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Abstract. In many real-world problems, obtaining labeled data for a
specific machine learning task is expensive. Unsupervised Domain Adap-
tation (UDA) aims at learning a good predictive model for the target
domain using labeled information from the source but only unlabeled
samples from the target domain. Most of the previous methods tackle
this issue with adversarial methods that contain several loss functions
and converge slowly. Recently, subdomain adaptation, which focuses on
nuances of the distribution of the relevant subdomains, is getting more
and more attention in the UDA field. This paper proposes a technique
that uses the adaptive feature norm with subdomain adaptation to boost
the transfer gains. Subdomain adaptation can enhance the ability of deep
adaptation networks by capturing the fine-grained features from each
category. Additionally, we have incorporated an adaptive feature norm
approach to increase transfer gains. Our method shows state-of-the-art
results on the popular visual classification datasets, including Office-31,
Office Home, and Image-CLEF datasets.

Keywords: Domain Adaptation · Transfer Learning · Object Recogni-
tion

1 Introduction

Deep Neural Networks have shown remarkable performance in various domains
in the field of computer vision. To achieve good performance, they typically
require a vast amount of labeled data. Training larger and deeper networks
is complicated if the size of a dataset is small. Additionally, collecting well-
annotated data is costly and time-consuming. A popular way to regularize these
networks is to simply use a pre-trained model trained on a different dataset and
use the model for the target dataset. However, if the data distribution between
source and target domains is different, it may lead to adverse effects and hamper
the generalization ability of the models [3]. Unsupervised Domain Adaptation
(UDA) focuses on transferring knowledge from a labeled source domain to an
unlabeled target domain, and a large amount of research tries to achieve this
by exploring domain-invariant representations to bridge the gap. Traditional
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machine-learning paradigms, like supervised learning, tend to train models to
predict the outcome for unseen data. These models do not necessarily optimize
performance if there is enough difference between the test and training data
[21]. According to Tzeng et al. [23], while generically trained deep networks
have a reduced dataset bias, there still exists a domain shift between different
datasets, and it is required to adapt the features appropriately. [1] suggests
that a fair domain adaptation method should be based on features that are
near similar for the source and target domains while reducing the prediction
error in the source domain as much as possible. However, domain adaptation
can have a domain shift problem. For example, the target domain may contain
images from different imaging device (e.g. webcam vs. dslr camera), resulting
in different styles in photos. This means the object recognition model trained
from the source domain requires to be adapted to the target domain. Therefore,
to reduce the domain shift problem, the two domains marginal distributions
need to be as similar as possible. The primary goal of UDA is to learn domain-
invariant feature representations that can reduce the domain shift. According
to existing studies, domain-invariant representations can be captured through
several methods, e.g., Maximum Mean Discrepancy [30, 10, 14], divergence-based
methods [1, 18], correlation distance [20], etc. Addtionally, several adversarial
based methods have been applied [5, 22, 8, 25, 19] to minimize an approximate
domain discrepancy.

Recent studies have shown that, compared to shallow networks, deep net-
works can learn more transferable features for domain adaptation by extracting
domain-invariant features [28, 10, 11, 20]. The main observation from the previ-
ous domain adaptation methods is that the domain classifier should be confused
maximally so that the source classifier treats the samples from the target do-
main in a similar fashion. Additionally, most successful methods have come up
with such ways that can make the domain classifier more confused. Most of the
previous domain adaptation methods consider aligning the source and target dis-
tributions globally. We adapt a subdomain based approach to learn the domain
transfer. A subdomain consists of samples within the same class. This method
will lead to a scenario where all the data from different domains will be confused,
and discriminative structures can be mixed up[31]. The main advantage of the
subdomains over domains is the local domain shift instead of the global domain
shift. Because of the local domain shift, the learners precisely may align the
distribution of relevant subdomains within the same category in the source and
target domains. An illustrative example of the difference between Domain Adap-
tation and Subdomain adaptation is depicted in Figure 1(a). After global domain
adaptation, the resulting distributions of the two domains are quite similar, but
the data in different subdomains are too adjacent to be correctly classified. The
distributions of relevant subdomains can be aligned properly, hence the nuances
of the information can be exploited for domain adaptation.

According to [26], larger norms enable more informative trasferability. Recent
studies on the compression technique [27] support the above claim and suggest
smaller norms contain less information during the inference. Inspired from the
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two studies as mentioned above, we incorporate the step-wise adaptive feature
norm approach in subdomain space.

Xu et al. [26] demonstrates that progressively adapting the feature norms of
two domains to a broad range of values can boost domain transfer. We present
the local maximum mean discrepancy based method with adaptive progressively
feature norm on subdomain space. For effective UDA, our goal is to endorse
positive transfer and circumvent negative transfer.

In summary, the main contributions of our work are:

1. We propose an innovative stepwise adaptive feature norm-based approach for
unsupervised subdomain adaptation. This approach employs to learn task-
specific features in a progressive manner, which assists in aligning relevant
subdomains in unsupervised scenarios.

2. We demonstrate a local MMD [31] based method with stepwise adaptive
feature norm to achieve state-of-the-art results on Office-31, Office-Home,
and ImageCLEF datasets.

3. We comapare our results with both adversarial and non-adversarial methods
to show the efficacy of our work.

2 Related Work

Domain adaptation problem has been widely studied in the computer vision re-
search community. Various methods have been employed to generalize the model
across different domains by mitigating the domain shift problem. This section
will discuss the relevant work in domain adaptation, subdomain adaptation, and
maximum mean discrepancy.

2.1 Domain Adaptation

Domain adaptation can be a way to mitigate domain shift issues and reduce the
effort of recollecting and retraining a model by transferring knowledge between
tasks and domains. Domain adaptation can be defined as the task of training a
model on labeled data from a source domain while minimizing test error on a
target domain, where no labels for the target domain are available at training
time. Several types of methods have been employed for unsupervised domain
adaptation. Discrepancy based methods explore domain-invariant structures by
reducing some specific statistic distances between the two domains. Maximum
Mean Discrepancy (MMD) [2] has been adopted in many approaches [30, 10] for
domain adaptation. It enables the model to learn transferable features by reduc-
ing the MMD of their kernel embedding. Some other methods extended MMD
[12, 13] to measure the source and target data’s joint distributions. In our case,
we consider local MMD measures discrepancy of relevant subdomains between
source and target domains. Adversarial DAs [5, 22, 19] are widely applied in this
field. They involve a sub-network as the domain discriminator to distinguish fea-
tures of alternate domains, whereas learners try to generate features that confuse
the domain classifier.
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2.2 Subdomain Adaptation

A significant amount of research for subdomain adaptation has been published
recently. Multiadversarial domain adaptation (MADA) captures the multimode
structures to enable fine-grained alignment of various data distributions [16].
CDAN [11] captures the adversarial domain adaptation on discriminative infor-
mation to enable alignment of multimodal distributions. Moving the semantic
transfer network (MSTN) [25] captures the semantic representation for unlabeled
target samples by aligning the source and target centroid. Another method [9]
creates multiple diverse feature spaces and aligns the source and target distribu-
tions in each of them separately while encouraging that alignments agree with
each other with regard to the class predictions on the unlabeled target samples.
All these methods have adopted adversarial loss. Compared to our work, we have
adopted a discrepancy based strategy with stepwise adaptive feature norm ap-
proach which is more straightforward and can perform better than these previous
methods.

2.3 Maximum Mean Discrepancy

Among discrepancy based methods, MMD is one of the most popular metrics of
training for domain invariant features. In Deep Adaptation Network (DAN) ar-
chitecture [10], the authors train the first layers of the model commonly with the
source and target domains; after that, they train individual task-specific layers
while minimizing MMD between layers. Additionally, MMD has been extended
by [12, 13]. However, most previous work considers global MMD measures to
reduce discrepancies between the source and target samples. Our work is based
on local MMD [31], which measures the discrepancy in relevant subdomains
between the source and target domains.

Compared to the previous technique, we use a non-adversarial based sub-
domain adaptation method and incorporate adaptive feature norms within the
subdomains to perform domain transfer. So, instead of just relying on a partic-
ular discrepancy metric, we take an additional approach as an adaptive feature
norm. In our framework (Figure 1(b)), we have shown that a progressive feature-
norm-based loss function in a shared subdomain space can boost the domain
adaptation performance.

3 Method

In unsupervised domain adaptation, we are given a source domainDs = {(xsi , ysi )}
ns
i=1

of ns labeled examples and a target domain Dt = {xtj}
nt
j=1 of unlabeled exam-

ples. The source domain and target domain are sampled from joint distributions
P (Xs, Y s) and Q(Xt, Y t) respectively, where P 6= Q. The goal of our method is
to develop a deep network architecture, that contains transfer features f = Gf (x)
and adaptive classifier y = Gc(f). This model will minimize the shift in joint
distribution across relevant subdomains and learns transferable representations
simultaneously.
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(b) Architecture of Adaptive feature norm on unsu-
pervised subdomain adapatation

Fig. 1: Domain Adaptation vs Subdomain Adaptation and Architecture of our
proposed method.

The formal representation for unsupervised domain adaptation is as follows.

min
f

1

ns

ns∑
i=1

J(f(Xs
i ), ysi ) + λd̂(p, q) (1)

where J() is the cross-entropy loss function (classification loss) and d̂() is domain
adaptation loss. λ > 0 is the trade-off parameter of the domain adaptation loss
and the classification loss.

This representation covers the global source and target domain without tak-
ing into account the relevant information between subdomains within the same
category between the source and target domains. Nevertheless, the global align-
ment may not capture the nuances among subdomains. This may lead to domain
shift issue as well. The subdomain information can exploit the relationship be-
tween different domains. The formal representation of the loss of subdomain
adaptation can be

min
f

1

ns

ns∑
i=1

J(f(Xs
i ), ysi ) + λEc[d̂(p(c), q(c)]) (2)

where Ec[.] is a mathematical expectation of the class.

3.1 Local Maximum Mean Discrepancy

We have used local MMD as the baseline architecture. It was proposed by [31]
to align distributions of the relevant subdomains.

dH(p, q) = Ec||Ep(c) [φ(xs)]−Eq(c) [φ(xt)]||2H (3)
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where xs and xt are the instances in Ds and Dt, and p(c) and q(c) are the

distributions of D
(c)
s and D

(c)
t , respectively. The equation (3) can measure class

by class difference of the relevant subdomains. Additionally, this can be used to
align the subdomains within the target domain with those in the source domain.
Since we have an assumption that each sample belongs to each class according
to weight wc, we use an unbiased estimator of equation (3) as

dH(p, q) =
1

C

C∑
c=1

||
∑
xs
i∈Ds

wsci φ(xsi )−
∑
xt
j∈Dt

wtcj φ(xtj)||2H (4)

where wsci and wtcj represent the weight of xsi and xtj belonging to class c,
respectively. The sum of weights are both equal to one. We can formulate wci for
the sample xi as

wci =
yic∑

(xj ,yj∈D yjc
(5)

where yic is the cth entry of vector yi. For source domain, we use the ground
truth ysi as a one-hot vector to calculate wci for each sample. But, for target
domain, we use the probability of assigning xti to each of the classes. we can
not use the formula of equation (4) directly. The output of the deep neural
network is a probability distribution. We use that probability distribution which
characterizes the probability of assigning samples to the classes for each target
sample. Then, we can calculate wtcj . Finally, we can calculate equation (4).

3.2 Architecture

Standard domain adaptation considers two domains to share a similar label
space. In our framework, the input consists of subdomains from the source and
target domains. We have a backbone network Gf , which denotes the feature
extraction module. Classifier Gc is the task-specific classifier. We apply the fea-
ture norm adaptation along with the local MMD based method to optimize the
source classification loss during each iteration.

In each iteration, each individual sample’s feature norm is getting added
a small but progressive step size of r. This way, if any target samples are far
way from the small norm region, after the domain adaptation step, it could
be classified correctly in an automatic manner. Figure 1(b) demonstrates the
architecture of our approach.

3.3 Adaptive Feature Norm Loss

One of the major bottlenecks that we observe is smaller feature norm of the
source and target samples that can lead to poor transfer gains[26]. Inspired from
them, we extend the idea into subdomain spaces. We keep a parameter r, which
progressively modifies the mean feature norm in each iteration. Instead of having
a fixed feature norm, we consider a moving parameter which changes the mean
feature norm. This method has been unexplored for the subdomain adaptation
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case. This loss value impacts the target samples to be correctly classified without
additional supervision. This variant impacts positively towards learning task-
specific features in a continuous manner. We propose

d̂H(p, q) = Ec||Ep(c)[φ(xs)]−Eq(c)[φ(xt)]||2H
+Ec||Ep(c)[(h(xi; θ0) +∆r), h(xi; θ)]||

(6)

where h(x) = ||.||2 ·Gf ·Gc(x), where θ0 and θ are model parameters of last
and current iterations. The effectiveness of this model parameter enables the
optimization process fetching more informative features with larger norms.

4 Experiment

We evaluate our technique on three popular object recognition datasets, includ-
ing Office-31, Office-Home, and ImageCLEF-DA. The code will be published in
future.

4.1 Dataset

We present a detailed overview of the datasets that we use for our experiments.

Office-31 [17] is a very popular dataset for benchmarking domain adapta-
tion. This dataset contains more than 4000 images in 31 classes collected from
three different domains: Amazon (A), which consists of images downloaded from
amazon.com, and Webcam(W), and DSLR(D), which comprises of images taken
by web camera and digital SLR camera with various photographic settings, re-
spectively. Table 1 reports the performance of our method compared with other
works on Office-31 dataset.

Office-Home [24] is another challenging dataset for unsupervised domain
adaptation. This dataset contains four domains: Art(Ar), Clipart(CI), Prod-
uct(Pr), and Real-World(Rw). Each domain has common 65 categories. The Art
domain contains the artistic description of objects including painting, sketches
etc. The Clipart are the collection of clipart images. In the Product, domain
images have no background. The Real-Work domain contains an object taken
from a regular camera. In Table 2, we compare our result with previous methods
on Office-Home dataset.

ImageCLEF-DA1 contains three domains: Caltech-256(C), ILSVRC 2012
(I), and Pascal-VOC 2012 (P). Each domain has 12 common classes, and each
class has 50 samples. In total, there are 600 images in each domain. Table 3
reports the performance of our method with previous methods on ImageCLEF
dataset.

1 http://imageclef.org/2014/adaptation
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(a) D → W (Be-
fore Adaptation)

(b) D → W (Af-
ter Adaptation)

(c) W → D (Be-
fore Adaptation)

(d) W → D (Af-
ter Adaptation)

Fig. 2: t-SNE feature visualization from DSLR (Red) to Webcam (Blue) ((a) &
(b)) and from Webcam (Red) to DSLR (Blue) ((c) & (d)) on Office-31 dataset.

(a) A → D (Be-
fore Adaptation)

(b) A → D (Af-
ter Adaptation)

(c) D → A (Be-
fore Adaptation)

(d) D → A (Af-
ter Adaptation)

Fig. 3: t-SNE feature visualization from Amazon (Red) to DSLR (Blue) ((a) &
(b)) and from DSLR (Red) to Amazon (Blue) ((c) & (d)) on Office-31 dataset.

(a) A → W (Be-
fore Adaptation)

(b) A → W (Af-
ter Adaptation)

(c) W → A (Be-
fore Adaptation)

(d) W → A (Af-
ter Adaptation)

Fig. 4: t-SNE feature visualization from Amazon(Red) to Webcam (Blue) ((a) &
(b)) and from Webcam(Red) to Amazon (Blue) ((c) & (d)) on Office-31 dataset.

(a) Convergence Test on Webcam
to DSLR on Office-31 dataset.

Sensitivity of r
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(b) parameter sensitivity of ∆r
on Office-31 (Amazon→Webcam)
dataset.

Fig. 5: Convergence test on task Webcam to DSLR and parameter sensitivity
test on Webcam to Amazon on Office-31 dataset.
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4.2 Setup

In our experiment, we used the open-source implementation of a popular deep
learning framework, Pytorch [15], to train the models on multiple Nvidia Geforce
GTX 1080Ti GPUs. The machine has Intel Core-i7-5930k CPU@ 3.50GHz x
12 processors with 64GB of memory. For the visual classification task, we ap-
plied ResNet50 [7] as the backbone network. For comparison, all the baseline
models use identical architecture. We fine-tune all the layers except classifier
layers from ImageNet[4] pre-trained models and train the fully connected lay-
ers for classification through backward-propagation. We set the learning rate to
0.01, batch size to 32, we use stochastic gradient descent (SGD) with a momen-
tum of 0.9, the learning rate is getting changed during SGD using the formula:
lrnew = lrold/(1 + α(epoch − 1)/epoch)β , where α = 10, and β = 0.75. For the
adaptation feature norm loss, we observe the embedding size of task-specific fea-
tures played a major role in norm computation. We found r = 1 and λ = 0.05
provide the best result. the highest value of r is to R = 5, so it progresses each
step r incrementally. The average classification accuracy and error are reported
over three random repeats.

5 Results and Discussion

We use our proposed approach for unsupervised subdomain adaptation. We use
the protocol to utilize source data with labels and target data without labels.
The visual classification results of Office-31, Office-Home, and ImageCLEF-DA
are promising. Our method outperforms previous methods on these datasets.
Some of the observations from our experiments are:

– Comparing our proposed approach with the global domain adaptation meth-
ods and several adversarial subdomain adaptation methods [11, 16, 25], these
methods are more complex compared to our approach. The reason is most
of the methods use the adversarial loss function, and don’t consider the
kernel mean embeddings between source and target subdomains, and has
more number of parameters. Moreover, our method achieves better accuracy
compared with other methods in all three datasets.

– The t-SNE feature visualization on the transfer task between DSLR and
Webcam, Amazon and DSLR, Webcam and Amazon is presented in Figure 2,
Figure 3, Figure 4 respectively. Source samples are colored as red and target
samples are colored as blue in each figure from 2 to 4. This visualization
shows the effectiveness of subdomain adaptation.

– We conducted convergence test (Figure 5(a)) on task webcam to dslr and
further case studies to investigate the sensitivity (on task Amazon to Web-
cam) of parameter ∆r in Figure 5(b). The accuracy increases upto ∆r = 1
than gradually decreases.

Most of these methods do not consider the subdomain relationship, which
effectively captures nuances for each class. Additionally, we incorporate adaptive
feature norm loss inside of subdomain distributions. It contributes to apprehend
more fine-grained information. The results validate the efficacy of our approach.
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Method A→W D→W W→D A→D D→A W→A Avg

ResNet[7] 68.4 ± 0.5 96.7 ± 0.5 99.3 ± 0.1 68.9 ± 0.2 62.5 ± 0.3 60.7 ± 0.3 76.1
DDC[23] 75.8 ± 0.2 95.0 ± 0.2 98.2 ± 0.1 77.5 ± 0.3 67.4 ± 0.3 64.0 ± 0.5 79.7
D-CORAL[20] 77.7 ± 0.3 97.6 ± 0.2 99.5 ± 0.1 81.1 ± 0.4 64.6 ± 0.3 64.0 ± 0.4 80.8
DAN[10] 83.8 ± 0.4 96.8 ± 0.2 99.5 ± 0.1 78.4 ± 0.2 66.7 ± 0.3 62.7 ± 0.2 81.3
DANN[6] 82.0 ± 0.4 96.8 ± 0.2 99.1 ± 0.1 79.7 ± 0.4 68.2 ± 0.4 67.4 ± 0.5 82.2
ADDA[22] 86.2 ± 0.5 96.2 ± 0.3 98.4 ± 0.3 77.8 ± 0.3 69.5 ± 0.4 68.9 ± 0.5 82.9
JAN[13] 85.4 ± 0.3 97.4 ± 0.2 99.8 ± 0.2 84.7 ± 0.3 68.6 ± 0.3 70.0 ± 0.4 84.3
MADA[16] 90.0 ± 0.1 97.4 ± 0.1 99.6 ± 0.1 87.8 ± 0.2 70.3 ± 0.3 66.4 ± 0.3 85.2
CDAN[11] 93.1 ± 0.2 98.2 ± 0.2 100 ± 0 89.8 ± 0.3 70.1 ± 0.4 68.0 ± 0.4 86.6
iCAN[29] 92.5 ± 0.2 98.8 ± 0.1 100 ± 0 90.1 ± 0.1 72.1 ± 0.2 69.9 ± 0.1 87.2
CDAN + E[11] 94.1 ± 0.1 98.6 ± 0.1 100 ± 0 92.9 ± 0.2 73.5 ± 0.5 69.3 ± 0.3 87.7
DSAN[31] 93.4 ± 0.2 98.3 ± 0.1 100 ± 0 90.2 ± 0.7 73.5 ± 0.5 74.8 ± 0.4 88.2
Ours 93.2 ± 0.2 98.7 ± 0.2 100 ± 0 90.1 ± 0.2 75.1 ± 0.3 72.8 ± 0.4 88.5

Table 1: Accuracy Comparison of Unsupervised Domain Adaptation on Office-31
Dataset

Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg

ResNet[7] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DAN[10] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
DANN[6] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
JAN[13] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
CDAN[11] 49.0 69.3 74.5 54.4 66.0 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.8
CDAN + E[11] 50.7 70.8 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
DSAN[31] 54.4 70.8 75.4 60.4 67.8 68.0 62.6 55.9 78.5 73.8 60.6 83.1 67.5
Ours 55.0 71.0 75.3 61.1 69.4 68.0 61.4 55 78 72.9 60.0 83.6 67.7

Table 2: Accuracy Comparison of Unsupservised Domain Adaptation on Office-
Home Dataset

Method I→P P→I I→C C→I C→P P→C Avg

ResNet[7] 74.8 ± 0.3 83.9 ± 0.1 91.5 ± 0.3 78.0 ± 0.2 65.5 ± 0.3 91.2 ± 0.3 80.7
DDC[23] 74.6 ± 0.3 85.7 ± 0.8 91.1 ± 0.3 82.3 ± 0.7 68.3 ± 0.4 88.8 ± 0.2 81.8
DAN[10] 75.0 ± 0.4 86.2 ± 0.2 93.3 ± 0.2 84.1 ± 0.4 69.8 ± 0.4 91.3 ± 0.4 83.3
DANN[6] 75.0 ± 0.4 86.0 ± 0.3 96.2 ± 0.4 87.0 ± 0.5 74.3 ± 0.5 91.5 ± 0.6 85.0
D-CORAL[20] 76.9 ± 0.2 88.5 ± 0.3 93.6 ± 0.3 86.8 ± 0.6 74.0 ± 0.3 91.6 ± 0.3 85.2
JAN[13] 76.8 ± 0.4 88.0 ± 0.2 94.7 ± 0.2 89.5 ± 0.3 74.2 ± 0.3 91.7 ± 0.3 85.8
MADA[16] 75.0 ± 0.3 87.9 ± 0.2 96.0 ± 0.3 88.8 ± 0.3 75.2 ± 0.2 92.2 ± 0.3 85.8
CDAN[11] 76.7 ± 0.3 90.6 ± 0.3 97.0 ± 0.4 90.5.8 ± 0.4 74.5 ± 0.3 93.5 ± 0.4 87.1
iCAN[29] 79.5 ± 0.1 89.7 ± 0.1 94.6 ± 0.2 89.9 ± 0.4 78.5 ± 0.1 92.0 ± 0.1 87.4
DSAN[31] 80.2 ± 0.2 93.3 ± 0.4 97.2 ± 0.3 93.8 ± 0.2 80.8 ± 0.4 95.9 ± 0.4 90.1
Ours 79.8 ± 0.2 93.5 ± 0.2 98.1 ± 0.2 94.4 ± 0.2 79.8 ± 0.1 96.3 ± 0.2 90.4

Table 3: Accuracy Comparison of Unsupervised Domain Adaptation on Image-
CLEF Dataset
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6 Conclusion

In this work, we have proposed an innovative UDA approach, which incorpo-
rates local mean distributed discrepancy measure(LMMD) with adaptive feature
norm on subdomain adaptation. Our method can boost the transfer gains more
and precisely align the distributions of related subdomains within the source
and target domains’ relevant category. Extensive experiments are performed on
three of the most popular datasets for domain adaptation. Our results show the
method’s effectiveness, implying that task-specific features with larger norms are
more transferable on subdomain adaptation.
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