∈ (A \X)2, in which case, for each i ∈ 2, it holds that X 6= C(X ∪ {ai}) ∈ (imgC), such that δ(~a) ∈ X. Therefore, by (3.2),
we have X = (

⋂
i∈2 C(X ∪ {ai})). Hence, X is not pair-wise-meet-irreducible in imgC.

Conversely, assume X is not pair-wise-meet-irreducible in imgC. Then, there is some ~Y ∈ ((imgC) \ {X})2 such that
X = (

⋂
i∈2 Yi), in which case, for each i ∈ 2, X ( Yi, so there is some ai ∈ (Yi \ X) 6= ∅. In this way, by (3.2), we have

δ(~a) ∈ C(X ∪ δ(~a)) = (
⋂
i∈2 C(X ∪ {ai})) ⊆ (

⋂
i∈2 Yi) = X. Thus, X is not δ-disjunctive, as required. �

3.3.1. Disjunctive logics and matrices. Fix any (possibly, secondary) binary connective Y of Σ.

Remark 3.14. In view of (2.3) and (2.5), given two Σ-matrices A and B such that there is a [surjective ]strict homomorphism
from A [on]to B, A is (weakly )Y-disjunctive if[f] B is so. �

Corollary 3.15. Let I be a finite set, A an I-tuple of Y-disjunctive Σ-matrices and B a consistent Y-disjunctive subdirect
product of A. Then, (πi�B) ∈ homS

S(B,Ai), for some i ∈ I.

Proof. Then, by Remark 3.14, B , {B ∩ π−1
i [DAi ] | i ∈ I} is a finite set of YB-disjunctive subsets of B. Let C be the closure

operator over B dual to the closure system with basis B. Then, DB = (B ∩
⋂

B) ∈ (imgC) is both YB-disjunctive and proper.
Hence, by Lemmas 3.12 and 3.13, DB ∈ B, as required. �
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Corollary 3.16. Let α ∈ ℘∞\1(ω) and M a class of [non-]weakly Y-disjunctive Σ-matrices. Then, CnαM is [non-]weakly
Y-disjunctive[ and holds (3.9)].

Proof. The ”weak” case is evident.[ Conversely, for each A ∈ M and every h ∈ hom(Fmα
Σ,A), h−1[DA] is Y-disjunctive, by

Remark 3.14. Then, Lemma 3.12 completes the argument.] �

Corollary 3.17. Let A be a false-singular Σ-matrix and C the logic of A. Then, the following are equivalent:
(i) C is [non-]weakly Y-disjunctive;
(ii) A is [non-]weakly Y-disjunctive;
(iii) C holds both (3.3) and (3.4) [as well as (3.5)].

Proof. First, (ii)⇒(i) is by Corollary 3.16. Next, (iii) is a particular case of (i). Finally, assume (iii) holds. Consider any
a, b ∈ A. In case (a/b) ∈ DA, by (3.3)/(3.4), we have (a YA b) ∈ DA.[ Now, assume ({a, b} ∩DA) = ∅. Then, DA 63 a = b.
Therefore, by (3.5), we get DA 63 (a YA a) = (a YA b).] Thus, (ii) holds, as required. �

Corollary 3.18. Let C be an inductive Σ-logic. Then, the following are equivalent:
(i) C is Y-disjunctive;
(ii) imgC has a basis consisting of Y-disjunctive sets;
(iii) (3.3), (3.5), (3.6) and (3.9) hold;
(iv) (3.3), (3.5), (3.6) hold and, for any axiomatization C of C, every (Γ ` φ) ∈ SIΣ(C) and each ψ ∈ Fmω

Σ, it holds that
(φ Y ψ) ∈ C(Γ Y ψ).

Proof. First, (i)⇒(ii) is by Remark 2.1 and Lemma 3.13. Next, (ii)⇒(iii) is by Lemma 3.12. Further, (iv) is a particular case
of (iii). Then, the converse is proved by induction on the length of C-derivations. Finally, assume (iii) holds, in which case
(3.4) holds by (3.3) and (3.6), and so does the inclusion from left to right in (3.2), by (3.3) and (3.4). Conversely, consider any
ϕ ∈ (C(Z ∪ {φ}) ∩ C(Z ∪ {ψ})). Then, by (3.3), (3.6) and (3.9), we have (ψ Y ϕ) ∈ C(Z ∪ {φ Y ψ}). Likewise, by (3.3), (3.5)
and (3.9), we also have ϕ ∈ C(Z ∪ {ψ Y ϕ}). Hence, we eventually get ϕ ∈ C(Z ∪ {φ Y ψ}), in which case (3.2) holds, and so
does (i), as required. �

Corollary 3.19. Any axiomatic extension of an inductive Y-disjunctive Σ-logic is Y-disjunctive.

Proof. By Corollary 3.18(i)⇔(iv) and (3.3). �

3.3.1.1. Disjunctive extensions of logics defined by finite classes of finite disjunctive matrices. Given a Σ-rule Γ ` φ and a
Σ-formula ψ, put ((Γ ` φ) Y ψ) , ((Γ Y ψ) ` (φ Y ψ)). (This notation is naturally extended to Σ-calculi member-wise.)

Lemma 3.20. Let Γ ` φ be a Σ-rule and A a Y-disjunctive Σ-matrix. Then, A ∈ Mod(σ+1(Γ ` φ) Y x0) iff A ∈ Mod(Γ ` φ).

Proof. The ”if” part is by the strucuturality of CnωA and Corollary 3.16(3.9). Conversely, assume A ∈ Mod(σ+1(Γ ` φ) Y x0).
Consider any h ∈ hom(Fmω,A) such that h(φ) 6∈ DA. Let g ∈ hom(Fmω,A) extend [x0/h(φ);xi+1/h(xi)]i∈ω, in which case
(g ◦ σ+1) = h, and so, by the Y-disjunctivity of A, we have g(σ+1(φ) Y x0) = (h(φ) YA h(φ)) 6∈ DA. Hence, there is some ψ ∈ Γ
such that (h(ψ) YA h(φ)) = g(σ+1(ψ) Y x0) 6∈ DA, in which case, by the Y-disjunctivity of A, we eventually get h(ψ) 6∈ DA,
and so A ∈ Mod(Γ ` φ), as required. �

Theorem 3.21. Let M be a finite class of finite Y-disjunctive matrices, C the logic of M and K[∗] , S[∗]
∗ (M). Then, the

following hold:
(i) the mappings

C ′ 7→ (Mod(C ′) ∩ K[∗]),
S 7→ CnωS .

are inverse to one another dual isomorphisms between the lattice of all Y-disjunctive [non-pseudo-axiomatic ]extensions
of C and that of all relative equality-free first-order universal Horn model subclasses of K[∗];

(ii) for any Σ-calculus C, the following hold:
a) the extension of C relatively axiomatized by C, being Y-disjunctive [and non-pseudo-axiomatic], corresponds to the

relative equality-free first-order universal Horn model subclass of K[∗] relatively axiomatized by C;
b) [providing (C ∩ Fmω

Σ) 6= ∅, ]the relative equality-free universal fitst-order Horn model subclass of K[∗] relatively
axiomatized by C corresponds to the Y-disjunctive [non-pseudo-axiomatic ]extension of C relatively axiomatized by
(C ∩ Fmω

Σ) ∪ (σ+1[C \ Fmω
Σ] Y x0);

(iii) [providing every member of M is truth-non-empty, ]relative equality-free first-order universal positive Horn model
subclasses of K[∗] correspond exactly to [non-pseudo-axiomatic ]axiomatic extensions of C, corresponding objects having
same axiomatic relative axiomatizations;

(iv) for any C ⊆ K[∗], S[∗]
∗ (C), being a relative equality-free first-order universal Horn model subclass of K[∗], corresponds

to the logic of C.
In particular, Y-disjunctive extensions of C are inductive.

Proof. (i) First, the fact that (Mod(CnωS ) ∩ K[∗]) = S, where S is a relative equality-free first-order universal Horn model
subclass of K[∗], is immediate, while the fact that CnωS is a Y-disjunctive[ and non-pseudo-axiomatic] extension of C is
by (2.5), Remark 3.14 and Corollary 3.16[ as well as Proposition 2.19]. Now, consider any Y-disjunctive [non-pseudo-
axiomatic ]extension C ′ of C. Then, we have the inductive Y-disjunctive [non-pseudo-axiomatic ]extension C ′′ of C (for
C is inductive) defined as follows: for every Z ⊆ Fmω

Σ, put C ′′(Z) , (
⋃
C ′[℘ω(Z)]). Consider any Σ-rule Γ ` ϕ such
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that ϕ 6∈ C ′′(Γ)[ and Γ 6= ∅]. Then, by Corollary 3.18(i)⇒(ii), there is some Y-disjunctive X ∈ (imgC ′′) ⊆ (imgC)
such that Γ ⊆ X 63 ϕ. Moreover, as Γ is finite, there is some α ∈ (ω \ 1) ⊆ ℘∞\1(ω) such that (Γ ∪ {ϕ}) ⊆ Fmα

Σ,
in which case, in view of (2.2), Γ ⊆ Y , (X ∩ Fmα

Σ) ∈ (img CnαM) is both Y-disjunctive[, non-empty] and proper, for
ϕ ∈ (Fmα

Σ \Y ). Furthermore, by the structurality of C ′′, 〈Fmω
Σ, X〉 is a model of C ′′, and so is its consistent [truth-

non-empty ]submatrix D , 〈Fmα
Σ, Y 〉, in view of (2.5). On the other hand, by Corollary 3.16, CnαM is Y-disjunctive.

Hence, by Lemma 3.13, Y is finitely-meet-irreducible in img CnαM. And what is more, since both α, M and all members
of M are finite, B , {h−1[DA] | A ∈ M, h ∈ hom(Fmα

Σ,A)} is a finite basis of img CnαM. Therefore, Y ∈ B, in which
case there are some A ∈ M and some h ∈ hom(Fmα

Σ,A) such that Y = h−1[DA], and so h is a surjective strict
homomorphism from D onto B , (A�(img h)). In this way, by (2.5), B is a consistent [truth-non-empty ]model of C ′′.
Finally, as Γ ⊆ Y = h−1[DB] 63 ϕ, we conclude that Γ ` ϕ is not true in B ∈ S , (Mod(C ′′) ∩ K[∗]) under h. Thus,
since both S and all members of it are finite, in which case C ′′′ , CnωS is inductive[ and non-pseudo-axiomatic, by
Proposition 2.19], and so C ′′ = C ′′′, by Proposition 2.18, we eventually get C ′ = C ′′′ = C ′′, as required, for, in that
case, C ′, being inductive, is axiomatized by a Σ-calculus.

(ii) Consider any Σ-calculus C. Then:
a) is immediate, in view of (2.5), due to which K ⊆ Mod(C).
b) Let C ′ be the extension of C relatively axiomatized by C′ , ((C ∩ Fmω

Σ) ∪ (σ+1[C \ Fmω
Σ] Y x0)). Then, C being

inductive, is axiomatized by a Σ-calculus C′′, in which case C ′ is axiomatized by C′′ ∪ C′, and so is inductive.
Moreover, by Corollary 3.16, C is Y-disjunctive, in which case C ′, being an extension of C, inherits (3.3), (3.5),
(3.6) and (3.7) held by C. Then, we prove the Y-disjunctivity of C ′ with applying Corollary 3.18(i)⇔(iv) to both
C and C ′. For consider any Σ-substitution σ and any ψ ∈ Fmω

Σ. First, consider any φ ∈ (C ∩ Fmω
Σ). Then, by the

structurality of C ′ and (3.3), we have (σ(φ) Y ψ) ∈ C ′(∅). Now, consider any (Γ ` φ) ∈ (C \ Fmω
Σ). Let ς be the

Σ-substitution extending (σ�(Vω \V1))∪[x0/(σ(x0)Yψ)], in which case (ς ◦σ+1) = (σ◦σ+1), and so, by (3.7) and the
structurality of C ′, we eventually get (σ[σ+1[Γ]Yx0]Yψ) = ((ς[σ+1[Γ]]Yσ(x0))Yψ) `C′ (ς[σ+1[Γ]]Y (σ(x0)Yψ)) =
ς[σ+1[Γ] Y x0] `C′ ς(σ+1(ϕ) Y x0) = (ς(σ+1(ϕ)) Y (σ(x0) Yψ)) `C′ ((ς(σ+1(ϕ)) Y σ(x0)) Yψ) = (σ(σ+1(ϕ) Y x0) Yψ).
In this way, C ′ is disjunctive.[ And what is more, since (C ∩ Fmω

Σ) 6= ∅, C ′ is not purely inferential, and so is
non-pseudo-axiomatic.] Then, a) and Lemma 3.20 complete the argument.

(iii) is by (ii) and Corollary 3.19[ as well as Proposition 2.19, due to which C, being the axiomatic extension of C relatively
axiomatized by ∅, is non-pseudo-axiomatic].

(iv) is by (2.5). �

As it is demonstrated by Theorem 4.44 below, (C ∩ Fmω
Σ) ∪ (σ+1[C \ Fmω

Σ] Y x0) cannot be replaced by C in the item (ii)b)
of Theorem 3.21, and so the reservations ”positive” and ”axiomatic” cannot be omitted in its item (iii).

Lemma 3.22. Let M be a finite class of finite Y-disjunctive matrices, C the logic of M and A a (simple )consistent{
truth-non-empty} finitely-generated Y-disjunctive model of C.([ Suppose every member of S{∗}∗ (M) is simple.]) Then, A ∈
H−1(H(H−1(S{∗}∗ (M)))) (resp., A ∈ H(H−1(S{∗}∗ (M))) [resp., A ∈ I(S{∗}∗ (M))]). In particular, A ∈ S{∗}∗ (M), whenever
(M ∪ {A}) ⊆ S(B), where B is any Σ-matrix with unary unitary equality determinant.

Proof. Set D , <(A) (resp., D , A). Then, by Lemma 2.20, there are some finite set I, some C ∈ S{∗}∗ (M)I , in which case,
by Remark 3.14, every member of img C is Y-disjunctive, some subdirect product E of C and some g ∈ homS

S(E ,D), in which
case, by (2.5) and Remark 3.14, E is consistent and Y-disjunctive, and so, by Corollary 3.15, there is some i ∈ I such that
h , (πi�D) ∈ homS

S(E , Ci).([ Moreover, in that case, by Proposition 2.16, we have (ker g) = a(E) = (kerh). Therefore, by
Proposition 2.15, h◦g−1 is an isomorphism from D = A onto Ci.]) Finally, Lemmas 3.4, 3.6 and 3.7 complete the argument. �

By (2.5), Remark 3.14 and Lemma 3.22, we immediately have:

Corollary 3.23. Let M and K[∗] be as in Theorem 3.21, S ⊆ K[∗] and C ′ the logic of S.( Suppose M = {A}, where A is a
Σ-matrix with unary unitary equality determinant.) Then, (Mod(C ′) ∩ K[∗]) = (H−1(H(H−1(S[∗]

∗ (S)))) ∩ K[∗])(= (S[∗]
∗ (S))).

Theorem 3.24. Let M, C and K[∗] be as in Theorem 3.21.( Suppose M = {A}, where A is a Σ-matrix with unary unitary
equality determinant.) Then, the set of all relative first-order equality-free Horn model subclasses of K[∗] is a closure system
over K[∗]. Moreover, for any S ⊆ K[∗], the logic of S is the Y-disjunctive [non-pseudo-axiomatic ]extension of C corresponding
to (H−1(H(H−1(S[∗]

∗ (S))))∩K[∗])(= S[∗]
∗ (S)). In particular, the complete lattice joins of the closure system involved are exactly

unions, in which case the lattice under consideration is distributive, and so is that of all Y-disjunctive [non-pseudo-axiomatic
]extensions of C.( Moreover, relative first-order equality-free Horn model subclasses of K[∗] are exactly lower cones of it, under
identification of its members with carriers of their underlying algebras.)

Proof. We use (2.5), Remark 3.14, Corollaries 3.16, 3.23 and Theorem 3.21[ as well as Proposition 2.19] tacitly. Consider any set
I and any I-tuple C, constituted by Σ-calculi. For every i ∈ I, put Si , (Mod(Ci)∩K[∗]) and Ci , CnωSi

. Then, we clearly have
(Mod(

⋃
i∈I Ci)∩K[∗]) = (K[∗]∩

⋂
i∈I Si). And what is more, the logic C ′ of S , (

⋃
i∈I Si) ⊆ K[∗] is a Y-disjunctive [non-pseudo-

axiomatic ]extension of C and is equal to
⋂
i∈I Ci, in which case it is the meet of {Ci | i ∈ I} in the lattice of all Y-disjunctive

[non-pseudo-axiomatic ]extensions of C, and so the join of {Si | i ∈ I} is equal to (Mod(C ′)∩K[∗]) = (H−1(H(H−1(S[∗]
∗ (S))))∩

K[∗]) = (K[∗] ∩
⋃
i∈I H−1(H(H−1(S[∗]

∗ (Si))))) = (
⋃
i∈I(H

−1(H(H−1(S[∗]
∗ (Si)))) ∩ K[∗])) = (

⋃
i∈I(Mod(Ci) ∩ K[∗])) = (

⋃
i∈I Si),

as required. �
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3.4. Distributive and De Morgan lattices. Let Σ+
[01] , ({∧,∨}[∪{⊥,>}]) be the [bounded ]lattice signature with binary

∧ (conjunction) and ∨ (disjunction)[ and nullary ⊥ and > (falsehood/zero and truth/unit constants, respectively)].

Lemma 3.25. Let A and B be lattices, a a unit/zero of A, b a unit/zero of B and h ∈ hom(A,B). Suppose h[A] = B.
Then, h(a) = b.

Proof. Then, there is some c ∈ A such that h(c) = b, in which case (a(∨/∧)Ac) = a, and so h(a) = (h(a)(∨/∧)Bb) = b, as
required. �

Given any Σ ⊇ Σ+, φ / ψ is used as an abbreviation for (φ ∧ ψ) ≈ φ, where φ, ψ ∈ Fmω
Σ. Then, any Σ-algebra A such that

A�Σ+ is a lattice is well-known to be congruence-distributive (cf., e.g., Example 2 on p. 12 of [10]), the partial ordering of
A�Σ+ being denoted by 6A.

Given any n ∈ (ω \ 1), by Dn[,01] we denote the [bounded] distributive lattice given by the chain n, viz., the Σ+
[01]-algebra

with carrier n such that (∧/∨)Dn , ((min /max)�n2)[ and (⊥/>)Dn , (0/(n− 1))].
Here, we deal with the signature Σ0[1] , (Σ+

[01] ∪ {∼}) with unary ∼ (weak negation).
A [bounded ]De Morgan lattice (cf. [2], [16], [17]) is any Σ0[1]-algebra A such that A�Σ+

[01] is a [bounded ]distributive lattice
(cf. [2]) and the following Σ0-identities are true in A:

∼∼x0 ≈ x0,(3.10)
∼(x0 ∨ x1) ≈ ∼x0 ∧ ∼x1,(3.11)
∼(x0 ∧ x1) ≈ ∼x0 ∨ ∼x1,(3.12)

the variety of all them being denoted by [B]DML. Then, a [bounded ]Kleene lattice is any [bounded ]De Morgan lattice satisfying
the Σ0-identity:

(3.13) (x0 ∧ ∼x0) / (x1 ∨ ∼x1),

the variety of all them being denoted by [B]KL. Next, a [bounded ]Boolean lattice is any [bounded ]De Morgan lattice satisfying
the Σ0-identity:

(3.14) x0 / (x1 ∨ ∼x1),

the variety of all them being denoted by [B]BL ⊆ [B]KL.3

By DM4[,01] we denote the [bounded ]De Morgan lattice such that (DM4[,01]�Σ+
[01]) , D2

2[,01] and ∼DM4[,01]~a , 〈1−a1−i〉i∈2,
for all ~a ∈ 22.

Remark 3.26. Since any non-empty proper prime filter of D2
2[,01] contains t but not f, and so contains b iff it does not contain

n, Fj , (22 ∩ π−1
j [{1}]), where j ∈ 2, are exactly all non-empty proper prime filters of D2

2[,01], in which case 〈DM4[,01], Fj〉
is both ∧-conjunctive and ∨-disjunctive, while, by Example 3.3 with ~k = ∆2 and o = ∼, we see that Υ∼ is a unary unitary
equality determinant for it. �

Recall also the following rather well-known (within Universal Algebra) fact:

Lemma 3.27. Let B be a subalgebra of DM4. Then, Con(B) ⊆ {∆B , B
2}. In particular, B is simple iff |B| > 1.

Proof. Consider any θ ∈ (Con(B) \ {∆B}). Take any ~a ∈ (θ \∆B) 6= ∅. Consider the following exhaustive cases:
(1) img~a ⊆ {f, t}.

Then, img~a = {f, t}, for a0 6= a1, and so f θ t.
(2) img~a ⊆ {n, b}.

Then, img~a = {n, b}, for a0 6= a1, in which case n θ b, and so f = (n ∧B b) θ (n ∧B n) = n = (n ∨B n) θ (n ∨B b) = t.
(3) ai ∈ {f, t}, while a1−i ∈ {b, n}, for some i ∈ 2.

Then, ai θ a1−i = ∼Ba1−i θ ∼Bai, and so f θ t, because ∼B〈j, j〉 = 〈1− j, 1− j〉, for all j ∈ 2.
Thus, in any case, we have f θ t. Therefore, for every c ∈ B, we get c = (f ∨B c) θ (t∨B c) = t. Hence, θ = B2, as required. �

Given any n ∈ (ω \ 1), by Kn[,01] we denote the chain [bounded ]Kleene lattice such that (Kn[,01]�Σ+
[01]) , Dn[,01] and

∼Kn[,01]i , (n−1−i), for all i ∈ n, K2[,01] being a [bounded ]Boolean lattice. Then, en , {〈0, 0〉, 〈1, n− 1〉} ∈ hom(K2[,01],Kn[,01])
is injective. Moreover, for any n ∈ (ω \ 3), ~n , ({〈0, 0〉, 〈n− 1, 2〉} ∪ (((n− 1) \ 1)× {1})) ∈ hom(Kn[,01],K3[,01]) is surjective.
Finally, for any i ∈ 2, e3,i , {〈0, f〉, 〈2, t〉, 〈1, 〈i, 1− i〉〉} ∈ hom(K3[,01],DM4[,01]) is injective.

4. Four-valued expansions of Belnap’s logic

Fix any language Σ ⊇ Σ0[1] such that either Σ ⊇ Σ01 or (Σ∩Σ01) = Σ0 and any Σ-algebra A such that (A�Σ0[1]) = DM4[,01].
Put A , 〈A, 22 ∩ π−1

0 [{1}]〉,
←−
A , 〈A, 22 ∩ π−1

1 [{1}]〉 and
−→
A , 〈A, {t}〉. Since [bounded ]Belnap’s four-valued logic (cf. [3]),

denoted by C[B]B from now on, is defined by DM4[,01] , (A�Σ0[1]) (cf. [13]),4 the logic C of A is a four-valued expansion of
C[B]B. We start our study from marking its framework.

3According to [2], ”Boolean/Kleene/De Morgan algebra” traditionally stands for ”bounded Boolean/Kleene/De Morgan lattice”.
4This equally ensues from Theorem 4.56(x)⇒(v) below, (2.5), the ∧-conjuctivity (cf. Remark 3.26 with j = 0) and the finiteness (and so the

inductivity of the logic) of DM4[,01] as well as the fact that DM4�{n} is truth-empty, while µ ∈ hom(DM4[,01], DM4[,01]).
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4.1. Characteristic matrix expansions.

Lemma 4.1. Let Σ′ be an algebraic signature, o a (possibly, secondary) unary connective of Σ′, A′ a Σ′-matrix, I a set,
D an I-tuple constituted by submatrices of A′, E a submatrix of

∏
i∈I Di and a ∈ DE . Suppose oEa ∈ DE . Then, a ∈

(DA
′ ∩ (oA′

)
−1

[DA
′
])I .

Proof. Then, for each i ∈ I, both πi(a) ∈ DA
′
and oA′

πi(a) = πi(oEa) ∈ DA
′
, as required. �

Next, a subalgebra B of A is said to be regular, provided, for every ς ∈ Σ of arity m ∈ ω, ςB : Bm → B is regular, i.e.,
monotonic with respect to the information partial ordering v on A defined by (~a v ~b) def⇐⇒ ((a0 6 b0)&(b1 6 a1)), for all
~a,~b ∈ A, in the sense that, for all ā, b̄ ∈ Bm, ςB(ā) v ςB(b̄), whenever ai v bi, for each i ∈ m. (Clearly, every subalgebra
of DM4[,01] is regular.) Likewise, B is said to be b-idempotent, where b ∈ B, provided, for every ς ∈ Σ of arity m ∈ ω,
ςB : Bm → B is b-idempotent in the sense that ςB(m× {b}) = b. (Clearly, B is b-idempotent iff {b} forms a subalgebra of it.)
Finally, B is said to be specular, whenever (µ�B) ∈ hom(B,A). (Clearly, DM4[,01] is specular.)

Lemma 4.2. Let I be a set, C ∈ S(A)I , B a Σ-matrix and e an embedding of B into
∏
i∈I Ci. Suppose {f, b, t} forms a

subalgebra of A, {I × {a} | a ∈ {f, t}} ⊆ e[B] and, for each i ∈ I, {f, b, t} ∪ Ci forms a regular subalgebra of A and either
n 6∈ Ci or A�{f, b, t} is specular. Then, (B u 2) , ((B × {b}) ∪ {〈e−1(I × {f}), f〉, 〈e−1(I × {t}), t〉}) forms a subalgebra of
B × (A�{f, b, t}), in which case π0�(B u 2) is a surjective strict homomorphism from (B u 2) , ((B × (A�{f, b, t}))�(B u 2))
onto B.

Proof. Consider any ς ∈ Σ of arity n ∈ ω and any b̄ ∈ (B u 2)n. In case ςA(ā) = b, where ā , (π1 ◦ b̄), we clearly
have ςB×A(b̄) ∈ (B × {b}) ⊆ (B u 2). Otherwise, since {f, b, t} forms a subalgebra of A, we have ςA(ā) ∈ {f, t}. Put
N , {k ∈ n | ak = b}. Consider any i ∈ I. Put c̄ , (πi ◦ e ◦ π0 ◦ b̄). Then, for every j ∈ (n \ N), it holds that
Ci 3 cj = aj ∈ {f, t}. Hence, cj v aj , for all j ∈ n. Therefore, by the regularity of A�({f, b, t} ∪ Ci), we have ςA(c̄) v ςA(ā).
Consider the following complementary cases:

(1) n ∈ Ci.
Then, Ci 3 µ(aj) v cj , for all j ∈ n. Therefore, as, in that case, A�{f, b, t} is specular, by the regularity of
A�({f, b, t} ∪ Ci), we have ςA(ā) = µ(ςA(ā)) = ςA(µ ◦ ā) v ςA(c̄), and so we get ςA(c̄) = ςA(ā).

(2) n 6∈ Ci.
Then, ςA(c̄) ∈ Ci ⊆ {f, b, t}. Therefore, since both f and t are minimal elements of the poset {f, b, t} ordered by v, we
get ςA(c̄) = ςA(ā).

Thus, in any case, we have ςA(c̄) = ςA(ā). and so, by the injectivity of e, we get ςB×A(b̄) ∈ {〈e−1(I × {f}), f〉, 〈e−1(I × {t}), t〉}
⊆ (B u 2), as required. �

Lemma 4.3. Let B be a model of C. Suppose either A is b-idempotent or both A is regular and {f, b, t} forms a specular
subalgebra of A (in particular, Σ = Σ0[1]), while B is not a model of the rule:

(4.1) {x0,∼x0} ` (x1 ∨ ∼x1).

Then, there is some submatrix D of B such that A is isomorphic to <(D).

Proof. In that case, there are some a, b ∈ B such that (4.1) is not true in B under [x0/a, x1/b]. Then, in view of (2.5), the
submatrix E of B generated by {a, b} is a finitely-generated model of C, in which (4.1) is not true under [x0/a, x1/b]. Hence,
by Lemma 2.20 with M = {A}, there are some set J , some J-tuple C constituted by submatrices of A, some subdirect product
F of C, in which case (F�Σ0) ∈ DML, for DML 3 DM4 is a variety, and some g ∈ homS

S(F ,<(E)), in which case, by (2.5), F
is a model of C, in which case it is ∧-conjunctive, for A is so (cf. Remark 3.26 with j = 0), but is not a model of (4.1), in
which case there are some c, d ∈ F such that {c,∼Fc} ⊆ DF 63 d >F ∼Fd. Then, by Lemma 4.1, c = (I × {b}), in which case
∼Fc = c, and so (F \DF ) 3 e , ((c∧F d)∨F ∼Fd) = ∼Fe 6F d. Hence, e ∈ {b, n}J , while K , {i ∈ J | πi(e) = n} 6= ∅. Given
any ā ∈ A2, set (a0|a1) , ((K × {a0}) ∪ ((J \K)× {a1})). In this way, we have:

F 3 c = (b|b),(4.2)

F 3 e = (n|b),(4.3)

F 3 (c ∧F e) = (f|b),(4.4)

F 3 (c ∨F e) = (t|b).(4.5)

Consider the following complementary cases:
(1) either A is b-idempotent or K = J .

Then, f , {〈x, (x|b)〉 | x ∈ A} is an embedding of A into F , in which case g′ , (g ◦ f) ∈ homS(A,<(E)), and so, by
Corollary 2.14, Lemma 3.4 and Remark 3.26 with j = 0, g′ is injective. In this way, g′ is an isomorphism from A onto
the submatrix G , (<(E)�(img g′)) of <(E), and so h , g′

−1 ∈ homS
S(G,A).

(2) A is not b-idempotent and K 6= J .
Then, there is some ϕ ∈ Fm1

Σ such that ϕA(b) 6= b, in which case φA(b) = f and ψA(b) = t, where φ , (x0 ∧ (ϕ∧∼ϕ))
and ψ , (x0 ∨ (ϕ ∨ ∼ϕ)), and so, by (4.2), we get:

F 3 φF(c) = (f|f),(4.6)

F 3 ψF(c) = (t|t).(4.7)
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Moreover, in that case, both A is regular and {f, b, t} forms a specular subalgebra of A. And what is more, e′ , {〈a′, 〈a′〉〉
is an embedding of A into A1 such that {1× {x} | x ∈ {f, t}} = e′[{f, t}] ⊆ e′[A]. In this way, Lemma 4.2 with I = 1
and both A and e′ instead of B and e, respectively, used tacitly throughout the rest of the proof, is well-applicable to A.
Then, since K 6= ∅ 6= (J \K), by (4.2), (4.3), (4.4), (4.5), (4.6) and (4.7), we see that f , {〈〈x, y〉, (x|y)〉 | 〈x, y〉 ∈ (Au
2)} is an embedding of H , (Au2) into F , while h′ , (π0�(Au2)) ∈ homS

S(H,A). Then, g′ , (g◦f) ∈ homS(H,<(E)),
and so g′ is a surjective strict homomorphism from H onto the submatrix G , (<(E)�(img g′)) of <(E). And what is
more, by Lemma 3.4 and Remark 3.26 with j = 0, A is simple. Hence, by Corollary 2.13 and Proposition 2.16, we get
(ker g′) ⊆ a(H) = (kerh′). Therefore, by Proposition 2.15, h , (h′ ◦ g′−1) ∈ homS

S(G,A).
Thus, in any case, there are some submatrix G of E/θ, where θ , a(E), and some h ∈ homS

S(G,A). Then, D , (E�ν−1
θ [G]),

being a submatrix of E , is so of B, in which case h′′ , (νθ�D) ∈ homS(D,G) is surjective, and so is h′′′ , (h◦h′′) ∈ homS(D,A).
On the other hand, by Lemma 3.4 and Remark 3.26 with j = 0, A is simple. Hence, by Proposition 2.16, ϑ , a(D) = (kerh′′′).
Therefore, by Proposition 2.15, νϑ ◦ h′′′−1 is an isomorphism from A onto <(D), as required. �

Corollary 4.4. Let C ′ be an extension of C. Suppose either A is b-idempotent or both A is regular and {f, b, t} forms a
specular subalgebra of A (in particular, Σ = Σ0[1]), while the rule (4.1) is not satisfied in C ′. Then, C ′ = C.

Proof. In that case, ∼(x1 ∨∼x1) 6∈ T , C ′({x0,∼x0}), so, by the structurality of C ′, 〈Fmω
Σ, T 〉 is a model of C ′ (in particular,

of C) not being a model of (4.1). In this way, (2.5) and Lemma 4.3 complete the argument. �

Proposition 4.5. Let M be a class of Σ-matrices. Suppose either A is b-idempotent or both A is regular and {f, b, t} forms a
specular subalgebra of A (in particular, Σ = Σ0[1]), while C is defined by M. Then, there are some B ∈ M and some submatrix
D of B such that A is isomorphic to <(D).

Proof. Note that the rule (4.1) is not satisfied in C, because it is not true in A under [x0/b, x1/n]. Therefore, as C is defined
by M, there is some B ∈ M ⊆ Mod(C) not being a model of (4.1), in which case Lemma 4.3 completes the argument. �

Now, we are in a position to argue several interesting corollaries of Proposition 4.5:

Corollary 4.6. Let M be a class of Σ-matrices. Suppose the logic of M is an expansion of CB (in particular, Σ = Σ0 and
the logic of M is CB itself). Then, some B ∈ M is not truth-/false-singular. In particular, any four-valued expansion of CB

(including CB itself) is defined by no truth-/false-singular matrix.

Proof. By contradiction. For suppose every member of M is truth-/false-singular. Then, M�Σ0 is a class of truth-/false-singular
Σ0-matrices defining CB. Then, by Proposition 4.5, there are some B ∈ (M�Σ0) and some submatrix D of B such that DM4

is isomorphic to E , (D/θ), where θ , a(D), in which case E is truth-/false-singular, for D is so, because B is so/, while
((D/θ) \ (DD/θ)) ⊆ ((D \DD)/θ), and so is DM4. This contradiction completes the argument. �

Corollary 4.7. Any four-valued Σ0[1]-matrix B defining C[B]B is isomorphic to DM4[,01].

Proof. By Proposition 4.5, there are then some submatrix D of B and some isomorphism e from DM4[,01] onto D/θ, where
θ , a(D), in which case 4 = |DM4[,01]| = |D/θ| 6 |D| 6 |B| = 4, in which case 4 = |D/θ| = |D| = |B|, and so νθ is injective,
whereas D = B. In this way, e−1 ◦ νθ is an isomorphism from B onto DM4[,01], as required. �

This, in its turn, enables us to prove:

Theorem 4.8. Any four-valued expansion of C[B]B is defined by an expansion of DM4[,01].

Proof. Let B be a four-valued Σ-matrix defining an expansion of C[B]B. Then, B�Σ0[1] is a four-valued Σ0[1]-matrix defining
C[B]B itself. Hence, by Corollary 4.7, there is an isomorphism e from B�Σ0[1] onto DM4[,01]. In that case, e is an isomorphism
from B onto the expansion 〈e[B], e[DB]〉 of DM4[,01]. In this way, (2.5) completes the argument. �

Thus, the way of construction of four-valued expansions chosen in the beginning of this section does exhaust all of them.
And what is more, any of them is defined by a unique expansion of DM4, as it follows from the theorem immediately ensuing
from the following key lemma ” killing several (more precisely, |S∗(DM4)| = 5; cf. Subsubsection 6.1.4) birds with one stone”:

Lemma 4.9 (Four-Valued Key Lemma). Let B be a Σ-matrix. Suppose (B�Σ0) ∈ S∗(DM4) and B is a model of C. Then, B
is a submatrix of A.

Proof. In that case, B is consistent and, being finite, is finitely-generated. In addition, by Lemmas 3.4, 3.6 and Remark 3.26
with j = 0, it is simple. And what is more, by Remarks 3.14 and 3.26 with j = 0, B is ∨-disjunctive. Therefore, as A is finite,
by Lemma 2.20 with M = {A}, there are some finite set I, some I-tuple C constituted by submatrices of A, some subdirect
product D of C and some g ∈ homS

S(D,B), in which case, by Remark 3.14 and (2.5), D is consistent and ∨-disjunctive,
and so, by Corollary 3.15, there is some i ∈ I such that h , (πi�D) ∈ homS

S(D, Ci). Moreover, by Lemmas 3.4, 3.6 and
Remark 3.26 with j = 0, Ci is simple. Therefore, by Proposition 2.16, (kerh) = a(D) = (ker g). Hence, by Proposition 2.15,
e , (h ◦ g−1) ∈ homS(B, Ci) ⊆ homS(B,A) ⊆ homS(B�Σ0,DM4), in which case, by Lemma 3.7 and Remark 3.26 with j = 0, e
is diagonal, as required. �

By (2.5) and Lemma 4.9, we immediately get the following universal characterization:

Corollary 4.10. Let B ∈ S∗(DM4). Then, the logic of an expansion of B is an extension of C iff B forms a subalgebra of A.

Theorem 4.11. Let B be a Σ-matrix. Suppose (B�Σ0) = DM4 and B is a model of C (in particular, C is defined by B).
Then, B = A.
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Proof. Then, by Lemma 4.9, B is a submatrix of A, in which case B = A, for B = A, as required. �

In view of Theorem 4.11, A is said to be characteristic for C. Subsections 4.2, 4.3, 4.4, 4.5 and 4.7 provide characterizations
of certain properties of four-valued expansions of CB via respective properties of their characteristic matrices. And what is
more, A is ∨-disjunctive and has a unary unitary equality determinant (cf. Remark 3.26 with j = 0), so Theorems 3.21 and
3.24 are well applicable to C immediately yielding the item (1k) of the Abstract (cf. Subsubsection 6.1.4 for more detail).

4.1.1. Minimal four-valuedness. As a one more interesting consequence of Proposition 4.5, we have:

Theorem 4.12. Let M be a class of Σ-matrices. Suppose the logic of M is an expansion of CB (in particular, Σ = Σ0 and
the logic of M is CB itself). Then, 4 6 |B|, for some B ∈ M. In particular, any four-valued expansion of CB (including CB

itself) is minimally four-valued.

Proof. In that case, CB is defined by M�Σ0, and so, by Proposition 4.5, there are some B ∈ M and some submatrix D of B�Σ0

such that DM4 is isomorphic to D/θ, where θ , a(D). In this way, 4 = |DM4| = |D/θ| 6 |D| 6 |B|, as required. �

4.2. Relevance Principle.

Lemma 4.13. C is purely-inferential iff {n} forms a subalgebra of A.

Proof. First, assume {n} forms a subalgebra of A, in which case A�{n} is a truth-empty submatrix of A, and so C is purely
inferential, in view of (2.5).

Conversely, assume {n} does not form a subalgebra of A. Then, there is some ϕ ∈ Fm1
Σ such that ϕA(n) 6= n, in which case

(ϕA(n) ∨A ∼AϕA(n)) ∈ DA, and so ((x0 ∨ ∼x0) ∨ (ϕ ∨ ∼ϕ)) ∈ C(∅), as required. �

Lemma 4.14. C has no inconsistent formula iff {b} forms a subalgebra of A.

Proof. First, assume {b} does not form a subalgebra of A. Then, there is some ϕ ∈ Fm1
Σ such that ϕA(b) 6= b, in which case

(ϕA(b) ∧A ∼AϕA(b)) 6∈ DA, and so ((x0 ∧ ∼x0) ∧ (ϕ ∧ ∼ϕ)) is an inconsistent formula of C.
Conversely, assume {b} forms a subalgebra of A. Let us prove, by contradiction, that C has no inconsistent formula. For

suppose some ϕ ∈ Fmω
Σ is an inconsistent formula of C, in which case ϕ ∈ Fmα

Σ, for some α ∈ (ω \ 1), while xα ∈ C(ϕ). Let
h ∈ hom(Fmω

Σ,A) extend (Vα × {b}) ∪ (Vω\α × {f}). Then, h(ϕ) = b ∈ DA, whereas h(xα) = f 6∈ DA. This contradiction
completes the argument. �

Theorem 4.15. The following are equivalent:
(i) C holds Relevance Principle;
(ii) C is purely inferential and has no inconsistent formula;
(iii) both {n} and {b} form subalgebras of A.

Proof. First, (ii) is a particular case of (i). Next, (ii)⇒(iii) is by Lemmas 4.13 and 4.14.
Finally, assume (iii) holds. Consider any α ∈ (ω \ 1), any φ ∈ Fmα

Σ and any ψ ∈ Fmω\α
Σ . Let h ∈ hom(Fmω

Σ,A) extend
(Vα × {b})∪ (Vω\α × {n}). Then, h(φ) = b ∈ DA, whereas h(ψ) = n 6∈ DA. Thus, ψ 6∈ C(φ), and so (i) holds, as required. �

Corollary 4.16 (cf. Theorem 4.2 of [13] for the case Σ = Σ0). C has no proper extension holding Relevance Principle.

Proof. Consider any extension C ′ of C holding Relevance Principle, in which case C, being a sublogic of C ′, does so as well,
and so, by Theorem 4.15(i)⇒(iii), {b} forms a subalgebra of A. Moreover, as C ′ is ∧-conjunctive, for A is so (cf. Remark 3.26
with j = 0), (4.1) is not satisfied in C ′, for 1 ∈ (ω \ 1), while (x0 ∧ ∼x0) ∈ Fm1

Σ, whereas (x1 ∨ ∼x1) ∈ Fmω\1
Σ . In this way,

Corollary 4.4 completes the argument. �

Perhaps, this is the principal maximality of C.

4.3. Maximality. Clearly, A is consistent and truth-non-empty, and so C is inferentially consistent. In this connection, we
have:

Theorem 4.17. C is [inferentially ]maximal iff A has no proper consistent submatrix[ other than that with carrier {n}].

Proof. First, consider any proper consistent submatrix B of A[ such that B 6= {n}, in which case ({n, f} ∩ B) 6= ∅, and so
t ∈ B, in which case B is truth-non-empty]. Then, by (2.5), the logic C ′ of B is a[n inferentially] consistent extension of C.
For proving that C ′ 6= C, consider the following complementary cases:

(1) b ∈ B.
Then, n 6∈ B, for B 6= A, while (n ∧B b) = f, whereas (n ∨B b) = t. In that case, (x0 ∨ ∼x0) ∈ (C ′(∅) \ C(∅)).

(2) b 6∈ B.
Then, B is not ∼-paraconsistent, as opposed to A, and so is C ′, as opposed to C.

Thus, in any case, C ′ 6= C, and so C is not [inferentially ]maximal.
Conversely, assume A has no proper consistent submatrix[ other than that with carrier {n}]. Consider any [inferentially

]consistent extension C ′ of C. Then, x0 6∈ T , C ′(∅[∪{x1})[3 x1], while, by the structurality of C ′, 〈Fmω
Σ, T 〉 is a model

of C ′ (in particular, of C), and so is its consistent [truth-non-empty ]finitely-generated submatrix B = 〈Fm2
Σ,Fm2

Σ ∩T 〉, in
view of (2.5). Hence, by Lemma 2.20 with M = {A}, there are some finite set I, some I-tuple C constituted by consistent
[truth-non-empty ]submatrices of A, some subdirect product D of C and some g ∈ homS

S(D,B/a(B)), in which case, by (2.5),
D is a consistent model of C ′, and so, in particular, I 6= ∅. Moreover, for any i ∈ I,[ as Ci is truth-non-empty, in which
case Ci 6= {n}, and so] Ci = A is truth-non-empty anyway. Hence, by the following claim, both D 3 a , (I × {f}) and
D 3 b , (I × {t}}):
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Claim 4.18. Let I be a finite set, C an I-tuple constituted by consistent truth-non-empty submatrices of A and B a subdirect
product of C. Then, {I × {f}, I × {t}} ⊆ B.

Proof. In that case, B�Σ+ is a finite lattice, so it has both a zero a and a unit b. Consider any i ∈ I. Then, as Ci is both
consistent and truth-non-empty, we have both ({f, n} ∩ Ci) 6= ∅ and ({b, t} ∩ Ci) 6= ∅, in which case we get {f, t} ⊆ Ci, for
(n ∧A b) = f, while ∼Af = t, whereas ∼At = f. Therefore, since πi[B] = Ci and (πi�B) ∈ hom(B�Σ+,Ci�Σ+) is surjective, by
Lemma 3.25, we get πi(a) = f and πi(b) = t. Thus, B 3 a = (I × {f}) and B 3 b = (I × {t}), as required. �

Next, if {f, t} ( A[ distinct from {n}] did form a subalgebra of A, A�{f, t} would be a proper consistent submatrix of A[
other than that with carrier {n}]. Therefore, there are some φ ∈ Fm2

Σ and j ∈ 2 such that φA(f, t) = 〈j, 1− j〉. Likewise, if
{f, 〈j, 1− j〉, t} ( A[ distinct from {n}] did form a subalgebra of A, A�{f, 〈j, 1− j〉, t} would be a proper consistent submatrix
of A[ other than that with carrier {n}]. Therefore, there is some ψ ∈ Fm3

Σ such that ψA(f, 〈j, 1− j〉, t) = 〈1− j, j〉. In this way,
{φA(f, t), ψA(f, φA(f, t), t)} = {n, b}. Then, D ⊇ {φD(a, b), ψD(a, φD(a, b), b)} = {I×{n}, I×{b}}. Thus, {I×{c} | c ∈ A} ⊆ D.
Hence, as I 6= ∅, {〈c, I × {c}〉 | c ∈ A} is an embedding of A into D, in which case, by (2.5), C is an extension of C ′, and so
C ′ = C, as required. �

4.4. Subclassical expansions.

Lemma 4.19. Let B be a (simple )finitely generated consistent truth-non-empty model of C. Then, the following hold:
(i) B is ∼-paraconsistent, if ∼(x0 ∧ ∼x0) is true in B and {f, t} does not form a subalgebra of A;
(ii) A�{f, t} is embeddable into B/a(B) (resp., into B itself), if {f, t} forms a subalgebra of A.

Proof. Put E , (B/a(B)) (resp., E , B). Then, by Lemma 2.20 with M = {A}, there are some finite set I, some I-tuple
C constituted by consistent truth-non-empty submatrices of A, some subdirect product D of C and some g ∈ homS

S(D, E),
in which case, by (2.5), D is consistent, and so, in particular, I 6= ∅. Hence, by Claim 4.18, both D 3 a , (I × {f}) and
D 3 b , (I × {t}}). Consider the following respective cases:

(i) ∼(x0 ∧ ∼x0) is true in B and {f, t} does not form a subalgebra of A.
Then, there is some ϕ ∈ Fm2

Σ such that ϕA(f, t) ∈ {n, b}. Take any i ∈ I 6= ∅. Then, {f, t} = πi[{a, b}] ⊆ Ci.
Moreover, (πi�D) ∈ homS(D, Ci), in which case, by (2.5) and (2.6), Ci is a model of ∼(x0 ∧ ∼x0), and so n 6∈ Ci, for
∼A(n ∧A ∼An) = n 6∈ DA. And what is more, Ci is a subalgebra of A. Hence, ϕA(f, t) ∈ Ci, and so ϕA(f, t) = b,
for n 6∈ Ci. Then, D 3 c , ϕD(a, b) = (I × {b}), in which case ∼Dc = c ∈ DD, and so D, being consistent, is
∼-paraconsistent, and so is B, in view of (2.5), as required.

(ii) {f, t} forms a subalgebra of A.
Then, F , (A�{f, t}) is ∼-classical, in which case it is consistent, truth-non-empty, and two-valued, and so simple, in
view of Example 3.2 and Lemma 3.4. Finally, as {I × {d} | d ∈ F} ⊆ D and I 6= ∅, e , {〈d, I × {d}〉 | d ∈ F} is an
embedding of F into D, in which case, (g ◦ e) ∈ homS(F , E), and so Corollary 2.14 completes the argument. �

Theorem 4.20. C is ∼-subclassical iff {f, t} forms a subalgebra of A, in which case the logic of A�{f, t} is the only ∼-classical
extension of C.

Proof. Let B be a ∼-classical model of C, in which case it is consistent, truth-non-empty and two-valued, and so simple (cf.
Example 3.2 and Lemma 3.4) and finite (in particular, finitely generated), but not ∼-paraconsistent.

First, consider any a ∈ B. Then, {a,∼Ba} 6⊆ DB = {t}, for B is ∼-classical, in which case (a ∧B ∼Ba) = f, for B is
∧-conjunctive, because C is so, since A is so (cf. Remark 3.26 with j = 0), and so ∼B(a ∧B ∼Ba) = t. Thus, ∼(x0 ∧ ∼x0) is
true in B. Hence, by Lemma 4.19(i), {f, t} forms a subalgebra of A.

Conversely, assume {f, t} forms a subalgebra of A, in which case, by (2.5), D , (A�{f, t}) is a ∼-classical model of C, and
so, by (2.5), Corollary 3.11 and Lemma 4.19(ii), we eventually get D = B, as required. �

In view of Theorem 4.20, the unique ∼-classical extension of a ∼-subclassical four-valued expansion C of CB is said to be
characteristic for C and denoted by CPC.

Theorem 4.21. Let C ′ be an inferentially consistent (in particular, consistent non-pseudo-axiomatic) extension of C. Suppose
{f, t} forms a subalgebra of A. Then, A�{f, t} is a model of C ′.

Proof. Then, x1 6∈ C ′(x0) 3 x0, while, by the structurality of C ′, 〈Fmω
Σ, C

′(x0)〉 is a model of C ′ (in particular, of C), and so
is its consistent truth-non-empty finitely generated submatrix 〈Fm2

Σ,Fm2
Σ ∩C ′(x0)〉, in view of (2.5). In this way, (2.5) and

Lemma 4.19(ii) complete the argument. �

Example 4.22. When Σ = Σ0, {n} forms a subalgebra of A, in which case B , (A�{n}) is a consistent truth-empty submatrix
of A, and so, by (2.5), the logic C ′ of B is a consistent but inferentially inconsistent extension of C. Then, C ′ is not subclassical,
because any classical logic is inferentially consistent, for any classical matrix is both consistent and truth-non-empty. In this
way, the reservation ”inferentially” cannot be omitted in the formulation of Theorem 4.21. �

4.5. Paraconsistent and paracomplete extensions. The axiomatic extension of C relatively axiomatized by the Excluded
Middle law axiom x0 ∨ ∼x0 is denoted by CEM.

An extension C ′ of C is said to be (maximally )[inferentially ]paracomplete, provided (x0 ∨ ∼x0) 6∈ C ′(∅[∪{x1}]), that is,
C ′ is not an extension of CEM

[+0],( and C ′ has no proper [inferentially ]paracomplete extension). Then, a model of C is said to
be [inferentially ]paracomplete, whenever the logic of it is so.

Clearly, a submatrix B of A is paracomplete/∼-paraconsistent iff n ∈ B/both b ∈ B and (B ∩ {n, f}) 6= ∅. In particular, A
is both ∼-paraconsistent and paracomplete, and so is C.

By A 6n we denote the ∼-paraconsistent submatrix of A generated by {f, b, t}, the logic of it being denoted by C 6n.
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Lemma 4.23. Let B be a ∼-paraconsistent model of C. Then, there is some submatrix D of B such that A 6n is embeddable
into D/a(D).

Proof. In that case, there are some a ∈ DB such that ∼Ba ∈ DB and some b ∈ (B \DB). Then, in view of (2.5), the submatrix
D of B generated by {a, b} is a ∼-paraconsistent finitely-generated model of C. Hence, by Lemma 2.20 with M = {A}, there
are some finite set I, some I-tuple C constituted by consistent submatrices of A, some subdirect product E of C and some
g ∈ homS

S(E ,D/a(D)). Hence, by (2.5), E is ∼-paraconsistent, in which case it is consistent, and so I 6= ∅. Take any a ∈ DE
such that ∼Ea ∈ DE . Then, by Lemma 4.1, E 3 a = (I × {b}), in which case, for each i ∈ I, DCi 3 πi(a), and so Ci is
truth-non-empty. Therefore, by Claim 4.18, we also have both E 3 b , (I×{f}) and E 3 c , (I×{t}). Consider the following
complementary cases:

(1) {f, b, t} does not form a subalgebra of A.
Then, A6n = A and there is some ϕ ∈ Fm3

Σ such that ϕA(f, b, t) = n, in which case E 3 ϕE(b, a, c) = (I×{ϕA(f, b, t)}) =
(I × {n}), and so {I × {d} | d ∈ A6n} ⊆ E.

(2) {f, b, t} forms a subalgebra of A.
Then, A6n = {f, b, t}, and so {I × {d} | d ∈ A6n} ⊆ E.

Thus, in any case, {I × {d} | d ∈ A6n} ⊆ E. Then, as I 6= ∅, e , {〈d, I × {d}〉 | d ∈ A6n} is an embedding of A 6n into E , in
which case (g ◦ e) ∈ homS(A 6n,D/a(D)), and so Corollary 2.14, Lemmas 3.4, 3.6 and Remark 3.26 with j = 0 complete the
argument. �

Corollary 4.24. A 6n is a model of any ∼-paraconsistent extension of C. In particular, C 6n is the greatest ∼-paraconsistent
extension of C, and so maximally ∼-paraconsistent, in which case an extension of C is ∼-paraconsistent iff it is a sublogic of
C 6n.

Proof. Consider any ∼-paraconsistent extension C ′ of C, in which case x1 6∈ T , C ′({x0,∼x0}), and so, by the structurality
of C ′, 〈Fmω

Σ, T 〉 is a ∼-paraconsistent model of C ′, and so of C. Then, (2.5) and Lemma 4.23 complete the argument. �

The logic of DM4[,01]�{f, b, t} is known as the [bounded ]logic of paradox LP[01] [11] (cf. [14]).

Theorem 4.25. The following are equivalent:
(i) C is maximally ∼-paraconsistent;
(ii) C = C 6n;
(iii) CEM 6= C 6n;
(iv) {f, b, t} does not form a subalgebra of A;
(v) CEM is not ∼-paraconsistent;
(vi) CEM is not maximally ∼-paraconsistent;
(vii) CEM is either ∼-classical, if C is ∼-subclassical, or inconsistent, otherwise;
(viii) any consistent non-∼-classical extension of C is paracomplete;
(ix) any ∼-paraconsistent extension of C is paracomplete;
(x) no expansion of LP is an extension of C;
(xi) CEM is not an expansion of LP .

Proof. First, (i)⇒(ii) is by (2.5). The converse is by Corollary 4.24. Thus, (i)⇔(ii) holds. Next, (ii)⇒(iii) is by the paracom-
pleteness of C. In addition, (iv)⇒(ii) is immediate.

Further, assume {f, b, t} forms a subalgebra of A, in which case A6n = {f, b, t}, and so non-paracomplete submatrices of A
are exactly submatrices of A 6n. Hence, by (2.5) and Proposition 2.12, CEM = C 6n is an expansion of LP . Thus, both (iii)⇒(iv)
and (xi)⇒(iv) hold.

Furthermore, (vi) is a particular case of (v). Likewise, (v) is a particular case of (ix), while (ix) is a particular case of (viii).
Moreover, (vi)⇒(iii) is by Corollary 4.24. And what is more, (vii)⇒(viii) is by Corollary 3.10.

Finally, assume (iv) holds. Let S be the set of all non-paracomplete consistent submatrices ofA, in which case, by Proposition
2.12, CEM is defined by S. Consider any B ∈ S. Since it is not paracomplete, we have n 6∈ B, in which case f ∈ B, for it is
consistent, and so t = ∼Af ∈ B. Therefore, by (iv), b 6∈ B, for {f, t} ⊆ B 63 n. Thus, B = {f, t}. In this way, by Theorem
4.20, either S = {B}, in which case CEM is ∼-classical, if C is ∼-subclassical, or S = ∅, in which case CEM is inconsistent,
otherwise. Thus, (vii) holds.

After all, (xi/x) is a particular case of (x/ix), as required. �

4.5.1. The resolutional extension. By C [EM+]R we denote the resolutional extension of C [EM], viz., the one relatively axioma-
tized by the Resolution rule:

(4.8) {x1 ∨ x0,∼x1 ∨ x0} ` x0.

Put S[∗,] 6b , {B ∈ S[∗](A) | b 6∈ B}.

Lemma 4.26. Let o and Y be (possibly, secondary) unary and binary connectives of Σ, C ′ a Y-disjunctive Σ-logic and C ′′ an
extension of C ′. Then,

(4.9) {x1 Y x0, ox1 Y x0} ` (x2 Y x0)

is satisfied in C ′′ iff

(4.10) {x1 Y x0, ox1 Y x0} ` x0

is so.
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Proof. In that case, (3.4) and (3.5), being valid for C ′, remain so for C ′′. First, assume (4.9) is satisfied in C ′′, in which case
(4.9)[x2/x0] is so, in view of the structurality of C ′′, and so is (4.10), in view of (3.5) and the transitivity of C ′′. Conversely, the
fact that (4.10) and (3.4) are satisfied in C ′′ implies the fact that (4.9) is so, in view of the transitivity of C ′′, as required. �

By Lemmas 3.20, 4.26, Corollary 3.16 and Remark 3.26 with j = 0, we first have:

Corollary 4.27. CR is a proper extension of C.

Theorem 4.28. CEM+R is equal to CPC, if C is ∼-subclassical, and inconsistent, otherwise.

Proof. With using Remark 3.26 with j = 0, Theorems 3.21, 4.20 and Lemma 4.26. Then, CEM+R is defined by the set S of all
non-paracomplete members of S∗, 6b. In that case, S = {A�{f, t}}, if {f, t} forms a subalgebra of A, and S = ∅, otherwise, as
required. �

By Remark 3.26 with j = 0, Theorem 3.21 and Lemma 4.26, we also have:

Lemma 4.29. CR is defined by S[∗,] 6b.

By Lemmas 4.13 and 4.29, we first have:

Corollary 4.30. CR is purely inferential iff C is so. In particular, CR is paracomplete, whenever C is purely inferential.

In addition, we also get:

Corollary 4.31. Suppose {f, n, t} forms a subalgebra of A. Then, CR is defined by A 6b , A�{f, n, t},

Proof. In that case, S6b = S(A 6b), and so (2.5) and Lemma 4.29 complete the argument. �

Theorem 4.32. The following are equivalent:
(i) CR is paracomplete;
(ii) there is some subalgebra B of A such that b 6∈ B 3 n;
(iii) the carrier of the subalgebra of A generated by {n} does not contain b;
(iv) there is no ϕ ∈ Fm1

Σ such that ϕA(n) = b.

Proof. In view of Lemma 4.29, CR is paracomplete iff S6b contains a paracomplete matrix. Thus, (i)⇔(ii) holds. Finally,
(ii)⇔(iii)⇔(iv) are immediate. �

Lemma 4.33. Let a ∈ {b, n}. Suppose {f, [a, ]t} forms a [regular ]subalgebra of A. Then, Ka
4 , {〈f, f〉, 〈a, f〉, 〈a, t〉, 〈t, t〉}

forms a subalgebra of (A�{f, a, t})× (A�{f, t}).

Proof. Let B be the subalgebra of (A�{f, a, t})× (A�{f, t}) generated by Ka
4 . If 〈t, f〉 was in B, there would be some ϕ ∈ Fm4

Σ

such that both ϕA(f, a, a, t) = t and ϕA(f, f, t, t) = f, in which case, since (n/b) v / w b, for every b ∈ {f, t}, by the regularity
of A�{f, a, t}, we would get t v / w f. Therefore, as ∼A(f/t) = (t/f), we conclude that B = Ka

4 , as required. �

Lemma 4.34. Let B ⊆ {b, n}. Suppose {f, t} ∪B forms a specular subalgebra of A. Then, {f, t} forms a subalgebra of A.

Proof. By contradiction. For suppose {f, t} does not form a subalgebra of A. In that case, there are some ς ∈ Σ of some
arity n ∈ ω and some ā ∈ {f, t}n such that ςA(ā) ∈ B. Then, (µ ◦ ā) = ā, while µ(ςA(ā)) 6= ςA(ā), in which case µ 6∈
hom(A�({f, t} ∪B),A), and so this contradiction completes the argument. �

Theorem 4.35. Suppose {f, n, t} forms a regular specular subalgebra of A, in which case {f, t} forms a subalgebra of A6b
(cf. Lemma 4.34)[ and {n} does not form a subalgebra of A6b] (in particular, Σ = Σ0[1]). Then, an extension of C is
[non-]inferentially paracomplete iff it is a sublogic of CR. In particular, CR is maximally [non-]inferentially paracomplete.

Proof. In that case, by Corollary 4.31, CR is defined by the truth-non-empty paracomplete (and so inferentially paracomplete)
Σ-matrix A 6b, in which case, in particular, any extension of C, being a sublogic of CR, is inferentially paracomplete, and so
paracomplete.

Conversely, consider any [non-]inferentially paracomplete extension C ′ of C, in which case[, since C ′(∅) ⊇ C(∅) 6= ∅, in
view of Lemma 4.13,] (x0 ∨ ∼x0) 6∈ T , C ′(x1), while, by the structurality of C ′, 〈Fmω

Σ, T 〉 is a model of C ′ (in particular,
of C), and so is its finitely-generated inferentially paracomplete submatrix B , 〈Fm2

Σ, T ∩ Fm2
Σ〉, in view of (2.5). Hence, by

Lemma 2.20, there are some set I, some I-tuple C constituted by submatrices of A, some subdirect product D of C, in which
case (D�Σ0) ∈ DML, for DML 3 DM4 is a variety, and some g ∈ homS

S(D,<(B)), in which case, by (2.5), D is an inferentially
paracomplete model of C ′, and so there are some a ∈ DD ⊆ {b, t}I and b ∈ (D \DD) such that ∼Db 6D b, in which case b �D

c , (a ∨D b) ∈ DD. Put J , {i ∈ I | πi(b) = t}, K , {i ∈ I | πi(b) = n} 6= ∅, for b 6∈ DD, and L , {i ∈ I | πi(b) = b 6= πi(c)}.
Given any ā ∈ A4, put (a0|a1|a2|a3) , ((J × {a0}) ∪ (K × {a1}) ∪ (L× {a2}) ∪ ((I \ (J ∪K ∪ L))× {a3})). Then, we have:

D 3 b = (t|n|b|b),(4.11)

D 3 ∼Db = (f|n|b|b),(4.12)

D 3 c = (t|t|t|b),(4.13)

D 3 ∼Dc = (f|f|f|b)(4.14)

Consider the following complementary cases:
(1) A is b-idempotent.

Then, we have the following complementary subcases:
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(a) J = ∅,
Then, since K 6= ∅ = J , A6b is specular and {b} forms a subalgebra of A, by (4.11), (4.13) and (4.14), we see that
{〈x, (x|x|µ(x)|b)〉 | x ∈ A6b} is an embedding of A 6b into D. Hence, by (2.5), A 6b is a model of C ′, for D is so.

(b) J 6= ∅.
Then, taking Lemma 4.33 into account, since K 6= ∅ 6= J , A6b is specular and {b} forms a subalgebra of A,
by (4.11), (4.12), (4.13) and (4.14), we see that {〈〈x, y〉, (y|x|µ(x)|b)〉 | 〈x, y〉 ∈ Kn

4} is an embedding of B ,
((A6b × (A�{f, t}))�Kn

4) into D. Moreover, (π0�Kn
4) ∈ homS

S(B,A 6b). Hence, by (2.5), A 6b is a model of C ′, for D is
so.

(2) A is not b-idempotent.
Then, there is some ϕ ∈ Fm1

Σ such that ϕA(b) 6= b, in which case φA[{b, t}] = {t} and ψA[{b, t}] = {f}, where
φ , (x0 ∨ (ϕ ∨ ∼ϕ)) and ψ , ∼φ, and so, by (4.13), we get:

D 3 ψD(c) = (f|f|f|f),(4.15)

D 3 φD(c) = (t|t|t|t).(4.16)

Consider the following complementary subcases:
(a) J = ∅,

Then, since K 6= ∅ = J and A6b is specular, by (4.11), (4.15) and (4.16), we see that {〈x, (x|x|µ(x)|µ(x))〉 | x ∈ A6b}
is an embedding of A 6b into D. Hence, by (2.5), A 6b is a model of C ′, for D is so.

(b) J 6= ∅.
Then, taking Lemma 4.33 into account, since K 6= ∅ 6= J and A6b is specular, by (4.11), (4.12), (4.15) and
(4.16), we see that {〈〈x, y〉, (y|x|µ(x)|µ(x))〉 | 〈x, y〉 ∈ Kn

4} is an embedding of B , ((A6b × (A�{f, t}))�Kn
4) into D.

Moreover, (π0�Kn
4) ∈ homS

S(B,A 6b). Hence, by (2.5), A 6b is a model of C ′, for D is so.
Thus, in any case, A 6b is a model of C ′, and so C ′ ⊆ CR, as required. �

The logic of DM4[,01]�{f, n, t} is known as Kleene’s [bounded ]three-valued logic K3[,01] (cf. [6]).

Theorem 4.36. The following are equivalent:
(i) {f, n, t} does not form a subalgebra of A;
(ii) [providing C is not purely inferential, ]CR is [non-]inferentially either ∼-classical, if C is ∼-subclassical, or inconsis-

tent, otherwise;
(iii) [providing C is not purely inferential, ]CR is not [non-]inferentially paracomplete;
(iv) the Σ0-fragment of CR is not inferentially paracomplete;
(v) no expansion of K3 is an extension of C;
(vi) CR is not an expansion of K3.

Proof. First, (vi)⇒(i) is by Corollary 4.31.
Moreover, (vi) is a particular case of (v).
Next, assume (i) holds. We use Remark 2.10, Theorem 4.20 and Lemmas 4.13 and 4.29 tacitly. Consider the following four

exhaustive cases:
(1) C is both ∼-subclassical and not purely inferential.

Then, S∗, 6b = {A�{f, t}}, in which case CR is ∼-classical, and so inferentially so.
(2) C is both purely-inferential and ∼-subclassical.

Then, S∗, 6b = {A�{f, t},A�{n}}, in which case CR is inferentially ∼-classical.
(3) C is both not ∼-subclassical and not purely inferential.

Then, S∗, 6b = ∅, in which case CR is inconsistent, and so inferentially so.
(4) C is both purely-inferential and not ∼-subclassical.

Then, S∗, 6b = {A�{n}}, in which case CR is inferentially inconsistent.
Thus, (ii) holds.

Further, in view of Theorem 4.20, any [inferentially ]∼-classical extension of C is not [inferentially ]paracomplete. And what
is more, any [inferentially ]paracomplete extension of C is clearly [inferentially ]consistent. Hence, (ii)⇒(iii) holds.

Furthermore, (iii)⇒(iv) is by the fact that x0 ∨ ∼x0 is a Σ0-formula.
Finally, by Proposition 2.19, K3 is non-pseudo-axiomatic. Moreover, it is paracomplete, and so inferentially so. And what

is more, (4.8), being satisfied in K3, is so in any expansion of it. In this way, (iv)⇒(v) holds, as required. �

In this connection, it is remarkable that paracomplete analogue of the ”maximality” items (i) and (vi) of Theorem 4.25 do
not hold, generally speaking, as it ensues from the following generic counterexamples collectively with Subsubsections 6.1.1
and 6.1.3:

Example 4.37. Suppose C is ∼-subclassical, i.e., {f, t} forms a subalgebra of A (cf. Theorem 4.20). Then, B , (A×(A�{f, t}))
is truth-non-empty, non-∼-paraconsistent and, by (2.6), paracomplete, for A is so, in which case the logic of B is a proper
(inferentially )paracomplete extension of C. �

Example 4.38. Let A be a (possibly, secondary) binary connective of Σ. Suppose both {f, t} and {f, n[/b], t} form subalgebras
of A, in which case A�{f, t} is a submatrix of A 6b, {A 6b[,A 6n]} defining CR[∩CEM], in view of Corollary 4.31[ and Theorem
4.25(iii)⇒(iv)], while CR[∩CEM] satisfies x0 A x0, whereas {x0, x0 A x1} ` x1 is true in A�{f, t}, in which case B ,
(A 6b × (A�{f, t})) is truth-non-empty, paracomplete, in view of (2.6), for A 6b is so, and a model of the rule {∼ix0 A ∼1−ix0 |
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i ∈ 2} ` (x0 ∨ ∼x0), in its turn,[ being also true in A 6n but] not being true in A 6b under [x0/n], and so, by (2.5), the logic of
{B[,A 6n]} is a proper [both ∼-paraconsistent and ](inferentially )paracomplete extension of CR[∩CEM]. �

Example 4.38 and Subsubsection 6.1.3 show that the preconditions in the formulation of Theorem 4.35 cannot be omitted.
And what is more, as it follows from Theorem 4.35 [resp., Corollary 4.60(ii) below], the condition of existence of implication
A holding both the Reflexivity axiom in {A 6b[,A 6n]} and the Modus Ponens rule in A�{f, t} is essential within Example 4.38.

4.5.2. Miscellaneous extensions. By C [EM+]NP we denote the least non-∼-paraconsistent extension of C [EM], viz., that which
is relatively axiomatized by the Ex Contradictione Quodlibet rule:

(4.17) {x0,∼x0} ` x1.

Likewise, by C [EM+]MP we denote the extension of C [EM] relatively axiomatized by the rule:

(4.18) {x0,∼x0 ∨ x1} ` x1,

being nothing but Modus Ponens for the material implication ∼x0∨x1. (Clearly, it is a/an sublogic/extension of C [EM+](R/NP),
in view of (3.3) held in C by its ∨-disjunctivity (cf. Remark (3.26) with j = 0).) An extension of C is said to be Kleene,
whenever it satisfies the rule:

(4.19) {x1 ∨ x0,∼x1 ∨ x0} ` ((x2 ∨ ∼x2) ∨ x0)

Lemma 4.39. Let I be a finite set, C ∈ {A,
←−
A ,
−→
A}I , and B a consistent non-∼-paraconsistent submatrix of

∏
i∈I Ci. Then,

hom(B,
−→
A) 6= ∅.

Proof. Consider the following complementary cases:
(1) B is truth-empty.

Take any i ∈ I 6= ∅, for B is consistent. Then, h , (πi�B) ∈ hom(B,A). Moreover, DB = ∅ ⊆ h−1[{t}]. Hence,
h ∈ hom(B,

−→
A).

(2) B is not truth-empty.
Then, B ⊆ AI is finite, for both I and A are so, and so is DB ⊆ B. Hence, n , |DB| ∈ (ω \ 1). Take any
bijection b̄ : n → DB. Then, by the ∧-conjunctivity of B, a , (∧Bb̄) ∈ DB. Therefore, as B is consistent but not ∼-
paraconsistent, ∼Ba 6∈ DB. Then, there is some i ∈ I, in which case h , (πi�B) ∈ hom(B, Ci), such that h(∼Ba) 6∈ DCi .
If there was some j ∈ n such that h(bj) 6= t, we would have Ci ∈ {A,

←−
A} and ({b, n}∩DCi) 3 h(bj) 6A h(a) 6A h(bj), in

which case we would get h(a) = h(bj), and so h(∼Ba) = ∼Ah(a) = ∼Ah(bj) = h(bj) ∈ DCi . Thus, h ∈ hom(B,
−→
A). �

Corollary 4.40. Let I be a finite set , C ∈ {A,
←−
A ,
−→
A}I , and B a consistent non-∼-paraconsistent non-paracomplete submatrix

of
∏
i∈I Ci. Then, {f, t} forms a subalgebra of A and hom(B,A�{f, t}) 6= ∅.

Proof. Then, by Lemma 4.39, there is some h ∈ hom(B,
−→
A) 6= ∅, in which case D , (img h) forms a subalgebra of A, and

so h ∈ homS(B,D), where D , (
−→
A�D). Hence, by (2.6), D is not paracomplete. Therefore, as x0 ∨ ∼x0 is not true in

−→
A

under [x0/(b/n)], we have (D ∩ {b, n}) = ∅. On the other hand, B, being non-paracomplete, is truth-non-empty, for B 6= ∅.
Therefore, t ∈ D, in which case f = ∼At ∈ D, and so D = {f, t}, in which case D = (A�D), as required. �

Theorem 4.41 (cf. [18] for the case Σ = Σ0). Suppose C is not maximally ∼-paraconsistent. Then, the following are
equivalent:

(i) C is ∼-subclassical;
(ii) CEM+NP is consistent;
(iii) C is ∼-subclassical and CEM+NP is defined by A 6n × (A�{f, t}).

Proof. In that case, by Theorem 4.25(iii)⇒(i), CEM is defined by A 6n.
First, (iii)⇒(ii) is by the consistency of A 6n × (A�{f, t}).
Next, assume (ii) holds, in which case x0 6∈ T , CEM+NP(∅), while, by the structurality of CEM+NP, 〈Fmω

Σ, T 〉 is a model
of CEM+NP (in particular, of C), and so is its consistent finitely-generated submatrix B , 〈Fm1

Σ, T ∩ Fm1
Σ〉, in view of (2.5).

Hence, by Lemma 2.20, there are some finite set I, some C ∈ S(A)I , some subdirect product D of it, in which case this is a
submatrix of AI , and some h ∈ homS

S(D,<(B)), in which case, by (2.5), D is a consistent model of CEM+NP, so it is neither
∼-paraconsistent nor paracomplete. Thus, by Corollary 4.40 and Theorem 4.20, (i) holds.

Finally, assume (i) holds. Then, by Theorem 4.20, {f, t} forms a subalgebra of A, and so of A6n, in which case A�{f, t} is a
submatrix of A 6n, and so, by (2.5), A 6n × (A�{f, t}) is a model of CEM. Moreover, {a,∼Aa} ⊆ {t}, for no a ∈ {f, t}. Therefore,
A 6n × (A�{f, t}) is not ∼-paraconsistent, so it is a model of CEM+NP. Conversely, consider any finite set I, any C ∈ S(A 6n)I
and any subdirect product D ∈ Mod(CEM+NP) of C, in which case D is a non-∼-paraconsistent non-paracomplete submatrix
of AI . Put J , hom(D,A 6n × (A�{f, t})). Consider any a ∈ (D \DD), in which case D is consistent, and so, by Lemma 4.40,
there is some g ∈ hom(D,A�{f, t}) 6= ∅. Moreover, there is some i ∈ I, in which case f , (πi�D) ∈ hom(D,A 6n), such that
f(a) 6∈ DA6n . Then, h , (f × g) ∈ J and h(a) 6∈ DA6n×(A�{f,t}). In this way, (

∏
∆J) ∈ homS(D, (A 6n × (A�{f, t}))J). Thus, by

(2.5) and Corollary 2.21, CEM+NP is finitely-defined by A 6n× (A�{f, t}). Then, the finiteness of A completes the argument. �

Remark 4.42. Let C ′ be a Kleene extension of C (in particular, a non-paracomplete one, in view of (3.3)). Then, we have
{x0 ∨ x1,∼x0 ∨ x1} `C′ (∼(x0 ∨ x1) ∨ x1). Therefore, in view of (3.3), C ′ satisfies (4.8) iff it satisfies (4.18). �
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Lemma 4.43. Let C ′ be an extension of C. Suppose C is not maximally ∼-paraconsistent, (4.19) is satisfied in C ′ (in
particular, C ′ is not paracomplete, in view of (3.3)), (4.18) is not satisfied in C ′ and, for every ς ∈ Σ, ςA6n is either regular or
both b-idempotent and no more than binary. Then, C ′ is a sublogic of CEM+NP.

Proof. The case, when CEM+NP is inconsistent, is evident. Otherwise, by Theorems 4.20, 4.25(iv)⇒(i) and 4.41(ii)⇒(iii),
A6n = {f, b, t} and {f, t} form subalgebras of A, CEM+NP being defined by the submatrix B , (A 6n × (A�{f, t})) of A2, and so
it suffices to prove that B ∈ Mod(C ′). Then, by Corollary 2.21, there are some set I, some C ∈ S(A)I and some subdirect
product D ∈ Mod(C ′) ⊆ Mod(C) of it not being a model of (4.18), in which case it is ∧-conjunctive, for A is so (cf. Remark
3.26 with j = 0), while (D�Σ0) ∈ DML, for DML 3 DM4 is a variety. Therefore, there are some a ∈ DD ⊆ {b, t}I , in which
case ∼Da 6D a, and some b ∈ (D \DA) such that (∼Da∨D b) ∈ DA. Hence, by (4.19), (b∨D∼Db) = ((b∨D∼Db)∨D b) ∈ DA,
in which case b ∈ {f, b, t}I . Put J , {i ∈ I | πi(a) = b} ⊇ K , {i ∈ I | πi(b) = f} 6= ∅, for (∼Da∨D b) ∈ DA and b 6∈ DA, and
L , {i ∈ I | πi(b) = t}, Then, given any ~a ∈ A4, set (a0|a1|a2|a3) , (((I \ (L ∪K)) × {a0}) ∪ ((L \ J) × {a1}) ∪ ((L ∩ J) ×
{a2}) ∪ (K × {a3})) ∈ AI . In this way, a = (t|t|b|b) and b = (b|t|t|f). Therefore, we have:

D 3 e , (a ∧D b) = (b|t|b|f),(4.20)

D 3 ∼De = (b|f|b|t),(4.21)

D 3 c , (e ∨D ∼Db) = (b|t|b|t),(4.22)

D 3 ∼Dc = (b|f|b|f),(4.23)

D 3 d , (e ∨D ∼Da) = (b|t|b|b),(4.24)

D 3 ∼Dd = (b|f|b|b).(4.25)

Consider the following complementary cases:

(1) L ⊆ J .
Then, given any ~a ∈ A3, set (a0|a1|a2) , (((I \ (L ∪K))× {a0}) ∪ ((L ∩ J)× {a1}) ∪ (K × {a2})) ∈ AI . In this way,
by (4.20), (4.22) and (4.24), we have e = (b|b|f) ∈ D, c = (b|b|t) ∈ D and d = (b|b|b) ∈ D, respectively. Consider the
following complementary subcases:
(a) {b} forms a subalgebra of A6n.

Then, as K 6= ∅, {〈x, (b|b|x)〉 | x ∈ A6n} is an embedding of A 6n into D.
(b) {b} does not form a subalgebra of A6n.

Then, there is some ϕ ∈ Fm1
Σ such that ϕA(b) ∈ {f, t}, in which case φA(b) = f and ψA(b) = t, where φ , (ϕ∧∼ϕ)

and ψ , (ϕ ∨ ∼ϕ), and so both D 3 φD(d) = (f|f|f) and D 3 ψD(d) = (t|t|t). Hence, as I ⊇ K 6= ∅,
{〈x, (x|x|x)〉 | x ∈ A6n} is an embedding of A 6n into D.

Thus, anyway, A 6n is embeddable into D, in which case, by (2.5), it is a model of C ′, and so is B, for {f, t} forms a
subalgebra of A6n.

(2) L * J .
Consider the following complementary subcases:
(a) either {b} forms a subalgebra of A6n or ((I \ (L ∪K)) ∪ (L ∩ J)) = ∅.

Then, taking (4.20), (4.22) and (4.24) into account, as K 6= ∅ 6= (L \ J), {〈〈x, y〉, (b|y|b|x)〉 | 〈x, y〉 ∈ B} is an
embedding of B into D, and so, by (2.5), B is a model of C ′.

(b) {b} does not form a subalgebra of A6n and ((I \ (L ∪K)) ∪ (L ∩ J)) 6= ∅.
Then, there is some ϕ ∈ Fm1

Σ such that ϕA(b) ∈ {f, t}, in which case ϕA[A6n] ⊆ {f, t}, for {f, t} forms a subalgebra
of A, and so φA[A6n] = {f} and ψA[A6n] = {t}, where φ , (ϕ ∧ ∼ϕ) and ψ , (ϕ ∨ ∼ϕ). In this way,

D 3 φD(a) = (f|f|f|f),(4.26)

D 3 ψD(a) = (t|t|t|t).(4.27)

Consider the following complementary subsubcases:
(i) A6n is not regular.

Then, there are some ς ∈ Σ of arity n ∈ ω, some ~̄g ∈ (An6n )2 and some i ∈ 2 such that gij v g
1−i
j , for all j ∈ n,

but ςA(ḡi) 6v ςA(ḡ1−i), in which case w , ςA(ḡi) 6= x , ςA(ḡ1−i) ∈ {f, t}, and so ḡi 6= ḡ1−i, in which case
y , gij ∈ {f, t} and g1−i

j = b, for some j ∈ n. Moreover, as ςA is not regular, it is b-idempotent, in which case
ḡ1−i 6= (n× {b}), while n 6 2, and so n = 2 and z , g1−i

1−j 6= b. Therefore, gi1−j = z ∈ {f, t}, in which case
(z|z|z|z) ∈ D, in view of (4.26) and (4.27). Moreover, by (4.24) and (4.25), we also have (b|y|b|b) ∈ D. In
this way, D 3 f , ςD({〈j, (b|y|b|b)〉, 〈1− j, (z|z|z|z)〉}) = (x|w|x|x). Consider the following complementary
subsubsubcases:
(A) w = b.

Then, taking (4.25) into account, we haveD 3 ((f∧D∼Df)∨D∼Dd) = (b|b|b|b). Hence, as I ⊇ K 6= ∅,
by (4.26) and (4.27), we see that {〈u, (u|u|u|u)〉 | u ∈ A6n} is an embedding of A 6n into D. Therefore,
by (2.5), A 6n is a model of C ′, and so is B, for {f, t} forms a subalgebra of A6n.

(B) w 6= b.
Then, w ∈ {f, t} 3 x, so D ⊇ {f,∼Df} = {(f|t|f|f), (t|f|t|t)}. Hence, as K 6= ∅ 6= (L \ J), by (4.24),
(4.25), (4.26) and (4.27), we see that {〈〈u, v〉, (u|v|u|u)〉 | 〈u, v〉 ∈ B} is an embedding of B into D.
Therefore, by (2.5), B is a model of C ′.
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(ii) A6n is regular.
Then, Lemma 4.2, used tacitly throughout the rest of the proof, is well-applicable to B. In this way, as
((I \ (L∪K))∪ (L∩ J)) 6= ∅ 6∈ {K,L \ J}, by (4.20), (4.21), (4.22), (4.23), (4.24), (4.25), (4.26) and (4.27),
we see that {〈〈t, u, v〉, (v|u|v|t)〉 | 〈t, u, v〉 ∈ (B u 2)} is an embedding of B u 2 into D, in which case, by
(2.5), it is a model of C ′, and so is its strict surjective homomorphic image B.

This completes the argument. �

Ii is remarkable that it is the gentle operation-wise condition that makes Lemma 4.43 well-applicable to the purely-implicative
expansion of CBB despite of the fact that, in that case, A is neither regular nor b-idempotent. This equally concerns the
following quite important result:

Theorem 4.44 (cf. [18] for the case Σ = Σ0). Suppose C is both ∼-subclassical and not maximally ∼-paraconsistent, while,
for every ς ∈ Σ, ςA6n is either regular or both b-idempotent and no more than binary (in particular, Σ = Σ0[1]). Then, proper
consistent extensions of CEM = C 6n form the two-valued chain CEM+NP ( CPC = CEM+(R/MP). Moreover, in case A6n is
regular (in particular, Σ = Σ0[1]), both proper consistent extensions satisfy same axioms as CEM do, and so are not axiomatic.

Proof. With using Theorems 4.20, 4.21, 4.25(iii|iv|vi)⇒(i), 4.28, 4.41(i)⇒(iii), Corollary 3.10, Lemma 4.43 and Remark 4.42.
First of all, (4.18) is not true in the consistent truth-non-empty Σ-matrix B , (A 6n × (A�{f, t})) under [x0/〈b, t〉, x1/〈f, t〉].

Finally, assume A6n is regular. Then, by Lemma 4.33, we have D , 〈B�Kb
4 ,K

b
4 ∩ π−1

1 [{t}]〉, in which case both (π1�Kb
4) ∈

homS(D,A�{f, t}) and (π0�Kb
4) ∈ homS(D,A 6n), and so (2.5) and (2.6) complete the argument. �

In view of Lemma 4.26, Theorem 4.44 shows that (C ∩ Fmω
Σ) ∪ (σ+1[C \ Fmω

Σ] Y x0) cannot be replaced by C in the item
(ii)b) of Theorem 3.21, when taking M = {A6n} and C = {(4.17)}, and so the reservations ”positive” and ”axiomatic” cannot
be omitted in its item (iii). In addition, the particular case of Theorem 4.44 with Σ = Σ01 provides the ” bounded” extension
of [22] void of the rather unnatural restriction by merely non-empty sequents. This point, being essentially beyond the scopes
of the present study, is going to be discussed in detail elsewhere.
4.5.2.1. Modus ponens versus truth-singularity.

Lemma 4.45. Let B be a truth-singular ∧-conjunctive Σ-matrix. Suppose (B�Σ0) ∈ DML. Then, any b ∈ DB is a unit of
B�Σ+, in which case ∼Bb is a zero of it, and so B is a model of (4.18).

Proof. In that case, B�Σ+ is a distributive lattice and DB is a filter of it. Then, for any a ∈ B, we have b 6B (a ∨B b), in
which case we get (a ∨B b) ∈ DB, and so (a ∨B b) = b, as required. �

As the truth-singularity is preserved under <, by the ∧-conjunctivity of A (cf. Remark 3.26 with j = 0), (2.5), Lemmas
4.45, 3.5 and Corollary 2.17, we immediately get:

Corollary 4.46. Any truth-singular model of C is a model of CMP.

Lemma 4.47. Υ0 , {∼ix0 ∨ x1 | i ∈ 2} is a unitary congruence determinant for any ∧-conjunctive Σ0-matrix B such that
B ∈ DML.

Proof. Using the distributivity of B�Σ+, the ∧-conjunctivity of B as well as the identities (3.10), (3.11) and (3.12), it is routine
checking that θ , θBεΥ0

∈ Con(B). Finally, consider any 〈a, b〉 ∈ θ. Then, B |= (
∧
εΥ0)[x0/a, x1/b, x2/(a ∧B b)], being a

consequence of B |= (∀ω\2
∧
εΥ0)[x0/a, x1/b], implies (a ∈ DB)⇔ (b ∈ DB), as required. �

By the congruence-distributivity of lattice expansions, Lemma 3.27 and Corollary 2.5, we also have:

Lemma 4.48. Si(V(A)) = IS>1A.

Then, combining Lemmas 2.2, 3.27, 4.48, Remark 2.3 and Corollary 2.7, by the congruence-distributivity of lattice expan-
sions, we get the following quite important non-trivial algebraic inheritance result:

Corollary 4.49. Let B ∈ V(A). Then, Con(B) = Con(B�Σ0).

In particular, by (2.5), Lemmas 3.6, 3.5, 4.47, Corollaries 2.17, 4.49 and the ∧-conjunctivity of A (cf. Remark 3.26 with
j = 0), we also have:

Corollary 4.50. Υ0 is a unitary congruence[equality] determinant for Mod[∗](C).

Note that the following rules are satisfied in CMP, in view of (3.3) and (3.4) held in C by its weak ∨-disjunctivity (cf.
Remark 3.26 with j = 0):

(4.28) {x0, x1,∼ix0 ∨ x2} ` (∼ix1 ∨ x2),

where i ∈ 2. In this way, by Corollary 4.50, we get:

Corollary 4.51. Any B ∈ Mod∗(CMP) is truth-singular.

Theorem 4.52. CMP is defined by S , (Mod(C) ∩PSD(S∗∗(
−→
A))), and so by the class of all truth-singular models of C.

Proof. As
−→
A is truth-singular, while the truth-singularity is preserved under both P and S, by Corollary 4.46, we have

S ⊆ Mod(CMP). Conversely, consider any B ∈ (Mod∗(CMP) ∩ <(PSD(S∗(A)))), in which case B ∈ Mod(C), while, by
Corollary 4.51, B is truth-singular, whereas (B�Σ0) ∈ DML, and so, by the ∧-conjunctivity of A (cf. Remark 3.26 with j = 0)
and Lemma 4.45, DB = {b}, whereas b is a unit of B�Σ+. Moreover, B ∈ V(A), in which case, by Remark 2.3 and Lemma
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4.48, B is isomorphic to a subdirect product of some C ∈ (S>1A)I , where I is a set, and so there is some embedding e of
B into

∏
i∈I Ci such that, for each i ∈ I, hi , (πi ◦ e) ∈ hom(B,Ci) is surjective, in which case Ci, being non-one-element,

contains both t and f, and so, by Lemma 3.25, hi(b) = t. And what is more, for every a ∈ B distinct from b, by the injectivity
of e, there is some i ∈ I such that hi(a) 6= hi(b) = t. In this way, e is an isomorphism from B onto the subdirect product
(
∏
i∈I〈Ci, {t}〉)�(img e) of 〈〈Ci, {t}〉〉i∈I ∈ S∗∗(

−→
A)I . Hence, by (2.5), we get B ∈ I(S). Then, Corollaries 2.21, 4.46 and (2.5)

complete the argument. �

4.6. Axiomatic extensions of regular expansions.

Lemma 4.53. Suppose A is regular and {f, t} forms a subalgebra of it. Then, so does {f, b, t}.

Proof. By contradiction. For suppose {f, b, t} does not form a subalgebra of A, in which case there is some ϕ ∈ Fm3
Σ such

that A 3 ϕA(f, b, t) 6∈ {f, b, t} = (A \ {n}), and so we have ϕA(f, b, t) = n. Therefore, as t v b, by the regularity of A and the
reflexivity of v, we get ϕA(f, t, t) v n. Hence, ϕA(f, t, t) = n 6∈ {f, t}. This contradicts to the assumption that {f, t} forms a
subalgebra of A, as required. �

Lemma 4.54. Let B ∈ S(A). Suppose A is regular and B ∪ {b} forms a subalgebra of it. Then, CnωB(∅) ⊆ CnωA�(B∪{b})(∅).

Proof. Consider any ϕ ∈ (Fmω
Σ \CnωA�(B∪{b})(∅)), in which case there is some h ∈ hom(Fmω

Σ,A�(B ∪ {b})) such that h(ϕ) ∈
{f, n}. Take any b ∈ B 6= ∅. Define a g : Vω → B by setting:

g(xi) ,

{
b if h(xi) = b,

h(xi) otherwise,

for all i ∈ ω. Let e ∈ hom(Fmω
Σ,B) extend g. Then, e(xi) = g(xi) v h(xi), for all i ∈ ω, in which case, by the regularity of A,

we have e(ϕ) v h(ϕ), and so we eventually get e(ϕ) ∈ {f, n}, as required. �

Theorem 4.55. Suppose A is regular (in particular, Σ = Σ0[1]). Then, C has a proper consistent axiomatic extension iff it is
not maximally ∼-paraconsistent, in which case C 6n = CEM is the only proper consistent axiomatic extension of C.

Proof. We use Theorem 4.25, yielding the ”if” part immediately, by the consistency of A 6n, tacitly. Consider any A ⊆ Fmω
Σ

such that the axiomatic extension C ′ of C relatively axiomatized by A is both proper and consistent, in which case A 6= ∅,
while, by Proposition 2.12, the set S , (Mod(A) ∩ S∗(A)) 6= ∅ defining C ′ does not contain A. Take any B ∈ S, in which
case it is both consistent and, as A 6= ∅, truth-non-empty. Hence, {f, t} ⊆ B. Therefore, if n was in B, then B ∪ {b} would
be equal to A, in which case, by Lemma 4.54, A would belong to S. Thus, B ∈ {{f, t}, {f, b, t}}. Then, by Lemma 4.53, we
conclude that {f, b, t} forms a subalgebra of A. And what is more, in that case, by Lemma 4.54, we have A 6n ∈ S ⊆ S∗(A 6n),
and so, by (2.5), we get C ′ = C 6n, as required. �

4.7. Self-extensionality.

Theorem 4.56. The following are equivalent:
(i) C is self-extensional;
(ii) C has the property of Weak Contraposition with respect to ∼;
(iii)

←−
A is a model of C;

(iv) C is defined by {A,
←−
A};

(v) (ψ ∈ C(φ))⇔ (A |= (φ / ψ)), for all φ, ψ ∈ Fmω
Σ;

(vi) there is some class K of Σ-algebras satisfying semilattice identities for ∧ such that (ψ ∈ C(φ))⇔ (K |= (φ / ψ)), for
all φ, ψ ∈ Fmω

Σ;
(vii) (ψ ≡C φ)⇔ (A |= (φ ≈ ψ)), for all φ, ψ ∈ Fmω

Σ;
(viii) there is some class K of Σ-algebras such that (ψ ≡C φ)⇔ (K |= (φ ≈ ψ)), for all φ, ψ ∈ Fmω

Σ;
(ix) there is an injective homomorphism from

←−
A to A;

(x) A is specular;
(xi) µ is an isomorphism from

←−
A onto A;

(xii)
←−
A is isomorphic to A;

(xiii) C is defined by
←−
A ;

(xiv)
−→
A is a model of C;

(xv) any ∧-conjunctive truth-non-empty Σ-matrix B such that B ∈ V(A) is a model of C;
in which case IV(C) = V(A).

Proof. First, assume (i) holds. Consider any φ, ψ ∈ Fmω
Σ such that ψ ∈ C(φ). Then, since A is both ∧-conjunctive and

∨-disjunctive (cf. Remark 3.26 with j = 0), we have C(φ ∧ ψ) = C({φ, ψ}) = C(φ), in which case, by the validity of (3.12) in
A and (i), we get C(∼ψ) ⊇ C(∼φ ∨ ∼ψ) = C(∼(φ ∧ ψ)) = C(∼φ) 3 ∼φ, and so (ii) holds.

In general, note that, since A is both finite and ∧-conjunctive (cf. Remark 3.26 with j = 0), in which case C is inductive and
∧-conjunctive, in view of Proposition 2.19, any ∧-conjunctive truth-non-empty Σ-matrix B is a model of C iff C(φ) ⊆ CnωB(φ),
for all φ ∈ Fmω

Σ. In particular, (v)⇒(xv) is immediate, while (ii)⇒(iii) is by Remark 3.26 with j = 1 and the following claim:

Claim 4.57. Suppose C has the Property of Weak Contraposition with respect to ∼. Then, C(φ) ⊆ Cnω←−A (φ), for all φ ∈ Fmω
Σ.

Proof. Consider any ψ ∈ C(φ), in which case ∼φ ∈ C(∼ψ), and any h ∈ hom(Fmω
Σ,A). Suppose h(φ) ∈ D

←−
A , in which case

h(∼φ) = ∼Ah(φ) 6∈ DA, and so ∼Ah(ψ) = h(∼ψ) 6∈ DA, in which case h(ψ) ∈ D
←−
A , as required. �
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Likewise, assume (xiv) holds. Consider any φ ∈ Fmω
Σ, any ψ ∈ C(φ), and any h ∈ hom(Fmω

Σ,A) such that h(φ) ∈ D
←−
A .

Then, by the structurality of C, Corollary 3.16(3.9) and Remark 3.26 with j = 0, (σ+1(ψ) ∨ x0) ∈ C(σ+1(φ) ∨ x0). Let
g ∈ hom(Fmω

Σ,A) extend [x0/b;xi+1/h(xi)]i∈ω, in which case (g ◦ σ+1) = h, and so we have g(σ+1(φ) ∨ x0) = (h(φ) ∨A b) = t.
Hence, by (xiv), we get (h(ψ) ∨A b) = g(σ+1(ψ) ∨ x0) = t. Therefore, we eventually get h(ψ) ∈ D

←−
A . Thus, (iii) holds.

On the other hand, DA and D
←−
A are exactly all non-empty proper prime filters of A�Σ+ (cf. Remark 3.26). Therefore,

(iv)⇒(v) is by the Prime Ideal Theorem for distributive lattices (in particular, for (A�Σ+) = D2
2). In addition, both (v)⇒(vii)

and (vi)⇒(viii) are by the semilattice identities for ∧ that are true in A, while (vi/viii) is a particular case of (v/vii), respectively,
whereas (viii)⇒(i) is immediate.

Now, assume (iii) holds.
In that case, (iv) is evident.
Moreover,

←−
A is consistent and, being finite, is finitely generated. In addition, by Lemma 3.4 and Remark 3.26 with j = 1,←−

A is simple and ∨-disjunctive. Then, by Lemma 2.20, there is some finite set I, some I-tuple C of submatrices of A, some
subdirect product D of C and some g ∈ homS

S(D,
←−
A), in which case, by Remark 3.14 and (2.5), D is consistent and ∨-

disjunctive, and so, by Corollary 3.15, there is some i ∈ I such that h , (πi�D) ∈ homS
S(D, Ci). Moreover, by Lemmas 3.4, 3.6

and Remark 3.26 with j = 0, Ci is simple. Hence, by Proposition 2.16, (kerh) = a(D) = (ker g). Therefore, by Proposition
2.15, e , (h ◦ g−1) ∈ homS(

←−
A , Ci) ⊆ hom(

←−
A ,A) is injective, and so (ix) holds.

Furthermore, (ix)⇒(x) is by the following claim:

Claim 4.58. Any injective homomorphism from
←−
A to A is specular.

Proof. Consider any injective e ∈ hom(
←−
A ,A). Then, since (∼Aa = a) ⇔ (a ∈ {n, b}), for all a ∈ A, we have both e[{n, b}] ⊆

{n, b} and, by the injectivity of e, e[{f, t}] ⊆ {f, t}. Moreover, as n, t ∈ D
←−
A , while ({n, b}∩DA) = {b}, whereas ({f, t}∩DA) =

{t}, we then get e(n) = b and e(t) = t, respectively. Hence, by the injectivity of e, we eventually get e(b) = n and e(f) = f, as
required. �

Finally, (x)⇒(xi) is immediate, while (xii/iii/xiv) is a particular case of (xi/xiii/xv), respectively, whereas (xii)⇒(xiii) is by
(2.5). After all, (vii) implies IV(C) = V(A), as required. �

As a first immediate generic consequence of Theorems 4.20, 4.56(i)⇒(x) and Lemma 4.34 with B = {b, n} applicable to all
bilattice expansions at once (cf. Subsubsection 6.1.2), we have:

Corollary 4.59. Suppose {f, t} does not form a subalgebra of A. Then, C is not self-extensional. In particular, C is
∼-subclassical, whenever it is self-extensional.

Corollary 4.60. Suppose C is self-extensional. Then, {n(, f, t)} forms a subalgebra of A iff {b(, f, t)} does so. In particular,
the following hold:

(i) the following are equivalent:
a) C holds Relevance Principle;
b) C is purely inferential;
c) C has no inconsistent formula;
d) {n} forms a subalgebra of A;
e) {b} forms a subalgebra of A;
f) there is no ψ ∈ Fm1

Σ such that ψA[A] = {t};
g) there is no φ ∈ Fm1

Σ such that φA[A] = {f}.
(ii) [providing C is not purely inferential,] CEM is{ maximally} ∼-paraconsistent iff CR is [non-]inferentially paracomplete,

in which case, when A6b is regular (in particular, Σ = Σ0[1]), CR is maximally [non-]inferentially paracomplete, while
any extension of C is both ∼-paraconsistent and [non-]inferentially paracomplete iff it is a sublogic of CEM ∩ CR, in
its turn, being an axpansion of LP ∩K3.

Proof. Since µ[{n(, f, t)}] = {b(, f, t)}, in view of Theorems 4.15(i)⇔(iii), 4.25, 4.35, 4.36, 4.56(i)⇒(x), Lemmas 4.13, 4.14 and
Corollary 4.24, it only remains to prove the equivalence of the subitems f) and g) to others within (i).

First, f) is a particular case of b). Next, f)⇔g) is by the fact ∼A(f/t) = (t/f).
Finally, assume {b} does not form a subalgebra of A. Then, there is some ϕ ∈ Fm1

Σ such that ϕA(b) 6= b, in which
case ϕA(n) = µ(ϕA(b)) and ϕA[{f, t}] ⊆ {f, t}, by Lemma 4.34 and Theorem 4.56(i)⇒(x), and so ψA[A] = {t}, where
ψ , (x0 ∨ (ϕ ∨ ∼ϕ)) ∈ Fm1

Σ. Thus, f)⇒e) holds, as required. �

Corollary 4.60(i)b)⇐f)⇔g) collectively with Theorem 4.8 imply:

Corollary 4.61. Any self-extensional four-valued expansion of CB is not purely inferential iff it is definitionally equivalent to
an expansion of CBB.

This clarifies the meaning of the bounded version CBB of CB. Subsubsection 6.1.3 shows that the condition of self-
extensionality cannot be omitted in the formulations of Corollaries 4.60 and 4.61. As for Corollary 4.60(ii) (in case A6b is
regular), it clarifies the meaning of the self-extensional (in view of Lemma 4.63 below) meet CEM ∩CR to be studied far more
in Paragraph 6.1.4.1.
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4.7.1. Self-extensional extensions. Note that (DM4�{f, t}) ∈ BL 63 (DM4�{f, b, t}) ∈ KL 63 DM4. In this way, by Remark 2.3
and Lemma 4.48, we immediately get:

Corollary 4.62. Suppose {f, t} forms a subalgebra of A and {f, b, t} does not form [resp., forms] a subalgebra of A. Then,
there is no non-trivial proper subvariety of V(A) other than V(A�{f, t}) relatively axiomatized by (3.14)[ and V(A�{f, b, t})
relatively axiomatized by (3.13)].

Lemma 4.63. Suppose µ ∈ hom(A,A) and (both ){f, b, t}( and {n}) forms a subalgebra of A. Then, the logic C ′ of
S , {A�{f, b, t},

←−
A�{f, b, t}} is a proper inferentially consistent inductive self-extensional ∨-disjunctive non-pseudo-axiomatic(

purely inferential) both paracomplete and ∼-paraconsistent extension of C, V(A�{f, b, t}) being its intrinsic variety, and is also
defined by {A�{f, b, t},A�{f, n, t}}, and so is equal to CEM ∩ CR and is relatively axiomatized by (4.19).

Proof. As both S and all members of it are finite, by (2.5) and Theorem 4.56(x)⇒(iii), C ′ is an inductive extension of C. And
what is more, µ�{f, n, t} is an isomorphism from A�{f, n, t} onto

←−
A�{f, b, t}, in which case, by (2.5), C ′ is equally defined by

{A�{f, b, t},A�{f, n, t}}, and so is equal to CEM ∩ CR, in view of Theorem 4.25(iii)→(iv) and Corollary 4.31. In particular, it
is both paracomplete and ∼-paraconsistent, for A�{f, b, t} is ∼-paraconsistent, while A�{f, n, t}} is paracomplete. Moreover,
(4.1), being true in S, is not so in A under [x0/b, x1/n]. Hence, C ′ 6= C. On the other hand, {t} and {b, t} are exactly all
proper non-empty prime filters of the three-element chain distributive lattice (A�{f, b, t})�Σ+. In particular, by Corollary 3.16,
C ′ is ∨-disjunctive, while, by Theorems 3.21 and 3.24, it is relatively axiomatized by (4.19), for {{f, n, t}, {f, b, t}}O is the
lower cone of S∗(A) relatively axiomatized by (4.1). And what is more, by the Prime Ideal Theorem for distributive lattices,
≡C′ is the set of all Σ-identities true in A�{f, b, t}, i.e., in V(A�{f, b, t}). Thus, C ′ is self-extensional, V(A�{f, b, t}) being its
intrinsic variety. Furthermore, as all members of S are consistent and truth-non-empty, C ′ is inferentially consistent and, by
Proposition 2.19, is non-pseudo-axiomatic.( Finally, A�{n} is a truth-empty submatrix of A�{f, n, t}. Thus, by (2.5), C ′ is
purely inferential, as required.) �

After all, combining Propositions 2.18, 2.19, Remarks 2.8, 2.9, Theorems 4.20, 4.21, 4.25, 4.56, Lemmas 4.13, 4.63, Corollaries
4.59, 4.62 and Example 2.11, we eventually get:

Theorem 4.64. Suppose C is self-extensional and[ not] maximally ∼-paraconsistent( as well as purely inferential). Then,
there is no inferentially consistent proper self-extensional (non-pseudo-axiomatic/purely-inferential )extension of C other than
CPC

(/+0)[ and CEM∩CR], being, in its[their] turn, both so and inductive[, while the former being a proper extension of the latter].

On the other hand, any logic is either purely-inferential or, otherwise, non-pseudo-axiomatic. Therefore, by Remarks 2.8,
2.10, 3.26, 3.14, Corollaries 3.16, 4.59, 4.60, Theorems 3.21, 4.20, 4.64 and Lemma 4.63, we also get the following interesting
non-trivial consequence:

Corollary 4.65. Suppose C is self-extensional[ and maximally ∼-paraconsistent]. Then, any extension of C is ∨-disjunctive
if[f ] it is self-extensional.

4.7.2. Semantics of miscellaneous extensions versus self-extensionality. By Theorems 4.52, 4.56(i)⇔(xiv) and (2.5), we first
get:

Corollary 4.66. C is self-extensional iff CMP is defined by
−→
A .

Likewise, we also have the following one more characterization of the self-extensionality of C:

Theorem 4.67. C is self-extensional iff CNP is defined by A×
−→
A .

Proof. We use Theorem 4.56(i)⇔(xiv) tacitly. First, ∆A×∆A is an embedding of
−→
A into A×

−→
A . In this way, (2.5) yields the

”if” part. Conversely, assume C is self-extensional. Then, A ×
−→
A is a model of C. Moreover, {a,∼Aa} ⊆ {t}, for no a ∈ A.

Therefore, A×
−→
A is not ∼-paraconsistent, so it is a model of CNP. Finally, consider any finite set I, any C ∈ S(A)I and any

subdirect product D ∈ Mod(C ′) of C, in which case D is a non-∼-paraconsistent submatrix of AI . Put J , hom(D,A×
−→
A).

Consider any a ∈ (D\DD), in which case D is consistent, and so, by Lemma 4.39, there is some g ∈ hom(D,
−→
A) 6= ∅. Moreover,

there is some i ∈ I, in which case f , (πi�D) ∈ hom(D,A), such that f(a) 6∈ DA. Then, h , (f × g) ∈ J and h(a) 6∈ DA×
−→
A .

In this way, (
∏

∆J) ∈ homS(D, (A ×
−→
A)J). Thus, by (2.5) and Corollary 2.21, CNP is finitely-defined by A ×

−→
A . Then, the

finiteness of A completes the argument. �

5. Paraconsistent finitely-many-valued logics

The present section collectively with Subsection 6.2 exemplifying the former incorporates the material prepared by and
announced in 1995 (cf. the paragraph after Theorem 2.1 in [14] and the reference [Pyn 95b] therein).

5.1. Three-valued paraconsistent logics with subclassical negation. Fix any (possibly, secondary) unary connective o
of Σ.

A Σ-matrix A is said to be o-superclassical, provided A = {f, b, t}, DA = {b, t}, oAt = f, oAf = t and oAb ∈ DA, in which case
it is three-valued, both consistent and false-singular with `A = f as well as o-paraconsistent, while {f, t} forms a subalgebra of
A�{o}, in which case o is clearly a subclassical negation for the logic of (A�{o})�{f, t}, and so for that of A, in view of (2.5). In
this way, we have argued the routine part (viz., (ii)⇒(i)) of the following preliminary marking the framework of the present
subsection:

Proposition 5.1. Let C be a Σ-logic. Then, the following are equivalent:
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(i) C is both three-valued and o-paraconsistent, while o is a subclassical negation for C;
(ii) C is defined by a o-superclassical Σ-matrix.

Proof. Assume (i) holds. Let B be any three-valued Σ-matrix defining C. Define an e : {f, b, t} → B as follows. In that case, B
is ∼-paraconsistent, so there are some e(b) ∈ DB such that ∼Be(b) ∈ DB and some e(f) ∈ (B \DB), in which case e(f) 6= e(b).
Next, by (2.7) with m = 1 and n = 0, there is some e(t) ∈ DB such that ∼Be(t) 6∈ DB, in which case e(f) 6= e(t) 6= e(b). In
this way, e : {f, b, t} → B is injective, and so bijective, for |B| = 3. Hence, it is an isomorphism from A , 〈e−1[B], {b, t}〉
onto B. Therefore, by (2.5), C is defined by A. Furthermore, ∼Ab ∈ DA, while ∼At 6∈ DA, in which case ∼At = f, and so it
only remains to show that ∼Af = t. We do it by contradiction. For suppose ∼Af 6= t, in which case we have the following two
exhaustive cases:

(1) ∼Af = f.
This contradicts to (2.7) with m = 0 and n = 1.

(2) ∼Af = b.
As ∼Ab ∈ {b, t}, we then have the following two exhaustive subcases:
(a) ∼Ab = b.

Then, ∼A∼A∼Aa = b ∈ DA, for each a ∈ DA. This contradicts to (2.7) with m = 3 and n = 0.
(b) ∼Ab = t.

Then, ∼A∼A∼Af = f. This contradicts to (2.7) with m = 0 and n = 3.
Thus, in any case, we come to a contradiction, as required. �

Proposition 5.2. Any three-valued o-paraconsistent Σ-logic C with subclassical negation o is minimally three-valued.

Proof. By contradiction. For supposed C is defined by a Σ-matrix A such that |A| < 3, in which case it is o-paraconsistent,
and so both consistent and truth-non-empty. Therefore, there is some a ∈ A such that DA = {a}. Hence, ∼Aa = a. This
contradicts to (2.7) with m = 1 and n = 0, as required. �

Remark 5.3. By Example 3.3 with j = 0 and ~k = ∆2, Υo is a unary unitary equality determinant for any o-superclassical
Σ-matrix A. �

5.1.1. Maximal paraconsistency of three-valued paraconsistent logics with subclassical negation. Fix any o-superclassical Σ-
matrix A. Let C be the logic of A.

Then, a ternary b-relative (weak classical )conjunction for A is any ϕ ∈ Fm3
Σ such that ϕA(b, f, t) = f = ϕA(b, t, f) or,

equivalently, the rules of the form {x0, ox0, ϕ[x2−i/(oxi+1)]} ` xi+1, where i ∈ 2, are satisfied in C.
We start from proving the following key lemma ”killing two birds (both the sufficiency part of the characterization of

the maximal o-paraconsistency of three-valued o-paraconsistent logics with subclassical negation o and the uniqueness of a
o-superclassical matrix defining any given maximally o-paraconsistent three-valued logic with subclassical negation o) with one
stone”:

Lemma 5.4 (Three-Valued Key Lemma). Let B a( simple) finitely-generated o-paraconsistent model of C. Suppose either A
has a ternary b-relative conjunction or {b} does not form a subalgebra of A. Then, A is embeddable into B/a(B) (resp., into
B).

Proof. Put E , (B/a(B) (resp., E , B). Then, by Lemma 2.20 with M = {A}, there are some set I, some I-tuple C constituted
by submatrices of A, some subdirect product D of C and some g ∈ homS

S(D, E), in which case, by (2.5), D is o-paraconsistent,
and so there are some a ∈ DD such that ∼Da ∈ DD and some b ∈ (D \ DD). Then, by Lemma 4.1, D 3 a = (I × {b}).
Consider the following complementary cases:

(1) {b} forms a subalgebra of A.
Then, A has a ternary b-relative conjunction ϕ ∈ Fm3

Σ. Put c , ϕD(a, b, oDb) ∈ D, d , oDc ∈ D and J , {i ∈ I |
πi(b) 6= b} 6= ∅, for b 6∈ DD. Given any ~a ∈ A2, set (a0|a1) , (({a0} × J) ∪ ({a1} × (I \ J))) ∈ D. Then, we have
c = (f|b), a = (b|b) and d = (t|b). In this way, since J 6= ∅, while {b} forms a subalgebra of A, {〈a′, (a′|b)〉 | a′ ∈ A}
is an embedding of A into D.

(2) {b} does not form a subalgebra of A.
Then, there is some ϕ ∈ Fm1

Σ such that ϕA(b) 6= b, in which case {ϕA(b), oAϕA(b)} = {f, t}, and so D ⊇ {a, ϕD(a),
oDϕD(a)} = {I × {a′} | a′ ∈ A}. Therefore, as I 6= ∅, for b 6∈ DD, {〈a′, I × {a′}〉 | a′ ∈ A} is an embedding of A into
D.

Thus, anyway, there is an injective e ∈ homS(A,D), in which case (g ◦ e) ∈ homS(A, E), and so Corollary 2.14, Lemma 3.4 and
Remark 5.3 complete the argument. �

Lemma 5.5. Suppose[ C is ∼-subclassical,] A has no ternary b-relative conjunction and {b} forms a subalgebra of A. Then,
C has a proper o-paraconsistent[ o-subclassical] extension[, in which case o is a subclassical negation for it].

Proof. Let B be the submatrix of A3 generated by {〈b, b, b〉, 〈b, f, t〉, 〈b, t, f〉}. If 〈f, a, b〉 was in B, for any a, b ∈ A, then there
would be some ϕ ∈ Fm3

Σ such that ϕA(b, b, b) = f, in which case {b} would not form a subalgebra of A. Therefore, as oAt = f,
we conclude that ((({f, t} × A) × A) ∩ B) = ∅. Likewise, if 〈b, f, f〉 was in B then there would be some ϕ ∈ Fm3

Σ such that
ϕA(b, f, t) = f = ϕA(b, t, f), in which case it would be a ternary b-relative conjunction for A. Therefore, as oAt = f and oAb = b,
we conclude that ({〈b, f, f〉, 〈b, t, t〉} ∩ B) = ∅. Thus, B = {〈b, b, b〉, 〈b, f, t〉, 〈b, t, f〉}, in which case DB = {〈b, b, b〉} 6= B, and
so, as oAb = b, B is ∼-paraconsistent, while the rule x0 ` ox0 is true in B, and so is its logical consequence

(5.1) {x0, x1, ox1} ` ox0,
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not being true in A under [x0/t, x1/b].[ Moreover, (5.1) is true in any o-classical model C′ of C, for C′ is not o-paraconsistent].
In this way, taking (2.5) into account, the logic of {B[, C′]} is a proper o-paraconsistent[ o-subclassical] extension of C, as
required. �

Theorem 5.6. [Suppose C is o-subclassical. Then, ]C has no proper o-paraconsistent[ o-subclassical] extension iff either A
has a ternary b-relative conjunction or {b} does not form a subalgebra of A.

Proof. Assume either A has a ternary b-relative conjunction or {b} does not form a subalgebra of A. Consider any o-
paraconsistent extension C ′ of C, in which case x1 6∈ T , C ′({x0, ox0}) ⊇ {x0, ox0}, while, by the structurality of C ′, 〈Fmω

Σ, T 〉
is a model of C ′ (in particular, of C), and so is its finitely-generated o-paraconsistent submatrix B , 〈Fm2

Σ, T ∩ Fm2
Σ〉, in view

of (2.5). Then, by Lemma 5.4, A is embeddable into B/a(B), in which case, by (2.5), it is a model of C ′, and so C ′ = C.
Thus, C is maximally o-paraconsistent. In this way, Lemma 5.5 completes the argument. �

On the other hand, Subsubsections 6.1.1 and 6.1.2 definitely show that the maximal paraconsistency is not at all a prerogative
of merely three-valued logics. And what is more, as it is shown in the next subsection, there is no limit of the number of truth
values, for which minimally many-valued maximally paraconsistent logics exist.

Lemma 5.7. Let A and B be two o-superclassical Σ-matrices and e ∈ homS(A,B). Then, e is diagonal. In particular, A = B.

Proof. In that case, (A�{o}) = (B�{o}) is o-superclassical and e ∈ homS(A�{o},B�{o}). Therefore, by Lemma 3.7 and Remark
5.3, e is diagonal, and so A = B, for A = B, as required. �

After all, the second ”bird” is as follows:

Theorem 5.8. Let B be a o-superclassical Σ-matrix. Suppose B is a model of C (in particular, C is defined by B) and C is
maximally o-paraconsistent. Then, B = A.

Proof. Then, by Lemma 3.4 and Remark 5.3, B is a simple finite (and so finitely-generated) o-paraconsistent model of C.
Hence, by Lemma 5.4 and Theorem 5.6, A is embeddable into B. In this way, Lemma 5.7 completes the argument. �

In view of Proposition 5.1 and Theorem 5.8, the unique o-superclassical Σ-matrix defining a given three-valued maximally
o-paraconsistent Σ-logic C with subclassical negation o is said to be characteristic for C.

5.1.2. Weakly conjunctive three-valued paraconsistent logics with subclassical negation. Fix (in addition to o) any (possibly,
secondary) binary connective � of Σ.

Remark 5.9. Given any weakly �-conjunctive o-superclassical Σ-matrix A, (x1 ∧ x2) is clearly a ternary b-relative conjunction
for A. �

By Proposition 5.1, Theorems 5.6, 5.8 and Remark 5.9, we immediately get:

Corollary 5.10. Any three-valued o-paraconsistent weakly �-conjunctive Σ-logic C with subclassical negation o is maximally
o-paraconsistent.

Corollary 5.11. Let A and B be o-superclassical Σ-matrices and C the logic of A. Suppose B is a model of C (in particular,
C is defined by B) and C is weakly �-conjunctive. Then, B = A.

Since the three-valued submatrix arising in the formulation of the following corollary is both ∧-conjunctive and ∼-supercla-
ssical, Proposition 5.1 and Corollary 5.10 yield a supplementary generic insight into the following particular case of Corollary
4.24:

Corollary 5.12. Let A be as in Section 4. Suppose {f, b, t} forms a subalgebra of A. Then, the logic of A�{f, b, t} is maximally
∼-paraconsistent.

5.1.2.1. Subclassical three-valued paraconsistent weakly conjunctive logics. Fix any ∼-superclassical weakly �-conjunctive Σ-
matrix A. Let C be the logic of it.

Lemma 5.13. Let B a (simple )finitely generated consistent model of C. Then, the following hold:
(i) B is o-paraconsistent, if {f, t} does not form a subalgebra of A;
(ii) A�{f, t} is embeddable into B/a(B) (resp., into B itself), if {f, t} forms a subalgebra of A.

Proof. Put E , (B/a(B)) (resp., E , B). Then, by Lemma 2.20 with M = {A}, there are some n ∈ ω, some n-tuple C
constituted by consistent submatrices of A, some subdirect product D of C and some g ∈ homS

S(D, E), in which case, by (2.5),
D is consistent, and so, in particular, n 6= 0. Hence, by Lemma 3.8, D 3 a , (n×{f}), in which case D 3 b , ∼Da = (n×{t}}).
Consider the following respective cases:

(i) {f, t} does not form a subalgebra of A.
Then, there is some ϕ ∈ Fm2

Σ such that ϕA(f, t) = b. Then, D 3 c , ϕD(a, b) = (I × {b}), in which case oDc ∈ DD,
and so D, being consistent, is o-paraconsistent, and so is B, in view of (2.5), as required.

(ii) {f, t} forms a subalgebra of A.
Then, F , (A�{f, t}) is o-classical, in which case it is simple, in view of Example 3.2 and Lemma 3.4. Finally, as
{n × {d} | d ∈ F} ⊆ D and n 6= 0, e , {〈d, n× {d}〉 | d ∈ F} is an embedding of F into D, in which case,
(g ◦ e) ∈ homS(F , E), and so Corollary 2.14 completes the argument. �

Theorem 5.14. C is o-subclassical iff {f, t} forms a subalgebra of A, in which case the logic of A�{f, t} is the only o-classical
extension of C.
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Proof. Let B be a o-classical model of C, in which case it is two-valued, and so finite (in particular, finitely generated), consistent
and simple (cf. Example 3.2 and Lemma 3.4) but not ∼-paraconsistent.

First, by Lemma 5.13(i), {f, t} forms a subalgebra of A.
Conversely, assume {f, t} forms a subalgebra of A, in which case, by (2.5), D , (A�{f, t}) is a o-classical model of C, and

so, by (2.5), Corollary 3.11 and Lemma 5.13(ii), we eventually get D = B, as required. �

In view of Theorem 5.14, the unique o-classical extension of C (if any) is referred to as characteristic for C and is denoted
by CPC.

Theorem 5.15. Let C ′ be a consistent extension of C. Suppose {f, t} forms a subalgebra of A. Then, A�{f, t} is a model of
C ′.

Proof. Then, x0 6∈ C ′(∅), while, by the structurality of C ′, 〈Fmω
Σ, C

′(∅)〉 is a model of C ′ (in particular, of C), and so is its
consistent finitely generated submatrix 〈Fm1

Σ,Fm1
Σ ∩C ′(∅)〉, in view of (2.5). In this way, (2.5) and Lemma 5.13(ii) complete

the argument. �

5.1.3. Disjunctive three-valued paraconsistent logics with subclassical negation. Fix (in addition to o) a (possibly, secondary)
binary connective Y of Σ and a o-superclassical Σ-matrix A. Let C be the logic of A. Then, by Corollary 3.17, we first have:

Corollary 5.16. C is[ weakly] Y-disjunctive iff A is so.

Corollary 5.17. Any o-classical extension of C is[ weakly] Y-disjunctive, whenever C is so.

Theorem 5.18. Let B be a o-superclassical Σ-matrix. Suppose B is a model of C (in particular, C is defined by B) and C is
Y-disjunctive. Then, B = A.

Proof. In that case, by Corollary 3.17, Lemma 3.4 and Remark 5.3, B is a Y-disjunctive simple o-paraconsistent finite (in
particular, finitely-generated) model of C. Hence, by Lemma 2.20 with M = {A}, there are some finite set I, some I-tuple C
of consistent submatrices of A, some subdirect product D of C and some g ∈ homS

S(D,B). Then, by Remark 3.14 and (2.5),
D is Y-disjunctive and o-paraconsistent, in which case it is consistent, and so, by Corollary 3.15, there is some i ∈ I such that
h , (πi�D) ∈ homS

S(D, Ci). Moreover, as Ci is consistent, we have f ∈ Ci, and so t = oAf ∈ Ci. And what is more, since D is
o-paraconsistent, there is some a ∈ DD such that oDa ∈ DD, in which case, by Lemma 4.1, Ci 3 πi(a) = b, and so Ci = A. On
the other hand, by Lemma 3.4 and Remark 5.3, A is simple. Therefore, by Proposition 2.16, we have (kerh) = a(D) = (ker g).
In this way, by Proposition 2.15, we eventually conclude that g ◦ h−1 is an isomorphism from A onto B, in which case Lemma
5.7 completes the argument. �

5.1.3.1. Subclassical three-valued paraconsistent disjunctive logics. Note that S∗(A) \ {A} is either the singleton {A�{f, t}},
if {f, t} forms a subalgebra of A, or empty, otherwise. In this way, the fact that o-[super]classical matrices are not [resp., are]
o-paraconsistent, by Corollary 5.16, Lemma 4.26 and Theorem 3.21, we then get:

Theorem 5.19. Suppose C is Y-disjunctive and {f, t} does not form [resp., forms] a subalgebra of A. Then, there is no [resp.,
a unique] proper consistent Y-disjunctive extension of C[, in which case it is defined by A�{f, t} and relatively axiomatized by
(4.10)].

Recall that (4.10) is nothing but the Resolution rule. Since any o-classical Σ-logic is consistent but not o-paraconsistent, as
opposed to C, by (2.5), Corollary 5.17 and Theorem 5.19, we eventually get the following ”disjunctive” analogue of Theorem
5.14:

Corollary 5.20. [Suppose C is Y-disjunctive. Then, ]C is o-subclassical if[f ] {f, t} forms a subalgebra of A, in which case the
logic of A�{f, t} is a[ unique] o-classical extension of C.

Remark 5.21. Suppose {f, t} forms a subalgebra of A and A�{f, t} is weakly Y-disjunctive. Then, o(ox1 Y ox2) is clearly a ternary
b-relative conjunction for A. �

Combining Corollaries 5.16, 5.20, Remarks 3.14, 5.21, Proposition 5.1 and Theorem 5.6, we then get:

Theorem 5.22. Any Y-disjunctive o-subclassical three-valued o-paraconsistent Σ-logic is maximally o-paraconsistent.

5.2. Minimally n-valued maximally paraconsistent subclassical logics. Fix any n ∈ (ω \ 3).
Let Σ[+] , ([Σ+∪]{⊃,∼}∪ {∇i | i ∈ ((n− 1) \ 1)}), where ⊃ is binary, while other connectives [beyond Σ+] are unary, A[+]

the Σ[+]-matrix such that A[+] , n, DA[+] , (n \ 1), ∼A[+] , ∼Kn [, (A[+]�Σ+) , Dn],

∇A[+]
i (a) ,

{
a if a ∈ {0, n− 1},
i otherwise,

for all i ∈ ((n− 1) \ 1) and all a ∈ n, and

(a ⊃A[+] b) ,

{
n− 1 if a 6 b,

0 otherwise,

for all a, b ∈ n, and C[+] the logic of A[+], in which case it is ∼-paraconsistent[ and both ∧-conjunctive and ∨-disjunctive], for
A[+] is so[, in view of Corollary 3.16]. Note that the injection e′ , {〈0, f〉, 〈n− 1, t〉} is an isomorphism from A[+]�{0, n − 1}
onto the ∼-classical matrix with underlying algebra e′[A[+]�{0, n − 1}], in which case, by (2.5), C[+] is ∼-subclassical, so, in
particular, ∼ is a subclassical negation for C[+].

The following key result ”kills two birds (both minimal n-valuedness and maximal paraconsistency of C[+]) with one stone”:
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Lemma 5.23 (Many-Valued Key Lemma). Let B be a ∼-paraconsistent model of C[+]. Then, there is a submatrix D of B
such that A[+] is embeddable into D/a(D).

Proof. In that case, there are some a ∈ DB such that ∼Ba ∈ DB and some b ∈ (B \ DB). Let D be the subalgebra of B

generated by {a, b}. Then, in view of (2.5), the submatrix D , (B�D) of B is a finitely-generated ∼-paraconsistent model of
C[+]. Therefore, by Lemma 2.20 with M = {A[+]}, there are some set I, some I-tuple C constituted by submatrices of A[+],
some subdirect product E of C and some g ∈ homS

S(E ,D/a(D)), in which case, by (2.5), E is ∼-paraconsistent (in particular,
consistent), and so I 6= ∅. Take any c ∈ DE such that ∼Ec ∈ DE . Then, by Lemma 4.1, c ∈ ((n − 1) \ 1)I . Hence, for every
j ∈ ((n − 1) \ 1), we have E 3 ∇E

j c = (I × {j}). Moreover, E 3 (c ⊃E c) = (I × {n − 1}) and E 3 ∼E(c ⊃E c) = (I × {0}).
Thus, {I × {k} | k ∈ n} ⊆ E, in which case, as I 6= ∅, e , {〈k, I × {k}〉 | k ∈ n} is an embedding of A[+] into E , and so
(g ◦ e) ∈ homS(A[+],D/a(D)). Moreover, {x0 ⊃ x1, x1 ⊃ x0} is clearly a binary equality determinant for A[+]. In this way,
Corollary 2.14 and Lemma 3.4 complete the argument. �

Theorem 5.24. C[+] is maximally ∼-paraconsistent.

Proof. Consider any ∼-paraconsistent extension C ′ of C[+], in which case x1 6∈ T , C ′({x0,∼x0}), and so, by the structurality
of C ′, 〈Fmω

Σ, T 〉 is a ∼-paraconsistent model of C ′, and so of C[+]. Then, by Lemma 5.23 and (2.5), A[+] is a model of C ′, as
required. �

Theorem 5.25. Let M be a class of Σ[+]-matrices. Suppose C[+] is defined by M. Then, there is some B ∈ M such that
n 6 |B|. In particular, C[+] is minimally n-valued.

Proof. As C[+] is ∼-paraconsistent, there must be some ∼-paraconsistent B ∈ M, in which case it is a model of C[+], and so,
by Lemma 5.23, there is some submatrix D of B such that A[+] is embeddable into D/a(D). Thus, n = |A[+]| 6 |D/a(D)| 6
|D| 6 |B|, as required. �

On the other hand, we have:

Proposition 5.26. Let Σ′[+] , (Σ[+] \ {⊃}). Then, the Σ′[+]-fragment of C[+] is defined by a[ both ∧-conjunctive and ∨-
disjunctive] ∼-superclassical Σ′[+]-matrix[, being a definitional expansion of DM4�{f, b, t}, and so the fragment is a definitional
expansion of LP ]. In particular, it is not minimally n-valued, unless n = 3.

Proof. Let S[+] be the[ both ∧-conjunctive and ∨-disjunctive] ∼-superclassical Σ′[+]-matrix given by ∼S[+]b , b[, (S[+]�Σ+) ,

(D2
2�{f, b, t})] and ∇S[+]

i (a) , a, for all a ∈ {f, b, t} and all i ∈ ((n− 1) \ 1)[, in which case S+ is an expansion of DM4�{f, b, t}
by diagonal operations, and so a definitional one]. Then, ({〈n− 1, t〉, 〈0, f〉} ∪ (((n − 1) \ 1) × {b})) ∈ homS

S(A[+]�Σ′[+],S[+]).
In this way, (2.5) completes the argument. �

This highlights the special role of involving the implication connective ⊃ and shows that the implication-less fragment of
C+ yields nothing else that the logic of paradox had done in this connection (cf. Theorem 2.1 of [14] and Subsubsection 6.2.1).

6. Applications and Examples

6.1. Four-valued expansions of Belnap’s logic. Here, we consider applications of Theorems 4.17, 4.25, 4.20, 4.15, 4.56(i)⇔
(x), Lemmas 4.13, 4.14 and Corollaries 4.59 and 4.60 normally not mentioning them explicitly and implicitly following the
conventions adopted in Section 4.

6.1.1. Fragments of the classical expansion. Here, we deal with the basic signature Σ , (Σ01∪{¬}), where ¬ (classical negation)
is unary, and its subsignature Σ′ ⊇ Σ0. Put ¬A~a , 〈1− ai〉i∈2, for all ~a ∈ 22. Then, µ ∈ hom(A,A). Moreover, {f, b, t} forms
a subalgebra of A�Σ′ iff ¬ 6∈ Σ′. Likewise, {n} forms a subalgebra of A�Σ′ iff Σ′ = Σ0. In this way, we have:

Corollary 6.1. Let Σ0 ⊆ Σ′ ⊆ Σ. Then, the logic of A�Σ′:
(i) is self-extensional, and so ∼-subclassical;
(ii) is maximally ∼-paraconsistent iff ¬ ∈ Σ′;
(iii) is purely inferential iff it has no consistent formula iff it holds Relevance Principle iff Σ′ = Σ0.

In this way, the classical expansion of CB becomes a first instance of a minimally four -valued maximally paraconsistent
subclassical logic (further but non-subclassical ones are provided by the next subsubsection). In this connection, we should
like to highlight that, as opposed to the generic examples provided by Subsection 5.2, the four-valued ones provided by this
and the next subsubsections are not definable by false-singular matrices (cf. Corollary 4.6).

6.1.2. Bilattice expansions. Here, it is supposed that {u,t} ⊆ Σ, where u and t are binary (knowledge conjunction and
disjunction, respectively), while (〈a, b〉uA 〈c, d〉) = 〈min(a, c),max(b, d)〉, for all a, b, c, d ∈ 2, in which case (fuA t) = n, whereas
(〈a, b〉 tA 〈c, d〉) = 〈max(a, c),min(b, d)〉, for all a, b, c, d ∈ 2, in which case (f tA t) = b. In that case, neither {f, b, t} nor {f, t}
forms a subalgebra of A. And what is more, {b} and {n} are exactly all proper subalgebras of A in the purely-bilattice case
Σ = (Σ0 ∪ {u,t}), A�{n} being the only proper consistent submatrix of A, in that case. Hence, we immediately obtain the
following universal negative and positive results, respectively:

Corollary 6.2. Any bilattice expansion of CB is not ∼-subclassical, and so not self-extensional.

Corollary 6.3. Any [purely-]bilattice expansion of CB [holds Relevance Principle and ]is inferentially maximal, and so maxi-
mally ∼-paraconsistent.
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And what is more, in case Σ01 ⊆ Σ, A has no proper submatrix at all. Thus, by Theorem 4.17 and Lemma 4.13, we also
get:

Corollary 6.4. C is maximal iff it is not purely inferential if Σ01 ⊆ Σ.

6.1.3. Implicative expansions. Here, it is supposed that Σ contains a binary ⊃ (implication) such that

(a ⊃A b) =

{
b if π0(a) = 1,
t otherwise,

for all a, b ∈ 22 (cf. [16]). Then, (n ⊃A n) = t 6= b = (b ⊃A b), so µ 6∈ hom(A,A), in which case we immediately get:

Corollary 6.5. The logic of A is neither self-extensional nor purely-inferential, ad so does not hold Relevance Principle.

It is remarkable that, as opposed to bilattice expansions, implicative ones are not, generally speaking, covered by Corollary
4.59 because {f(, b/n), t} does form a subalgebra of B[01] , (A�(Σ0[1] ∪ {⊃})), in which case, by Theorem(s) 4.20( and 4.25),
C is ∼-subclassical( and is not maximally ∼-paraconsistent), whenever Σ ⊆ (Σ01 ∪ {⊃}). It is also remarkable that {b} does
[not ]form a subalgebra of B[01](, 6n), while {n} does not form a subalgebra of B[01]. On the other hand, ⊃B01(, 6n) , being the only
non-regular operation of B01(, 6n), for DM4,01 is regular, and so is DM4,01, 6n, while (f ⊃A f) = t 6v f = (b ⊃A f), whereas f v b,
is both binary and b-idempotent. This is why Theorem 4.44 has proved equally applicable to both bounded and unbounded
purely-implicational cases that have been due to [23] (collectively with both [15] and [18]) ad hoc.

6.1.4. Disjunctive extensions of expansions of Belnap’s logic. In view of Theorem 4.1 of [13], ∨-disjunctive extensions of CB

are exactly De Morgan logics in the sense of the reference [Pyn 95a] of [14]. In this way, the present subsection incorporates
the material announced therein. We use Theorems 3.21 and 3.24 tacitly.

From now on, unless otherwise specified, C is supposed to be both self-extensional and not maximally ∼-paraconsistent.
Then, by Theorem 4.25 and Corollaries 4.59 and 4.60, under identification of submatrices of expansions of DM4 with underlying
algebras of their carriers, we have S∗∗(A) = S01 , S(DM4,01) = {{f, t, b, n}, {f, t, n}, {f, t, b}, {f, t}} and S01 ⊆ S∗(A) ⊆ S ,
S∗(DM4) = (S01 ∪ {{n}}), in which case there are at most nine and at least [resp., exactly] six lower cones of S[01] (actually
given by their generating anti-chains):

C4 , {{f, t, b, n}}O, Cb
3 , {{f, t, b}}O, Cn

3 , {{f, t, n}}O,

C3 , (Cb
3 ∪ Cn

3), C2 , {{f, t}}, C1 , {{n}},

C0 , ∅, Cb
3d1 , (Cb

3 ∪ C1), C2d1 , (C2 ∪ C1).

Those at most eight and at least [resp. exactly] five ones, which are proper (viz. distinct from S[01] = C4) are relatively
axiomatized by the following calculi, respectively:

x0 ∨ ∼x0,(6.1)

(4.17),(6.2)

(4.1),(6.3)

{(6.1), (6.2)},(6.4)

x0 `x1,(6.5)

x0,(6.6)

x0 `(x1 ∨ ∼x1),(6.7)

{(6.2), (6.7)}.(6.8)

The logic of C4 is then C itself, while that of Cb
3 is C 6n = CEM (cf. Theorem 4.25), whereas the one of Cn

3 is CR (cf. Corollary
4.31), in which case the one of C3 is their self-extensional meet CEM ∩ CR (cf. Lemma 4.63), while the logic of C2 being the
unique ∼-classical extension CPC of C (cf. Theorem 4.20 and Corollary 4.59), whereas the one of C0 being the inconsistent
logic IC defined by ∅. And what is more, σ+1(6.5)∨ x0 is equivalent to (6.5) under (3.3) and (3.5). Likewise, σ+1(6.7)∨ x0 is
equivalent to (6.7) under (3.3), (3.4) and (3.5). In this way, taking Remarks 2.8, 2.10, Proposition 2.19 and Lemmas 4.13 and
4.26 into account, we eventually get:

Theorem 6.6. ∨-Disjunctive[ merely non-pseudo-axiomatic, if C is purely inferential, and arbitrary, otherwise,] extensions
of C form the non-chain distributive lattice depicted at Figure 1[ with solely solid circles]. Moreover, those of them, which are
proper, are axiomatized relatively to C by the following calculi, respectively (in the above order):

(6.1),(6.9)

(4.8),(6.10)

(4.19),(6.11)

{(6.1), (4.8)},(6.12)

(6.5),(6.13)

(6.6),(6.14)

(6.7),(6.15)

{(6.7), (4.8)}.(6.16)
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Figure 1. The lattices of( all ∨-disjunctive) and all Kleene extensions of C( with solely big circles).

Theorem 6.6 is quite easily extended to any given four-valued expansion of CB mutatis mutandis, for possible lower cones
and their relative axiomatizations (clearly inherited by respective expansions) have been found, in which case the lattice of
∨-disjunctive[ merely non-pseudo-axiomatic, if the expansion is purely inferential, and arbitrary, otherwise,] extensions of the
expansion becomes a sublattice of that of C[B]B depicted at Figure 1. For instance, when dealing with the classical expansion
CB4 (cf. Subsubsection 6.1.1), S∗(A) becomes equal to {A, {f, b}}, in which case ∨-disjunctive (viz., self-extensional; cf.
Corollary 4.65) extensions of CB4 form the three-element chain CB4 ( CBPC

4 = CBEM
4 = CBR

4 ( IC (cf. Theorems 4.20,
4.25 and 4.36). Likewise, given any bilattice expansion BL4 (cf. Subsubsection 6.1.2), S∗(A) becomes equal to {A[, {n}]}, in
which case ∨-disjunctive extensions of BL4 form the two-[three-]element chain BL4[( IC+0] ( IC, exhausting all extensions
of BL4, in view of its [inferential ]maximality. Implicative expansions (cf. Subsubsection 6.1.3) are analyzed in a very similar
way. In case of the purely-implicational expansion B⊃4[,01] of C[B]B (viz., by ⊃ alone), S∗(A) = S01, so the lattice of ∨-
disjunctive extensions of B⊃4[,01] is exactly the six-element one, each lower cone C of S01 clearly being relatively axiomatized by

the axiomatic calculus R⊃ , ((R ∩ Fmω
Σ) ∪ {φ ⊃ ϕ | ({φ} ` ϕ) ∈ R} ∪ {(φ ∧ ψ) ⊃ ϕ | ({φ, ψ} ` ϕ) ∈ R, φ 6= ψ}, where R is the

relative axiomatization of C found above, in which case the corresponding ∨-disjunctive extension of B⊃4[,01] is the axiomatic
one relatively axiomatized by R⊃. In this connection, recall that Subsection 5.3 of [23] collectively with both [18] and [15]
have provided the nineteen[thirty]-element non-chain distributive lattice of all extensions of B⊃4[,01] as well as their defining
sets of matrices, their relative axiomatizations, though having been already-known by that time, eventually appearing beyond
the scopes of the mentioned study.

It is remarkable that, in view of Theorem 5.2 of [13] providing an axiomatization of CB given by Definition 5.1 therein,5

Theorem 6.6 yields axiomatizations of all ∨-disjunctive extensions of CB (in particular, of K3 relatively axiomatized by the
Resolution rule (4.8)).

On the other hand, to find all extensions of C is a much more complicated problem, a first idea of which having been due
to Theorems 4.67, 4.35, 4.44 and Corollaries 4.4 and 4.66. A partial solution of it is presented below.
6.1.4.1. Kleene extensions.

Corollary 6.7. Let I be a finite set, C ∈ {A 6b,A 6n}I , and B a consistent non-∼-paraconsistent submatrix of
∏
i∈I Ci. Then,

hom(B,A 6b) 6= ∅.

Proof. In that case, by Lemma 4.39, there is some h ∈ hom(B,
−→
A) 6= ∅, in which case D , (A�(img h)) satisfies (3.13), for B

does so, while h ∈ hom(B,D) is surjective. Hence, {n, b} * B, for otherwise, (3.13) would not be true in D under [x0/n, x1/b].
Thus, D , (

−→
A�D) is a submatrix of

−→
A�A6a, for some a ∈ {n, b}, in which case h ∈ hom(B,

−→
A�A6a), and so the fact that µ�A6n

is an isomorphism from
−→
A�A6n onto (

−→
A�A6b) = A 6b completes the argument. �

Lemma 6.8. Suppose A6b is regular. Then, (A 6n ×A 6b) ∈ Mod(CEM+NP ∩ CR).

Proof. Since, by Corollaries 4.31, 4.60 and Theorems 4.25 and 4.41, CEM+NP ∩ CR is defined by {A 6b,A 6n × (A�{f, t})},
A 6n× (A 6b× (A�{f, t})), being isomorphic to A 6b× (A 6n× (A�{f, t})), is a model of CEM+NP ∩CR, in view of (2.5). Moreover, by

5In this connection, we should also like to take the opportunity to notice that Footnote 3 on p. 443 of [13] has proved absolutely irrelevant and
is to be disregarded.
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Lemma 4.33, (A 6b× (A�{f, t}))�Kn
4 is a submatrix of A 6b× (A�{f, t}), in which case A 6n× ((A 6b× (A�{f, t}))�Kn

4) is a submatrix
of A 6n × (A 6b × (A�{f, t})), and so it is a model of CEM+NP ∩ CR, in view of (2.5). And what is more, h , (π0�Kn

4) ∈
homS((A 6b × (A�{f, t}))�Kn

4 ,A 6b) is surjective, and so is (∆A 6n × h) ∈ homS(A 6n × ((A 6b × (A�{f, t}))�Kn
4),A 6n ×A 6b). In this way,

(2.5) completes the argument. �

Corollary 6.9. Suppose A6b is regular. Then, CEM+NP ∩ CR is the extension of CEM ∩ CR relatively axiomatized by (4.17).

Proof. By Corollaries 4.31, 4.60 and Theorem[s] 4.25[ and 4.41], CEM[+NP] ∩ CR is defined by {A 6n[×(A�{f, t})],A 6b}[, both
matrices being non-∼-paraconsistent, and so being the logic involved]. Conversely, consider any model B ∈ S(Pω({A 6b,A 6n})) of
(4.17), in which case there is some finite set I, some C ∈ {A 6b,A 6n}I such that B a submatrix of

∏
i∈I Ci. Put J , hom(B,A 6n×A 6b)

and K , hom(B,A 6b). Consider any a ∈ (B \DB), in which case B is consistent and there is some i ∈ I such that πi(a) 6∈ DCi .
Consider the following exhaustive cases:

(1) Ci = A 6n.
Then, by Corollary 6.7, there is some h ∈ hom(B,A 6b) 6= ∅, in which case g , ((πi�B)× h) ∈ J and g(a) 6∈ DA6n×A6b .

(2) Ci = A 6b.
Then, (πi�B) ∈ K.

In this way, f , ((
∏

∆J)× (
∏

∆K)) ∈ homS(B, (A 6n×A 6b)J ×AK6b ), and so (2.5), Corollary 2.21, Lemma 6.8 and the finiteness
of A complete the argument. �

Theorem 6.10. Suppose A is regular (in particular, Σ = Σ0(1)). Then,[ merely non-pseudo-axiomatic, if C is purely inferen-
tial, and arbitrary, otherwise,] extensions of CEM ∩CR form the non-chain distributive lattice depicted at Figure 1[ with solely
solid circles]. Moreover, those of them, which are not ∨-disjunctive, are relatively axiomatized as follows:

CEM+NP ∩ CR by (4.17),

CEM+NP
+0 by {(4.17), (6.7)},

CEM+NP by {(4.17), (6.1)}.

Proof. We use Theorems 4.25, 4.41, 6.6, Corollary 6.9, Remarks 2.8, 4.42 and Proposition 2.19 tacitly. First, as CEM is ∼-
paraconsistent, (CEM+NP∩CR)/CEM+NP

+0 /CEM+NP is distinct from (CEM∩CR)/CEM
+0 /C

EM, respectively. Likewise, since (4.18)
is not true in A 6n × (A�{f, t}) under [x0/〈b, t〉, x1/〈f, t〉], (CEM+NP ∩ CR)/CEM+NP

+0 /CEM+NP is distinct from CR/CPC
+0 /C

PC,
respectively. Finally, consider any extension C ′ of CEM ∩ CR and the following exhaustive cases [but (3) and (4)]:

(1) IC ⊆ C ′.
Then, C ′ = IC.

(2) CPC ⊆ C ′ but IC * C ′.
Then, C ′ is consistent, so, by Corollary 3.10, C ′ = CPC.

(3) IC+0 ⊆ C ′ but CPC * C ′.
Then, IC * C ′, so, by the following claim, C ′ is purely-inferential:

Claim 6.11. Let C ′ and C ′′ be Σ-logics. Suppose C ′ * C ′′ is non-pseudo-axiomatic and C ′+0 ⊆ C ′′. Then, C ′′ is
purely-inferential.

Proof. By contradiction. For suppose C ′′ is not purely inferential, in which case ∅ 6∈ (imgC ′′), and so C ′′−0 = C ′′. In
this way, by Remark 2.8, we get C ′ = (C ′+0)−0 ⊆ C ′′−0 = C ′′. This contradiction completes the argument. �

In this way, as C ′−0 ⊆ IC, we have C ′ = (C ′−0)+0 ⊆ IC+0, and so we get C ′ = IC+0.
(4) CPC

+0 ⊆ C ′ but both CPC * C ′ and IC+0 * C ′.
Then, by Claim 6.11, C ′ is purely inferential. Moreover, (6.7), being satisfied in CPC

+0 , is so in C ′, in which case,
by the structurality of C ′, (x0 ∨ ∼x0) ∈ (

⋂
((imgC ′) \ {∅})) = C ′−0(∅), and so CPC ⊆ C ′−0. On the other hand,

IC = (IC+0)−0 * C ′−0, so C ′−0 is consistent. Hence, by Corollary 3.10, C ′−0 = PC. In this way, C ′ = (C ′−0)+0 = CPC
+0 .

(5) (CPC
+0 [∪CPC]) * C ′ but CR ⊆ C ′.

Then,[ (6.1), and so, in view of the non-pseudo-axiomaticity of C ′,] (6.7) is not satisfied in C ′, in which case, by
Theorem 4.35, C ′ = CR.

(6) CR * C ′.
Then, (4.18) is not satisfied in C ′, in which case, by Lemma 4.43, C ′ ⊆ CEM+NP, and so we have the following
exhaustive subcases[ but (c) and (d)]:
(a) CEM+NP ⊆ C ′.

Then, C ′ = CEM+NP.
(b) CEM+NP * C ′ but CEM ⊆ C ′.

Then, C ′ is ∼-paraconsistent, so, by Corollary 4.24, C ′ = CEM.
(c) CEM+NP

+0 ⊆ C ′ but CEM * C ′.
Then, CEM+NP * C ′, so, by Claim 6.11, C ′ is purely-inferential. Therefore, CEM+NP = (CEM+NP

+0 )−0 ⊆ C ′−0,
(CEM∩CR) = (CEM∩CR)−0 ⊆ C ′−0 and CR * C ′−0, for, otherwise, we would have CR = (CR)+0 ⊆ (C ′−0)+0 = C ′.
Hence, by Lemma 4.43, we have C ′−0 ⊆ CEM+NP, in which case we get C ′ = (C ′−0)+0 ⊆ CEM+NP

+0 , and so
C ′ = CEM+NP

+0 .
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(d) CEM
+0 ⊆ C ′ but both CEM * C and CEM+NP

+0 * C ′.
Then, by Claim 6.11, C ′ is purely inferential. Moreover, (6.7), being satisfied in CEM

+0 , is so in C ′, in which case,
by the structurality of C ′, (x0 ∨∼x0) ∈ (

⋂
((imgC ′) \ {∅})) = C ′−0(∅), and so CEM ⊆ C ′−0, while (CEM ∩CR) =

(CEM ∩CEM)−0 ⊆ C ′−0. On the other hand, CEM+NP = (CEM+NP
+0 )−0 * C ′−0, so C ′−0 is ∼-paraconsistent. Hence,

by Corollary 4.24, C ′−0 = CEM. In this way, C ′ = (C ′−0)+0 = CEM
+0 .

(e) (CEM+NP ∩ CR) ⊆ C ′ but (CEM+NP
+0 [∪CEM+NP]) * C ′.

Then,[ (6.1), and so, in view of the non-pseudo-axiomaticity of C ′,] (6.7) is not satisfied in C ′, in which case, by
Theorem 4.35, C ′ = (CEM+NP ∩ CR).

(f) (CEM+NP ∩ CR) * C ′ and (CEM
+0 [∪CEM]) * C ′.

Then, C ′ is both ∼-paraconsistent and inferentially paracomplete[, in view of the non-pseudo-axiomaticity of C ′],
and so, by Corollary 4.60(ii), C ′ = (CEM ∩ CR).

This completes the argument. �

As an immediate consequence of Theorems 6.6 and 6.10, we have:

Corollary 6.12. Suppose A is regular (in particular, Σ = Σ0[1]). Then, extensions of CR are all ∨-disjunctive.

On the other hand, the ∨-disjunctivity of extensions holds for neither CEM(∩CR) nor C, even if A is regular, as it follows
from Theorems 6.6 and 6.10.

Concluding this discussion, we should like to highlight that the technique elaborated here has proved well-applicable to
finding all extensions of LP that has been done in [14] with using an advanced algebraic method based upon finding the lattice
of all subprevarieties6 of KL going back to finding that of ones of DML being due to [17]. However, the mentioned method is
not applicable to K3 (as well as to both LP[01] ∩K3[,01] and C[B]B) at all. This highlights the special value of the technique
elaborated here.
6.1.4.1.1. Some proper non-Kleene extensions. Finally, we explore some of proper non-Kleene (and so non-∨-disjunctive, in
view of Theorem 6.6) extensions of C. First of all, notice that (4.19) is not true in

−→
A under [x0/n, x1/b, x2/n]. Therefore, by

Theorems 4.44 and 4.66, CMP and CNP become first distinct examples of such a kind. (In particular, this shows that Remark
4.42 is not inherited by non-Kleene extensions of C). Moreover, by Theorem 4.44, we get two more distinct proper non-Kleene
extensions CEM[+NP] ∩CMP, for CEM ∩CMP is ∼-paraconsistent (cf. Theorem 4.25), while CEM+NP ∩CMP is an extension of
CNP. Then, a one more example of such a kind is as follows:

Theorem 6.13. CEM[∩CR] ∩ CNP is the proper extension of C relatively axiomatized by the rule (4.1).

Proof. Let C ′ be the extension of C relatively axiomatized by the rule (4.1). Since (4.1) is a logical consequence of (4.17) and
is true in C3, CEM ∩ CR ∩ CNP is an extension of C ′. Conversely, consider any B ∈ (Mod(C ′) ∩ K), where K , PSD(S∗(A)).
Assume, (4.17) is not true in B, in which case there is some a ∈ DB such that ∼Aa ∈ DB, and so, by (4.1)[ and (3.3)],
(x0 ∨ ∼x0)[∨x1] is true in A[, and so is the rule (4.19)]. Thus, (Mod(C ′) ∩ K) ⊆ ((Mod(CNP) ∩ K) ∪ (Mod(CEM[∩CR]) ∩ K)).
Hence, by Corollary 2.21, we eventually conclude that C ′ = (CEM[∩CR] ∩ CNP ). Finally, recall that (4.1) is not true in A
under [x0/b, x1/n], as required. �

And what is more, we also have:

Theorem 6.14. The extension of CEM∩CMP relatively axiomatized by (4.17), i.e., the join of CEM∩CMP and CNP is defined
by {
−→
A ,A 6n ×

−→
A}.

Proof. By Theorem[s 4.25 and] 4.66, [CEM∩]CMP is defined by {
−→
A [,A 6n]}. In particular,

−→
A is a model of (4.17). Moreover, by

(2.5) and Theorem 4.67, A 6n×
−→
A , being a submatrix of A×

−→
A , is a model of (4.17) too. Conversely, consider any finite set I, any

C ∈ S∗({
−→
A ,A 6n})I and any subdirect product D of it being a model of (4.17). Put J , hom(D,A 6n×

−→
A) and K , hom(D,

−→
A).

Consider any a ∈ (D \ DD), in which case D is consistent and there is some i ∈ I, in which case h , (πi�D) ∈ hom(D, Ci),
such that h(a) 6∈ DCi . Consider the following exhaustive cases:

(1) Ci = A 6n.
Then, by Lemma 4.39, there is some g ∈ hom(D,

−→
A) 6= ∅, in which case f , (h× g) ∈ J and f(a) 6∈ DA6n×

−→
A .

(2) Ci =
−→
A .

Then, h ∈ K.

In this way, ((
∏

∆J)× (
∏

∆K)) ∈ homS(D, (A 6n ×
−→
A)J ×

−→
AK). Hence, by (2.5) and Corollary 2.21, the extension involved is

finitely-defined by {
−→
A ,A 6n ×

−→
A}. Then, the finiteness of A completes the argument. �

Finally, note that the rule:

(6.17) {x0,∼x0 ∨ x2} ` ((∼x1 ∨ x1) ∨ x2),

being satisfied in CEM ∩ CMP, in view of (3.3) and (3.4), is not true in A×
−→
A under [x0/〈b, t〉, x1/〈n, t〉, x2/〈f, t〉]. Therefore,

by Theorem 4.67, we get:

6In this connection, we should like to take the opportunity to notice that it was in [25] that the term ”prevariety” first appeared. Prevarieties are
exactly replically-complete abstract classes in the sense of [8] — this was why the notion of prevariety was rather carelessly credited to [8] in [18] that
has proved quite misleading because of causing perfectly unjustified criticism of this notion as such (resulted just from the principal unwillingness

to acknowledge the contribution [18] — like many others of the same author — typical of the notorious Abstract Algebraic Logic) with quite wrong
crediting it to [18] itself in certain superficial narrow-minded literature on the topic not worth explicit mentioning here at all.
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Corollary 6.15. CEM[+NP] ∩ CR/MP is a proper extension of (CEM ∩ CR ∩ CNP)[∪CNP].

In this way, CEM ∩ CR ∩ CNP and CNP are properly depicted at Figure 1. And what is more, we have found here at least
five proper non-Kleene extensions of C. The main non-trivial problems remaining still open are then:

• Is the join of CEM ∩ CMP and CNP equal to CEM+NP ∩ CMP (at least, under regularity of A)?
• What is a relative axiomatization of CEM ∩ CMP? Is this (6.17) (at least, under regularity of A)?
• What are all proper non-Kleene extensions of C? Are these exactly the five/six ones found above (at least, under

regularity of A)?

6.2. Three-valued paraconsistent logics. Here, we follow Subsection 5.1 supposing that o , ∼ ∈ Σ. It is remarkable that
all particular examples considered below are ∼-subclassical, because {f, t} forms a subalgebra of the underlying algebras of the
o-superclassical matrices under consideration.

6.2.1. The logic of paradox and its expansions. Here, it is supposed that Σ0 ⊆ Σ.
Given any n ∈ (ω \ 2), put Kn , 〈Kn, n \ 1〉. Then, the bijection e3,1 : 3 → {f, b, t} is an isomorphism from K3 onto

the ∼-superclassical ∧-conjunctive ∨-disjunctive Σ0-matrix with underlying algebra e3,1[K3]. Let A be a Σ-algebra such that
(A�Σ0) = e3,1[K3]. As usual, it is supposed that ⊥A = f and >A = t, whenever Σ01 ⊆ Σ. Likewise, in case ⊃∈ Σ, it is supposed
that ⊃A is the restriction of the operation specified in Subsubsection 6.1.3. Finally, let A be the ∼-superclassical Σ-matrix
with underlying algebra A. Since the logic of paradox LP [11] is defined by K3 (cf. [14]), in view of (2.5), the logic of A is an
expansion of LP . And what is more, in case Σ = (Σ0[1] ∪ {⊃}), the logic of A is exactly the logic of antinomies LA [1] [resp.,
a definitional copy of the notorious J3]. The maximal paraconsistency of LP/both LA and J3 has been due to [14]/both [18]
and [23], respectively. In this way, Corollary 5.10 provides a new and uniform insight into those particular results proved ad
hoc therein.

Concluding this subsubsection, remark that LP , being defined by the three-valued matrix K3, in view of (2.5), is equally
defined by the n-valued matrix Kn, where n ∈ (ω \ 4), for ~n ∈ homS

S(Kn,K3). Thus, for every n ∈ (ω \ 4), LP is an n-valued
maximally ∼-paraconsistent logic but is not minimally n-valued, as opposed to the classical and bilattice expansions of CB

as well as the examples proposed in Subsection 5.2 (actually arisen by proper expanding Kn with providing both minimal
n-valuedness and maximal ∼-paraconsistency) that highlights their particular meaning.

6.2.2. Sette’s logic P1. Let Σ , {⊃,∼} and S3 the ∼-superclassical Σ-matrix such that ∼S3b , t, in which case {b} does not
form a subalgebra of S3, and

(a ⊃S3 b) ,

{
t if (a 6= f)⇒ (b 6= f),
f otherwise,

for all a, b ∈ {f, b, t} (cf. [24]). In this way, Theorem 5.6 yields:

Corollary 6.16. The logic P1 of S3 is maximally ∼-paraconsistent.

This strengthens the maximality result of [24], according to which P1 has no proper ∼-paraconsistent axiomatic extension,
properly strengthened in [12] by proving the fact that the ∼-classical logic of S2 , (S3�{f, t}) is the only proper axiomatic
extension of P1, equally ensuing from Proposition 2.12 and the fact S2 is the only proper submatrix of S3 and is a model of
the axiom x0 ⊃ ∼∼x0, not being true in S3 under [x0/b], in which case the classical logic involved is axiomatized by the axiom
involved relatively to P1.

Concluding this subsubsection, note that P1 is both Y-disjunctive and Z-conjunctive, for S3 is so, where:

(x0 Y x1) , ((x0 ⊃ x1) ⊃ x1),

(x0 Z x1) , ∼(x0 ⊃ (x1 ⊃ ∼(x0 ⊃ x0))).

6.2.3. Ha lkowska-Zajac’ logic HZ. Let Σ , Σ0 and HZ the ∼-superclassical Σ-matrix such that ∼HZb , b, while ∧HZ and
∨HZ are defined as min and max, respectively, but with respect to rather the chain partial ordering 5 given by b 5 f 5 t (cf.
[5]) than the point-wise natural partial ordering 6 on 22, as in the case of the logic of paradox. Then, (x1 ∧ x2) is a ternary
b-relative conjunction for HZ, so, by Theorem 5.6, the logic HZ of HZ is maximally ∼-paraconsistent, as it has been proved
ad hoc in [19].

Concluding this subsubsection, note that HZ is both Y-disjunctive and Z-conjunctive, for HZ is so, where:

(x0 Y x1) , ∼(∼x0 ∧ ∼x1),

(x0 Z x1) , ∼(∼x0 ∨ ∼x1),

but is neither ∧-conjunctive nor ∨-disjunctive, because (f ∧HZ b) = b and (f ∨HZ b) = f.

7. Conclusions

Aside from the quite non-trivial general results and their numerous illustrative applications, the present paper demonstrates
the special value of the conception of congruence/equality determinant, initially suggested in [20] just for the sake of construction
of two-side sequent calculi for many-valued logics.

Perhaps, the main problems remaining still open (within this study) are completing finding the lattice of all extensions
of C[B] as well as finding that of CB4. Among other things, solving the latter is based upon an algebraic technique going
essentially beyond the scopes of the present study and, for this reason, is going to appear elsewhere.
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