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STRUCTURAL COMPLETENESS OF THREE-VALUED LOGICS
WITH SUBCLASSICAL NEGATION

ALEXEJ P. PYNKO

Abstract. A propositional logic|calculus is said to be structurally complete,
whenever it cannot be extended by non-derivable rules without deriving new

axioms. Here, we study this property within the framework of three-valued

logics with subclassical negation (3VLSN) precisely specified and comprehen-
sively marked semantically here. The principal contribution of the paper is

then an effective — in case of finitely many connectives — algebraic criterion of
the structural completeness of any paraconsistent/“both disjunctive and para-
complete” 3VLSN, according to which it is structurally complete “only if”/iff

it is maximally paraconsistent/paracomplete, that is, has no proper paracon-
sistent/paracomplete extension, and “only if”/if it has no classical extension.

On the other hand, any [not necessarily] classical logic with[out] theorems is

[not] structurally complete. In this connection, we also obtain equally effective
algebraic criteria of the mentioned properties within the general framework of
3VLSN.

1. Introduction

Structural completeness of a propositional logic|calculus is one of its most funda-
mental properties, meaning its factual deductive maximality in the sense of absence
of any possibility to enhance it by essentially new rules with retaining theorems
(viz., derivable axioms).1 Therefore, studying it — even, for a single logic|calculus
(not saying about their generic classes) — is an extremely acute logical problem.
This feature is [not] typical of any [not necessarily] classical (more precisely, two-
valued classically-negative) logics with[out] theorems. The situation with many-
valued (even, three-valued) logics is but much more complicated. While there are
structurally complete three-valued logics like both Gödel’s one G3 [3] (as well as its
implication-less fragment; cf. [15] for its structural completeness) and the bounded
expansion of Kleene’s one K3 [5], there are also structurally incomplete ones with
theorems like  Lukasiewicz’ one  L3 [7] as well as both the logic of paradox/antinomies
LP/LA [11]/[1] and HZ [4], the structural incompleteness of all of which has been
due to [16], [17] and [20].

On the other hand, a third truth value (apart from the to classical ones — “truth”
and “falsehood”) is normally invoked to express the incompletenes/inconsistency
of information about assertions, in which case resulting logics become paracom-
plete/paraconsistent, respectively, in the sense that they refute the “Excluded Mid-
dle Law”/“Ex Contradictione Quodlibet” axiom/rule, and so such logics definitely
deserve a particular emphasis within the three-valud framework. Properly speak-
ing, the former, as opposed to the latter, first, presumes disjunctivity and, second,
holds for logics without theorems, making these just formally paracomplete, so we
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1As a matter of fact, a more appropriate term for this conception would be something like

“deductive/inferential completeness|maximality”. However, we follow the traditional terminology
originally adopted within the Polish Logic School (cf., e.g., [12]).
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naturally garble the native conception of paracompleteness with its more genuine
“inferential” version.

It is remarkable that the issue of structural completeness of paraconsistent/“dis-
junctive paracomplete” three-valued logics appears to be closely related to — more
precisely, characterized by — those of their (axiomatic) [pre]maximal paraconsis-
tency/paracompleteness — in the sense of having no [more than one] proper para-
consistent/paracomplete (axiomatic) extension — as well as both being {sub}clas-
sical {in the sense of having a classical extension} and having theorems. Therefore,
we explore these properties within the three-valued framework as well.

As a matter of fact, the issue of structural completeness is a particular case of
that of structural completion of a logic|calculus as the unique structurally complete
extension with same theorems that, in its turn, an instance of the problem of
finding the lattice of extensions of a given logic|calculus. Here, we explore (at
least, partially) these problems within the three-valued framework too, providing a
generic insight into particular results obtained in [16, 17, 20] ad hoc.

The rest of the paper is as follows. The exposition of the material of the paper
is entirely self-contained (of course, modulo very basic issues concerning Set and
Lattice Theory, Universal Algebra and Logic to be found, if necessary, in standard
mathematical handbooks like [2, 9]). Section 2 is a concise summary of particular
basic issues underlying the paper, most of which, though having become a part of
algebraic and logical folklore, are still recalled just for the exposition to be properly
self-contained. In Section 3, we then develop/recall certain advanced generic issues
concerning both false-singular (viz., having no more than one non-distinguished
value) consistent (viz., having a non-distinguished value) weakly conjunctive ma-
trices and equality determinants as well as both classical matrices and logics and
structural completions of finitely-valued logics. Next, in Section 4, we mark se-
mantically the framework of 3VLSN. Further, in Section 5, we explore the issue of
their paraconsistent extensions (in particular, that of the {axiomatic} [pre]maximal
paraconsistency of paraconsistent 3VLSN going back to [14] {resp., [22]}). Likewise,
Section 6 is devoted to classical extensions of 3VLSN. Then, in Section 7, we investi-
gate absence of non-subclassical [inferentially] consistent extensions of subclassical
3VLSN in connection with their [not] having theorems [resp. proper paraconsis-
tent extensions]. After all, in Section 8, we study the structural completeness and
completions (as well as the lattices of extensions) of paraconsistent/“(implicative)
disjunctive paracomplete” 3VLSN (with lattice conjunction and disjunction) /“as
well as their {axiomatic} [pre]maximal 〈inferential〉 paracompleteness”. Finally,
Section 9 is a brief summary of principal contributions of the paper.

2. Basic issues

Notations like img, dom, ker, hom, πi and Con and related notions are supposed
to be clear.

2.1. Set-theoretical background. We follow the standard set-theoretical con-
vention, according to which natural numbers (including 0) are treated as finite
ordinals (viz., sets of lesser natural numbers), the ordinal of all them being denoted
by ω. Then, given any (N ∪ {n}) ⊆ ω, set (N ÷ n) , {m

n | m ∈ N}. The proper
class of all ordinals is denoted by ∞. Also, functions are viewed as binary relations,
while singletons are identified with their unique elements, unless any confusion is
possible.

Given a set S, the set of all subsets of S [of cardinality ∈ K ⊆ ∞] is denoted
by ℘[K](S), respectively. Then, an enumeration of S is any bijection from |S| onto
S. As usual, given any equivalence relation θ on S, by νθ we denote the function
with domain S defined by νθ(a) , [a]θ , θ[{a}], for all a ∈ S, whereas we set
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(T/θ) , νθ[T ], for every T ⊆ S. Next, S-tuples (viz., functions with domain S)
are often written in the either sequence t̄ or vector ~t form, its s-th component
(viz., the value under argument s), where s ∈ S, being written as either ts or ts,
respectively. Given two more sets A and B, any relation R ⊆ (A×B) (in particular,
a mapping R : A → B) determines the equally-denoted relation R ⊆ (AS × BS)
(resp., mapping R : AS → BS) point-wise. Likewise, given a set A, an S-tuple B
of sets and any f̄ ∈ (

∏
s∈S B

A
s ), put (

∏
f̄) : A → (

∏
B), a 7→ 〈fs(a)〉s∈S . (In case

I = 2, f0 × f1 stands for (
∏
f̄).) Further, set ∆S , {〈a, a〉 | a ∈ S}, functions

of such a kind being referred to as diagonal, and S+ ,
⋃

i∈(ω\1) S
i, elements of

S∗ , (S0 ∪ S+) being identified with ordinary finite tuples/sequences, the binary
concatenation operation on which being denoted by ∗, as usual. Then, any binary
operation � on S determines the equally-denoted mapping � : S+ → S as follows:
by induction on the length l = (dom ā) of any ā ∈ S+, put:

�ā ,

{
a0 if l = 1,
(�(ā�(l − 1))) � al−1 otherwise.

In particular, given any f : S → S and any n ∈ ω, set fn , (◦〈n × {f},∆S〉) :
S → S. Likewise, given a one more set T , any � : (S × T ) → T determines the
equally-denoted mapping � : (S∗ × T ) → T as follows: by induction on the length
(viz., domain) l of any ā ∈ S∗, for all b ∈ T , put:

(ā � b) ,

{
b if l = 0,
a0 � (((ā�(l \ 1)) ◦ ((+1)�(l − 1))) � b) otherwise.

Finally, given any T ⊆ S, we have the characteristic function χT
S , ((T × {1}) ∪

((S \ T )× {0})) : S → 2 of T in S.
Let A be a set. Then, a U ⊆ ℘(A) is said to be upward-directed, provided, for

every S ∈ ℘ω(U), there is some T ∈ U such that (
⋃
S) ⊆ T , in which case U 6= ∅,

when taking S = ∅. Next, a subset of ℘(A) is said to be inductive, whenever it
is closed under unions of upward-directed subsets. Further, a closure system over
A is any C ⊆ ℘(A) such that, for every S ⊆ C, it holds that (A ∩

⋂
S) ∈ C. In

that case, any B ⊆ C is called a (closure) basis of C, provided C = {A ∩
⋂
S|S ⊆

B}. Furthermore, an operator over A is any unary operation O on ℘(A). This
is said to be (monotonic) [idempotent] {transitive} 〈inductive/finitary/compact〉,
provided, for all (B, )D ∈ ℘(A) 〈resp., any upward-directed U ⊆ ℘(A)〉, it holds
that (O(B))[D]{O(O(D)} ⊆ O(D)〈O(

⋃
U) ⊆

⋃
O[U ]〉. Finally, a closure operator

over A is any monotonic idempotent transitive operator over A, in which case
imgC is a closure system over A, determining C uniquely, because, for every closure
basis B of imgC (including imgC itself) and each X ⊆ A, it holds that C(X) =
(A ∩

⋂
{Y ∈ B|X ⊆ Y }), called dual to C and vice versa.

2.2. Algebraic background. Unless otherwise specified, abstract algebras are de-
noted by Fraktur letters [possibly, with indices], their carriers (viz., underlying sets)
being denoted by corresponding Italic letters [with same indices, if any].

A (propositional/sentential) language/signature is any algebraic (viz., functional)
signature Σ (to be dealt with throughout the paper by default) constituted by
function (viz., operation) symbols of finite arity to be treated as (propositional/se-
ntential) connectives. Then, Σ is said to be constant-free, whenever it has no nullary
connective.

Given a Σ-algebra A, Con(A) is an inductive closure system over A2 forming a
bounded lattice with meet θ ∩ ϑ of any θ, θ ∈ Con(A), their join θ q ϑ, being the
transitive closure of θ ∪ ϑ, zero ∆A and unit A2, the dual closure operator being
denoted by CgA. Then, A is said to be simple, provided the lattice involved is
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two-element, in which case |A| > 1. Next, a B ⊆ A is said to “form a subalgebra of
A”/“be A-closed”, whenever it is closed under operations of A. Furthermore, given
a class K of Σ-algebras, set hom(A,K) , (

⋃
{hom(A,B) | B ∈ K}), in which case

ker[hom(A,K)] ⊆ Con(A), and so (A2 ∩
⋂

ker[hom(A,K)]) ∈ Con(A).
Given any α ⊆ ω, put x̄α , 〈xβ〉β∈α and Vα , (img x̄α), elements of which being

viewed as (propositional/sentential) variables of rank α. Then, providing α 6= ∅,
whenever Σ is constant-free, we have the absolutely-free Σ-algebra Fmα

Σ freely-
generated by the set Vα, its endomorphisms/elements of its carrier Fmα

Σ being
called (propositional/sentential) Σ-substitutions/-formulas of rank α. As usual,
given any n ∈ ω, by an n-ary secondary connective of Σ we mean any Σ-formula
of rank max(1, n). Recall that

∀h ∈ hom(A,B) : [(img h) = B) ⇒]

(hom(Fmα
Σ,B) ⊇ [=]{h ◦ g | g ∈ hom(Fmα

Σ,A)}), (2.1)

where A and B are Σ-algebras. Any 〈φ, ψ〉 ∈ Eqα
Σ , (Fmα

Σ)2 is referred to as a
Σ-equation/-indentity of rank α and normally written in the standard equational
form φ ≈ ψ. (In general, any mention of α is normally omitted, whenever α =
ω.) In this way, given any h ∈ hom(Fmα

Σ,A), kerh is the set of all Σ-identities
of rank α true/satisfied in A under h. Likewise, given a class K of Σ-algebras,
θα
K , (Eqα

Σ ∩
⋂

ker[hom(Fmα
Σ,K)]) ∈ Con(Fmα

Σ) is the set of all all Σ-identities
of rank α true/satisfied in K, in which case we set Fα

K , (Fmα
Σ/θ

α
K). (In case

both α as well as both K and all members of it are finite, the set I , {〈h,A〉 |
h ∈ hom(Fmα

Σ,A),A ∈ K} is finite — more precisely, |I| =
∑

A∈K |A|α, in which
case g , (

∏
i∈I π0(i)) ∈ hom(Fmα

Σ,
∏

i∈I(π1(i)� img π0(i))) with (ker g) = θ , θα
K,

and so, by the Homomorphism Theorem, e , (g ◦ ν−1
θ ) is an isomorphism from Fα

K

onto the subdirect product (
∏

i∈I(π1(i)� img π0(i)))�(img g) of 〈π1(i)� img π0(i)〉i∈I .
In this way, the former is finite, for the latter is so — more precisely, |Fα

K | 6
(maxA∈K |A|)|I|.)

A “congruence-permutation term”/discriminator for K is any τ ∈ Fm3
Σ such

that, for each A and all ā ∈ A2/3, it holds that [τA(a0, a1, a1/2) =]a0 = τA(a1, a1, a0)
[unless a0 = a1], in which case it is so for any homomorphic image of any subalgebra
of A /as well as a congruence-permutation term for A (when taking a2 = a1), while,
for any θ ∈ Con(A), any 〈a, b〉 ∈ (θ \∆A) and any c ∈ A, we have a = τA(a, b, c) θ
τA(a, a, c) = c, in which case we get θ = A2, and so A is simple, unless it is
one-element. By [8] and Lemma 2.10 of [20], we have:

Lemma 2.1. Let n ∈ (ω[\1]), A an n-tuple of simple Σ-algebras and τ a congru-
ence-permutation term for img A. Then, any subdirect product of A is isomorphic
to the direct product of some [non-empty] subset of A.

The mapping Var : Fmω
Σ → ℘ω(Vω) assigning the set of all actually occurring

variables is defined in the standard recursive manner by induction on construction
of Σ-formulas. The Σ-substitution extending [xi/xi+1]i∈ω is denoted by σ+1.

2.2.1. Equational implicative systems. According to [20], an (equational) implica-
tive system for a class K of Σ-algebras is any f ⊆ Eq4

Σ such that, for each A ∈ K
and all ā ∈ A4, it holds that:

((a0 = a1) ⇒ (a2 = a3)) ⇔ (A |= (
∧

f)[xi/ai]i∈4). (2.2)

2.2.2. Lattice-theoretic background.
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2.2.2.1. Semi-lattices. Let � be a (possibly, secondary) binary connective of Σ.
A Σ-algebra A is called a �-semi-lattice, provided it satisfies semilattice (viz.,

idempotencity, commutativity and associativity) identities for �, in which case we
have the partial ordering ≤A

� on A, given by (a ≤A
� b) def⇐⇒ (a = (a �A b)), for

all a, b ∈ A. Then, in case the poset 〈A,≤A
� 〉 has the least element (viz., zero)

[in particular, when A is finite], this is denoted by [A� , while A is referred to as a
�-semi-lattice with zero (a) (whenever a = [A� ).

Lemma 2.2. Let A and B be �-semi-lattices with zero and h ∈ hom(A,B). Sup-
pose h[A] = B. Then, h([A� ) = [B� .

Proof. Then, there is some a ∈ A such that h(a) = [B� , in which case (a�A [A� ) = [A� ,
and so h([A� ) = (h(a) �B h([A� )) = ([B� �B h([A� )) = [B� , as required. �

2.2.2.2. Distributive lattices. Let Z and Y be (possibly, secondary) binary connec-
tives of Σ tacitly fixed throughout the paper.

A Σ-algebra A is called a [distributive] (Z,Y)-lattice, provided it satisfies [dis-
tributive] lattice identities for Z and Y (viz., semilattice identities for both Z and
Y as well as mutual [both] absorption [and distributivity] identities for them), in
which case ≤A

Z and ≤A
Y are inverse to one another, and so, in case A is a Y-semi-

lattice with zero (in particular, when A is finite), [AY is the greatest element (viz.,
unit) of the poset 〈A,≤A

Z 〉. Then, in case A is a {distributive} (Z,Y)-lattice, it is
said to be that with zero/unit (a), whenever it is a (Z/Y)-semilattice with zero (a).

Let Σ+[,01] , {∧,∨[,⊥,>]} be the [bounded] lattice signature with binary ∧
(conjunction) and ∨ (disjunction) [as well as nullary ⊥ and > (falsehood/zero and
truth/unit constants, respectively)]. Then, a Σ+[,01]-algebra A is called a [bounded]
(distributive) lattice, whenever it is a (distributive) (∧,∨)-lattice [with zero ⊥A and
unit >A] {cf., e.g., [2]}.

Given any n ∈ (ω \ 2), by Dn[,01] we denote the [bounded] distributive lattice
given by the chain n÷ (n− 1) ordered by 6.

Let Σ+,∼[,01] , (Σ+[,01]∪{∼}) with unary ∼ (negation) tacitly fixed throughout
the paper.

2.3. Propositional logics and matrices. A [finitary/unary/axiomatic] Σ-rule
is any couple 〈Γ, ϕ〉, where Γ ∈ ℘[ω/(2\1)/1](Fmω

Σ) and ϕ ∈ Fmω
Σ, normally written

in the standard sequent form Γ ` ϕ, ϕ|(ψ ∈ Γ) being referred to as the|a conclu-
sion|premise of it. A (substitutional) Σ-instance of it is then any Σ-rule of the form
σ(Γ ` ϕ) , (σ[Γ] ` σ(ϕ)), where σ is a Σ-substitution, in this way determining
the equally-denoted unary operation on ℘[ω/(2\1)/1](Fmω

Σ) × Fm1
Σ. As usual, ax-

iomatic Σ-rules are called Σ-axioms and are identified with their conclusions. A[n]
[axiomatic/finitary/unary] Σ-calculus is then any set of [axiomatic/finitary/unary]
Σ-rules.

A (propositional/sentential) Σ-logic (cf., e.g., [6]) is any closure operator C over
Fmω

Σ that is structural in the sense that σ[C(X)] ⊆ C(σ[X]), for all X ⊆ Fmω
Σ

and all σ ∈ hom(Fmω
Σ,Fmω

Σ), that is, imgC is closed under inverse Σ-substitutions.
In this way, given any set S of [finitary] Σ-logics, ℘(Fmω

Σ) ∩
⋂

C′∈S(imgC ′) is
a[n inductive] closure system over Fmω

Σ, closed under inverse Σ-substitutions, in
which case the dual closure operator is a [finitary] Σ-logic, and so this is the
complete lattice join of S. Next, C is said to be [inferentially] (in)consistent,
if x1 6∈ (∈)C(∅[∪{x0}]), the only inconsistent Σ-logic being denoted by ICΣ,
the signature subscript being normally omitted, uinless any confusion is possi-
ble. Further, a Σ-rule Γ → Φ is said to be satisfied/derivable in C, provided
Φ ∈ C(Γ), Σ-axioms satisfied in C being referred to as theorems of C. Next, a
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Σ-logic C ′ is said to be a (proper) [K-]extension of C [where K ⊆ ∞], when-
ever (C[�℘[K](Fmω

Σ)]) ⊆ (()(C ′[�℘[K](Fmω
Σ)]), in which case C is said to be a

(proper) [K-]sublogic of C ′. In that case, C ′ and C are said to be [K-]equivalent
(C ′ ≡[K] C, in symbols), provided they are [K-]extensions of one another. (In
this connection, axiomatically/finitely stands for 1/ω, respectively.) Then, a[n ax-
iomatic] Σ-calculus C is said to axiomatize C ′ (relatively to C), if C ′ is the least
Σ-logic (being an extension of C and) satisfying every rule in C [(in which case it is
called an axiomatic extension of C)]. Further, a Σ-rule R is said to be admissible
in C, provided the extension of C relatively axiomatized by R is axiomatically-
equivalent to C. Clearly, R is admissible in C, whenever it is derivable in C. Then,
C is said to be structurally/deductively/inferentially complete|maximal, whenever
every Σ-rule, being admissible in C, is derivable in C. Clearly, C is structurally
complete iff it has no proper axiomatically-equivalent extension. Then, as the join
of the non-empty set of all Σ-logics axiomatically-equivalent to C is so, C has a
unique structurally complete axiomatically-equivalent extension, called the struc-
tural completion of C. Furthermore, we have the finitary sublogic C` of C, defined
by C`(X) , (

⋃
C[℘ω(X)]), for all X ⊆ Fmω

Σ, called the finitarization of C. Then,
the extension of any finitary (in particular, diagonal) Σ-logic relatively axiomatized
by a finitary Σ-calculus is a sublogic of its own finitarization, in which case it is
equal to this, and so is finitary (in particular, the Σ-logic axiomatized by a finitary
Σ-calculus is finitary; conversely, any [finitary] Σ-logic is axiomatized by the [fini-
tary] Σ-calculus consisting of all those [finitary] Σ-rules, which are satisfied in C).
Further, C is said to be [weakly] Z-conjunctive, provided C(φZψ)[⊇] = C({φ, ψ}),
for all φ, ψ ∈ Fmω

Σ, in which case any extension of C is so. Likewise, C is said to be
[weakly] Y-disjunctive, provided C(X ∪ {φ Yψ})[⊆] = (C(X ∪ {φ})∩C(X ∪ {ψ})),
where (X ∪ {φ, ψ}) ⊆ Fmω

Σ, in which case [resp. that is, the first two (viz., (2.3)
with i ∈ 2) of] the following rules:

xi ` (x0 Y x1), (2.3)
(x0 Y x1) ` (x1 Y x0), (2.4)
(x0 Y x0) ` x0, (2.5)

where i ∈ 2, are satisfied in C, and so in its extensions. Furthermore, C is said
to have Deduction Theorem (DT) with respect to a (possibly, secondary) binary
connective A of Σ (tacitly fixed throughout the paper), provided, for all φ ∈ X ⊆
Fmω

Σ and all ψ ∈ C(X), it holds that (φ A ψ) ∈ C(X \ {φ}), in which case the
following axioms:

x0 A x0, (2.6)

x0 A (x1 A x0) (2.7)

are satisfied in C. Then, C is said to be weakly A-implicative, if it has DT with
respect to A and satisfies the Modus Ponens rule:

{x0, x0 A x1} ` x1. (2.8)

(In general, by CMP we denote the extension of C relatively axiomatized by (2.8).)
Likewise, C is said to be (strongly) A-implicative, whenever it is weakly so as well
as satisfies the Peirce Law axiom (cf. [10]):

(((x0 A x1) A x0) A x0). (2.9)

Then, C is said to be [ {axiomatically} (pre)maximally] ∼-paraconsistent, provided
it does not satisfy the Ex Contradictione Quodlibet rule:

{x0,∼x0} ` x1 (2.10)
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[and has no (more than one) proper ∼-paraconsistent {axiomatic} extension]. Like-
wise, C is said to be A-implicatively ∼-paraconsistent, provided it does not satisfy
the Ex Contradictione Quodlibet axiom:

∼x0 A (x0 A x1). (2.11)

(Clearly, C is non-∼-paraconsistent if[f] it is A-implicatively so, whenever it satisfies
(2.8) [and has DT with respect to A].) In general, by C [I]NP we denote the least [A-
implicatively] non-∼-paraconsistent extension of C, that is, the extension relatively
axiomatized by (2.10) [resp. by (2.11)]. Further, C is said to be ( 〈pre〉maxi-
mally {axiomatically}) [inferentially] (Y,∼)-paracomplete, whenever (x1 Y ∼x1) 6∈
C(∅[∪{x0}]) (and C has no 〈more than one〉 proper {axiomatic} [inferentially]
(Y,∼)-paracomplete extension). In general, by CEM we denote the extension of C
relatively axiomatized by the Excluded Middle Law axiom:

x0 Y∼x0. (2.12)

Finally, C is said to be theorem-less/purely-inferential, whenever it has no theorem,
that is, ∅ ∈ (imgC). Likewise, C is said to be [non-]pseudo-axiomatic, provided⋂

k∈ω C(xk) * [⊆]C(∅) [in which case it is (Y,∼)-paracomplete/(in)consistent iff it
is inferentially so]. In general, (imgC)∪{∅} is closed under inverse Σ-substitutions,
for imgC is so, in which case the dual closure operator C+0 is the greatest purely-
inferential sublogic of C, called the purely-inferential/theorem-less version of C,
while:

(C+0�℘∞\1(Fmω
Σ)) = (C�℘∞\1(Fmω

Σ)). (2.13)

Likewise, C−0 , ((C�℘∞\1(Fmω
Σ)) ∪ {〈∅,

⋂
k∈ω C(xk)〉} is the least non-pseudo-

axiomatic extension of C called the non-pseudo-axiomatic version of C, in which
case, by (2.13), we have:

(C+/−0)−/+0 = C, (2.14)

whenever C is non-pseudo-axiomatic/purely-inferential, respectively, and so this
provides an isomorphism between the posets of all non-pseudo-axiomatic and pu-
rely-inferential Σ-logics ordered by ⊆.

Remark 2.3. By (2.14), the purely-inferential version of the axiomatic extension of a
non-pseudo-axiomatic Σ-logic, relatively-axiomatized by an A ⊆ Fmω

Σ, is relatively
axiomatized by {x0 ` σ+1(ϕ) | ϕ ∈ A}; �

Remark 2.4. Any purely-inferential inferentially consistent Σ-logic C is a proper
sublogic of the unique purely-inferential inferentially inconsistent Σ-logic IC+0, and
so is not structurally complete, in which case IC+0 is the structural completion of
C, for (img IC+0) = {Fmω

Σ,∅}, [relatively] axiomatized by x0 ` x1. �

A (logical) Σ-matrix (cf. [6]) is any couple of the form A = 〈A, DA〉, where
A is a Σ-algebra, called the underlying algebra of A, while dAe , A is called
the carrier/“underlying set” of A, whereas DA ⊆ A is called the truth predicate
of A, elements of A[∩DA] being referred to as [distinguished] values of A. (In
general, matrices are denoted by Calligraphic letters [possibly, with indices], their
underlying algebras being denoted by corresponding Fraktur letters [with same
indices, if any].) This is said to be n-valued/[in]consistent/truth(-non)-empty/truth-
|false-{non-}singular, where n ∈ (ω \ 1), provided (|A| = n)/(DA 6= [=]A)/(DA =
(6=)∅)/(|(DA|(A \ DA))| ∈ {6∈}2), respectively. Next, given any Σ′ ⊆ Σ, A is
said to be a ( Σ-)expansion of its Σ′-reduct (A�Σ′) , 〈A�Σ′, DA〉. (Any notation,
being specified for single matrices, is supposed to be extended to classes of matrices
member-wise.) Finally, A is said to be finite[ly-generated]/“generated by B ⊆ A”,
whenever A is so.
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Given any α ∈ ℘∞[\1](ω) [whenever Σ is constant-free] and any class M of Σ-
matrices, we have the closure operator Cnα

M over Fmα
Σ dual to the closure system

with basis {h−1[DA] | A ∈ M, h ∈ hom(Fmα
Σ,A)}, in which case:

Cnα
M(X) = (Fmα

Σ ∩Cnω
M(X)), (2.15)

for all X ⊆ Fmα
Σ. Then, by (2.1), Cnω

M is a Σ-logic, called the logic of M, a Σ-logic
C being said to be [finitely-]defined by M, provided it is [finitely-]equivalent to Cnω

M.
A Σ-logic is said to be (unitary/uniform) n-valued, where n ∈ (ω \ 1), whenever it
is defined by an n-valued Σ-matrix, in which case it is finitary (cf. [6]), and so is
the logic of any finite class of finite Σ-matrices.

As usual, Σ-matrices are treated as first-order model structures (viz., algebraic
systems; cf. [9]) of the first-order signature Σ ∪ {D} with unary predicate D, any
[in]finitary Σ-rule Γ ` φ being viewed as the [in]finitary equality-free basic strict
Horn formula (

∧
Γ) → φ under the standard identification of any propositional Σ-

formula ψ with the first-order atomic formula D(ψ), as well as being true/satisfied
in a class M of Σ-matrices iff it being satisfied in the logic of M.

Remark 2.5. Since any Σ-formula contains just finitely many variables, and so there
is a variable not occurring in it, the logic of any class of truth-non-empty Σ-matrices
is non-pseudo-axiomatic. �

Remark 2.6. Since any rule with[out] premises is [not] true in any truth-empty
matrix, taking Remark 2.5 into account, given any class M of Σ-matrices, the purely-
inferential/non-pseudo-axiomatic version of the logic of M is defined by M ∪ / \ S,
where S is “any non-empty class of truth-empty Σ-matrices”/“the class of all truth-
empty members of M”, respectively. �

Let A and B be two Σ-matrices. A (strict) [surjective] {matrix} homomorphism
from A [on]to B is any h ∈ hom(A,B) such that [h[A] = B and] DA ⊆ (=)h−1[DB],
the set of all them being denoted by hom[S]

(S)(A,B), in which case B/A is said
to be a (strict) [surjective] {matrix} homomorphic image/counter-image of A/B,
respectively. Then, by (2.1), we have:

(∃h ∈ hom[S]
S (A,B)) ⇒ (Cnα

B ⊆ [=] Cnα
A), (2.16)

(∃h ∈ homS(A,B)) ⇒ (Cnα
A(∅) ⊆ Cnα

B(∅)), (2.17)

for all α ∈ ℘∞[\1](ω) [unless Σ has a nullary connective]. Further, A[6= B] is said
to be a [proper] submatrix of B, whenever ∆A ∈ homS(A,B), in which case we set
(B�A) , A. Injective/bijective strict homomorphisms from A to B are referred to
as embeddings/isomorphisms of/from A into/onto B, in case of existence of which
A is said to be embeddable/isomorphic into/to B, respectively.

Given a Σ-matrix A, χA , χDA

A is referred to as the characteristic function of
A. Then, any θ ∈ Con(A) such that θ ⊆ θA , (kerχA), in which case νθ is a strict
surjective homomorphism from A onto (A/θ) , 〈A/θ,DA/θ〉, is called a congruence
of A, the set of all them being denoted by Con(A). Given any θ, ϑ ∈ Con(A), the
transitive closure θq ϑ of θ ∪ϑ, being a congruence of A, is then that of A, for θA,
being an equivalence relation, is transitive. In particular, any maximal congruence
of A (that exists, by Zorn Lemma, because Con(A) 3 ∆A is both non-empty and
inductive, for Con(A) is so) is the greatest one to be denoted by a(A). Finally, A
is said to be [hereditarily] simple, provided it has no non-diagonal congruence [and
no non-simple submatrix].

Remark 2.7. Let A and B be two Σ-matrices and h ∈ homS(A,B). Then,
(i) θA = h−1[θB].

Moreover, f , {〈θ, h−1[θ]〉 | θ ∈ Con(B)} : Con(B) → Con(A). Therefore,
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(ii) f ′ , (f� Con(B)) : Con(B) → Con(A).

In particular (when θ = ∆B ∈ Con(B)), (kerh) = h−1[∆B ] ∈ Con(A), in which
case (kerh) ⊆ a(A), and so

(iii) h is injective, whenever A is simple. �

A Σ-matrix A is said to be a [K-]model of a Σ-logic C [where K ⊆ ∞],
provided C is a [K-]sublogic of the logic of A, the class of all them being de-
noted by Mod[K](C), respectively. Next, A is said to be “(A-implicatively) ∼-
paraconsistent”/“[inferentially] (Y,∼)-paracomplete”, whenever the logic of A is
so. Further, A is said to be [weakly] �-conjunctive, where � is a (possibly, sec-
ondary) binary connective of Σ, provided ({a, b} ⊆ DA)[⇐] ⇔ ((a �A b) ∈ DA),
for all a, b ∈ A, that is, the logic of A is [weakly] �-conjunctive. Then, A is said
to be [weakly] �-disjunctive, whenever 〈A, A \DA〉 is [weakly] �-conjunctive, in
which case [resp., that is] the logic of A is [weakly] �-disjunctive, and so is the
logic of any class of [weakly] �-disjunctive Σ-matrices. Likewise, A is said to be
A-implicative, whenever ((a ∈ DA) ⇒ (b ∈ DA)) ⇔ ((a AA b) ∈ DA), for all
a, b ∈ A, in which case it is ]A-disjunctive, where (x0 ]A x1) , ((x0 A x1) A x1),
while the logic of A is A-implicative, for both (2.8) and (2.9) = ((x0 A x1) ]A x0)
are true in any A-implicative (and so ]A-disjunctive) Σ-matrix, while DT is im-
mediate, and so is the logic of any class of A-implicative Σ-matrices. Finally, given
any (possibly secondary) unary connective o of Σ, put (x0 �o x1) , o(ox0 � ox1) and
(x0 Ao

� x1) , (ox0 � x1). Then, A is said to be [weakly] (classically) o-negative,
provided, for all a ∈ A, (a ∈ DA)[⇐] ⇔ (oAa 6∈ DA), in which case it is [truth-non-
empty], and so consistent.

Remark 2.8. Let � and o be as above. Then, the following hold:

(i) any (weakly) o-negative Σ-matrix A:
a) is [weakly] �-disjunctive/-conjunctive iff it is [weakly] �o-conjunctive/-

disjunctive, respectively;
b) defines a logic having PWC with respect to o ∈ Σ;
c) is Ao

�-implicative, whenever it is �-disjunctive;
d) is not o-paraconsistent(/(�, o)-paracomplete), whenever o ∈ Σ(/ while A

is weakly �-disjunctive).
(ii) given any two Σ-matrices A and B and any h ∈ hom[S]

S (A,B), A is (weakly)
o-negative|�-conjunctive/-disjunctive/-implicative if[f] B is so;

(iii) the direct product of any tuple of Σ-matrices is not o-paraconsistent, where
o ∈ Σ, whenever the tuple image contains a non-o-paraconsistent consistent
Σ-matrix. �

Given a set I and an I-tuple A of Σ-matrices, [any submatrix B of] the Σ-
matrix (

∏
i∈I Ai) , 〈

∏
i∈I Ai,

∏
i∈I D

Ai〉 is called the [a] [sub]direct product of A
[whenever, for each i ∈ I, πi[B] = Ai]. As usual, if (imgA) ⊆ {A} (and I = 2),
where A is a Σ-matrix, AI , (

∏
i∈I Ai) [resp., B] is called the [a] [sub]direct I-power

(square) of A.
Given a class M of Σ-matrices, the class of all “strict surjective homomor-

phic [counter-]images”/“(consistent) submatrices” of members of M is denoted by
(H[−1]/S(∗))(M), respectively. Likewise, the class of all [sub]direct products of tu-
ples (of cardinality ∈ K ⊆ ∞) constituted by members of M is denoted by P[SD]

(K) (M).
(Logic model classes, being actually infinitary equality-free universal Horn theory
model classes, are well known to be closed under P.)

Lemma 2.9. Let M be a class of Σ-matrices. Then, H(H−1(M)) ⊆ H−1(H(M)).
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Proof. Let A and B be Σ-matrices, C ∈ M and (h|g) ∈ homS
S(B, C|A). Then,

by Remark 2.7(ii), (ker(h|g)) ∈ Con(B), in which case (ker(h|g)) ⊆ θ , a(B) ∈
Con(B), and so, by the Homomorphism Theorem, (νθ ◦ (h|g)−1) ∈ homS

S(C|A,B/θ),
as required. �

Lemma 2.10 (Finite Subdirect Product Lemma; cf. Lemma 2.7 of [21]). Let M be
a finite class of finite Σ-matrices and A a finitely-generated (in particular, finite)
model of the logic of M. Then, A ∈ H−1(H(PSD

ω (S∗(M)))).

Lemma 2.11. Let M be a class of weakly Y-disjunctive Σ-matrices, I a finite set,
C ∈ MI , and D a consistent Y-disjunctive submatrix of

∏
C. Then, there is some

i ∈ I such that (πi�D) ∈ homS(D, Ci).

Proof. By contradiction. For suppose that, for every i ∈ I, (πi�D) 6∈ homS(D, Ci),
in which case DD ( (πi�D)−1[DCi ] = (D ∩ π−1

i [DCi ]), for (πi�D) ∈ hom(D, Ci),
and so there is some ai ∈ (D \DD) such that πi(ai) ∈ DCi . By induction on the
cardinality of any J ⊆ I, let us prove that there is some b ∈ (D \ DD) such that
πj(b) ∈ DCj , for all j ∈ J , as follows. In case J = ∅, take any b ∈ (D \DD) 6= ∅,
for D is consistent. Otherwise, take any j ∈ J , in which case K , (J \ {j}) ⊆ I,
while |K| < |J |, so, by the induction hypothesis, there is some c ∈ (D \ DD)
such that πk(c) ∈ DCk , for all k ∈ K. Then, by the Y-disjunctivity of D, b ,
(c YD aj) ∈ (D \ DD), while πi(b) ∈ DCi , for all i ∈ J = (K ∪ {j}), because
(πi�D) ∈ hom(D,Ci), while Ci is weakly Y-disjunctive. In particular, when J = I,
there is some b ∈ (D \DD) such that πi(b) ∈ DCi , for all i ∈ I. This contradicts to
the fact that DD = (D ∩

⋂
i∈I π

−1
i [DCi ]), as required. �

By Lemmas 2.9, 2.10, 2.11 and Remark 2.8(ii), we immediately have:

Corollary 2.12. Let M be a finite class of finite weakly Y-disjunctive Σ-matrices
and A a finitely-generated (in particular, finite) consistent Y-disjunctive model of
the logic of M. Then, A ∈ H−1(H(S∗(M))).

Corollary 2.13. Let C be a Σ-logic. (Suppose it is defined by a finite class M of
finite [weakly Y-disjunctive] Σ-matrices.) Then, (i)⇔(ii)⇔(iii)(⇔(iv)), where:

(i) C is purely-inferential;
(ii) C has a truth-empty model;
(iii) C has a one-valued truth-empty model;
(iv) PSD

ω[∩0](S∗(M))[∪S∗(M)] has a truth-empty member.

Proof. First, (ii)⇒(i) is immediate. The converse is by the fact that, by the struc-
turality of C, 〈Fmω

Σ, C(∅)〉 is a model of C.
Next, (ii) is a particular case of (iii). Conversely, let A ∈ Mod(C) be truth-

empty. Then, (imgχA) = {0}, in which case θA = A2 ∈ Con(A), and so, by (2.16),
(A/θA) ∈ Mod(C) is both one-valued and truth-empty.

(Finally, (iv)⇒(ii) is by (2.16). Conversely, (iii)⇒(iv) is by Lemma 2.10 [resp.,
Corollary 2.12 and the Y-disjunctivity of truth-empty Σ-matrices].) �

Theorem 2.14 (cf. Theorem 2.8 of [21]). Let K and M be classes of Σ-matrices,
C the logic of M and C ′ an extension of C. Suppose [both M and all members of
it are finite and] PSD

[ω](S∗(M)) ⊆ K (in particular, S(P[ω](M)) ⊆ K {in particular,
K ⊇ M is closed under both S and P[ω]〈 in particular, K = Mod(C)〉}). Then, C ′

is [finitely-]defined by Mod(C ′) ∩ K, and so by Mod(C ′).

Corollary 2.15 (cf. Corollary 2.9 of [21]). Let M be a class of Σ-matrices and A

an axiomatic Σ-calculus. Then, the axiomatic extension of the logic of M relatively
axiomatized by A is defined by S∗(M) ∩Mod(A).
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Given any Σ-logic C and any Σ′ ⊆ Σ, in which case Fmα
Σ′ ⊆ Fmα

Σ and hom(Fmα
Σ′ ,

Fmα
Σ′) = {h� Fmα

Σ′ | h ∈ hom(Fmα
Σ,Fmα

Σ), h[Fmα
Σ′ ] ⊆ Fmα

Σ′}, for all α ∈ ℘∞\1(ω),
we have the Σ′-logic C ′, defined by C ′(X) , (Fmω

Σ′ ∩C(X)), for all X ⊆ Fmω
Σ′ ,

called the Σ′-fragment of C, in which case C is said to be a ( Σ-)expansion of C ′,
while, given any class M of Σ-matrices, C ′ is defined by M�Σ′, whenever C is defined
by M.

3. Preliminary key adnanced generic issues

3.1. False-singular consistent weakly conjunctive matrices.

Lemma 3.1. Let A be a false-singular weakly Z-conjunctive Σ-matrix, f ∈ (A \
DA), I a finite set, C an I-tuple constituted by consistent submatrices of A and B
a subdirect product of C. Then, (I × {f}) ∈ B.

Proof. By induction on the cardinality of any J ⊆ I, let us prove that there is some
a ∈ B including (J × {f}). First, when J = ∅, take any a ∈ B 6= ∅, in which
case (J × {f}) = ∅ ⊆ a. Now, assume J 6= ∅. Take any j ∈ J ⊆ I, in which case
K , (J \ {j}) ⊆ I, while |K| < |J |, and so, as Cj is a consistent submatrix of the
false-singular Σ-matrix A, we have f ∈ Cj = πj [B]. Hence, there is some b ∈ B
such that πj(b) = f , while, by induction hypothesis, there is some a ∈ B including
(K × {f}). Therefore, since J = (K ∪ {j}), while A is both weakly Z-conjunctive
and false-singular, we have B 3 c , (a ZB b) ⊇ (J × {f}). Thus, when J = I, we
eventually get B 3 (I × {f}), as required. �

3.2. Equality determinants versus matrix simplicity. A (binary) relational
Σ-scheme is any Σ-calculus of the form ε ⊆ (℘(Fm2

Σ)×Fm2
Σ), in which case, given

any Σ-matrix A, we set θAε , {〈a, b〉 ∈ A2 | A |= (
∧
ε)[x0/a, x1/b]} ⊆ A2. Given a

one more Σ-matrix B and any h ∈ hom(S)(A,B) [being strict, unless ε is axiomatic],
we have:

h−1[θBε ](⊆)[⊇]θAε . (3.1)
A unitary relational Σ-scheme is any Υ ⊆ Fm1

Σ, in which case we have the unary
relational Σ-scheme εΥ , {(υ[x0/xi]) ` (υ[x0/x1−i]) | i ∈ 2, υ ∈ Υ}.

A (binary) equality determinant for a class of Σ-matrices M is any relational Σ-
scheme ε such that, for each A ∈ M, θAε = ∆A, that includes a finite one, whenever
both M and all members of it are finite.

Then, according to [18], a unitary equality determinant for a class of Σ-matrices
M is any unitary relational Σ-scheme Υ such that εΥ is an equality determinant
for M that includes a finite one, whenever both M and all members of it are finite.
(It is unitary equality determinants that are equality determinants in the sense of
[18].)

Lemma 3.2. Let A be a Σ-matrix, θ ∈ Con(A) and ε a relational Σ-scheme.
Then, θ ⊆ θAε , whenever ∆A ⊆ θAε . In particular, A is simple, whenever ε is an
equality determinant for it.

Proof. Let B , (A/θ), in which case h , νθ ∈ homS
S(A,B). Consider any 〈a, b〉 ∈ θ,

in which case h(a) = h(b). Therefore, if ∆A ⊆ θAε , then we have 〈a, a〉 ∈ θAε , in
which case, by (3.1), we get 〈h(a), h(b)〉 = 〈h(a), h(a)〉 ∈ θBε , and so we eventually
get 〈a, b〉 ∈ θAε , as required. �

Lemma 3.3. Let A and B be Σ-matrices, ε an equality determinant for B and h
an embedding of A into B. Then, ε is an equality determinant for A.

Proof. In that case, by (3.1), we have θAε = h−1[θBε ]. In this way, the injectivity of
h completes the argument. �
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Theorem 3.4. Let A be a Σ-matrix. Then, the following are equivalent:
(i) A is hereditarily simple;
(ii) A has an equality determinant;
(iii) A has a unary equality determinant.

Proof. First, (ii) is a particular case of (iii), (ii)⇒(i) being by Lemmas 3.2 and 3.3.
Finally, assume (i) holds. Let ε , {φi ` φ1−i | i ∈ 2, φ̄ ∈ (Fm2

Σ)2, (φ0[x1/x0]) =
(φ1[x1/x0])}. Then, ∆A ⊆ θAε . Conversely, consider any ā ∈ (A2 \ ∆A). Let
B be the submatrix of A generated by img ā. Then, it is simple, by (i). There-
fore, θ , CgB(ā) * θB, for θ 3 ā 6∈ ∆B is a non-diagonal congruence of B.
Let ϑ , {〈ϕB[x0/aj ;xk+1/ck]k∈(n−1), ϕ

B[x0/a1−j ;xk+1/ck]k∈(n−1)〉 | j ∈ 2, n ∈
(ω \ 1), ϕ ∈ Fmn

Σ, c̄ ∈ Bn−1}. Then, by Mal’cev’s Principal Congruence Lemma [8],
θ is the transitive closure of ϑ. Hence, θB, being transitive, does not include ϑ, in
which case there are some j ∈ 2, some n ∈ (ω \ 1), some ϕ ∈ Fmn

Σ and some c̄ ∈
Bn−1 such that 〈ϕB[x0/aj ;xk+1/ck]k∈(n−1), ϕ

B[x0/a1−j ;xk+1/ck]k∈(n−1)〉 6∈ θB,
in which case there is some i ∈ 2 such that ϕB[x0/ai;xk+1/ck]k∈(n−1) ∈ DB 63
ϕB[x0/a1−i;xk+1/ck]k∈(n−1), while, as B is generated by img ā, there is some
ψ̄ ∈ (Fm2

Σ)n−1 such that ck = ψB[xl/al]l∈2, for all k ∈ (n−1), and so φB
i [xl/al]l∈2 ∈

DB 63 φB
1−i[xl/al]l∈2, where, for each m ∈ 2, φm , (ϕ[x0/xm;xk+1/ψk]k∈(n−1) ∈

Fm2
Σ. Moreover, (φ0[x1/x0]) = (ϕ[xk+1/(ψk[x0/x1])]k∈(n−1) = (φ1[x1/x0]), in

which case (φi ` φ1−i) ∈ ε, and so ā 6∈ θBε = (θAε ∩ B2), in view of (3.1) with
h = ∆B as well as A and B instead of one another. Thus, ā 6∈ θAε , for ā ∈ B2, in
which case ε is a unary equality determinant for A, and so (iii) holds. �

Lemma 3.5. Any axiomatic equality determinant ε for a class M of Σ-matrices
is so for P(M).

Proof. In that case, members of M are models of the infinitary universal strict Horn
theory ε[x1/x0] ∪ {(

∧
ε) → (x0 ≈ x1)} with equality, and so are well-known to be

those of P(M), as required. �

3.3. Classical matrices and logics. A two-valued Σ-matrix A is said to be ∼-
classical, whenever it is ∼-negative, in which case it is both consistent and truth-
non-empty, and so is both false- and truth-singular, the unique element of (A \
DA)/DA being denoted by (0/1)A, respectively (the index A is often omitted,
unless any confusion is possible), in which case A = {0, 1}, while ∼Ai = (1− i), for
each i ∈ 2, whereas θA is diagonal, for χA is so, and so A is simple (in particular,
hereditarily so, for it has no proper submatrix) but is not ∼-paraconsistent, in view
of Remark 2.8(i)d).

A Σ-logic is said to be ∼-[sub]classical, whenever it is [a sublogic of] the logic
of a ∼-classical Σ-matrix, in which case it is inferentially consistent. Then, ∼ is
called a subclassical negation for a Σ-logic C, whenever the ∼-fragment of C is
∼-subclassical, in which case:

∼mx0 6∈ C(∼nx0), (3.2)

for all m,n ∈ ω such that the integer m− n is odd.

Lemma 3.6. Let A be a ∼-classical Σ-matrix, C the logic of A and B a truth-non-
empty consistent model of C. Then, A is a strict surjective homomorphic image
of a submatrix of B, in which case A is isomorphic to any ∼-classical model of C,
and so C has no proper ∼-classical extension.

Proof. Take any a ∈ DB 6= ∅ and any b ∈ (B \DB) 6= ∅. Then, by (2.16), the sub-
matrix D of B generated by {a, b} is a finitely-generated consistent truth-non-empty
model of C. Therefore, by Corollary 2.12, there are some set I, some submatrix
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E of AI , some Σ-matrix F , some g ∈ homS
S(D,F) and some h ∈ homS

S(E ,F), in
which case E is both truth-non-empty and consistent (in particular, I 6= ∅), for
D is so, and so there is some d ∈ DE 6= ∅, in which case E 3 d , (I × {1}),
and so E 3 ∼Ed = (I × {0}). Hence, as I 6= ∅, e , {〈x, (I × {x})〉 | x ∈ A} is
an embedding of A into E , in which case f , (h ◦ e) ∈ homS(A,F) is injective,
in view of Remark 2.7(iii). Then, G , (img f) forms a subalgebra of F, in which
case H , g−1[G] forms a subalgebra of D, and so f−1 ◦ (g�G) is a strict surjective
homomorphism from (D�H) ∈ S(B) onto A. In this way, (2.16), Remark 2.7(iii)
and the fact that any ∼-classical Σ-matrix is simple and has no proper submatrix
complete the argument. �

A ∼-classical Σ-matrix A is said to be canonical, whenever A = 2 and aA = a, for
all a ∈ A, any isomorphism between canonical ones being clearly diagonal, so any
isomorphic canonical ones being equal. In general, the bijection eA , {〈i, iA〉 | i ∈
2} : 2 → A is an isomorphism from the canonical ∼-classical Σ-matrix 〈e−1

A [A], {1}〉
onto A. In this way, in view of (2.16) and Lemma 3.6, any ∼-classical Σ-logic is
defined by a unique canonical ∼-classical Σ-matrix, said to be characteristic for/of
the logic.

Corollary 3.7. Any ∼-classical Σ-logic has no proper inferentially consistent ex-
tension, and so is structurally complete iff it has a theorem.

Proof. Let A be a ∼-classical Σ-matrix, C the logic of A and C ′ an inferentially
consistent extension of C. Then, x1 6∈ T , C ′(x0) 3 x0. On the other hand, by
the structurality of C ′, 〈Fmω

Σ, T 〉 is a consistent truth-non-empty model of C ′ (in
particular, of C). In this way, (2.16), Remark 2.4 and Lemma 3.6 complete the
argument. �

3.4. Structural completions versus free models. Let M be a class of Σ-mat-
rices, C the logic of M, K , π0[M] and α ∈ ℘ω[\1](ω) [whenever Σ is constant-
free]. Then, for any A ∈ M and any h ∈ hom(Fmα

Σ,A), h ∈ homS(B,A), where
B , 〈Fmα

Σ, h
−1[DA]〉, in which case, by Remark 2.7(i), we have θα

K ⊆ (kerh) =
h−1[∆A] ⊆ h−1[θA] = θB, and so θα

K ⊆ θD, where D , 〈Fmα
Σ,Cnα

M(∅)〉 ∈ Mod(C),
in view of the structurality of C. Thus, θα

K ∈ Con(D), in which case, by (2.16),
Fα

M , (D/θα
K) ∈ Mod(C), while Fα

M = Fα
K.

Theorem 3.8. Let Σ be a signature [with(out) nullary symbols], M a [finite (non-
empty)] class of [finite] Σ-matrices, C the logic of M, [f ∈

∏
A∈M ℘ω(\1)(A)] α ,

(ω[∩
⋃
A∈M |f(A)|]) and B a submatrix of Fα

M. Suppose every A ∈ M is a surjective
homomorphic image of B, unless B = Fα

M, [and generated by f(A)]. Then, the
structural completion of C is defined by B.

Proof. Then, by (2.16), the logic C ′ of Fω[/α]
M is defined by Dω[/α] , 〈Fm

ω[/α]
Σ ,

Cnω[/α]
M (∅)〉 ∈ Mod(C), in view of the structurality of C [/and (2.15)], in which

case it is an extension of C, and so C(∅) ⊆ C ′(∅). For proving the converse
inclusion, consider the following complementary cases:

• α = ω.
Then, applying the diagonal Σ-substitution, we get C ′(∅) ⊆ DDω = C(∅).

• α 6= ω.
Consider any A ∈ M, in which case it is generated by f(A) of cardinality
6 α, and so there is some surjective h ∈ hom(Fmα

Σ,A). Then, DDα =
Cnα

M(∅) ⊆ h−1[DA], in which case h ∈ homS(Dα,A), and so, by (2.17),
C ′(∅) ⊆ C(∅).
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Next, Dω is a model of any extension C ′′ of C ′ such that C ′′(∅) = C(∅), in view of
its structurality [and so is its submatrix Dα, in view of (2.15) and (2.16)], in which
case C ′ is the structural completion of C. Finally, by (2.16), B is a model of C ′.
Conversely, if B = {6=}Fα

M, then {each A ∈ M is a surjective homomorphic image
of B, in which case, by (2.17)} CnB(∅) = C ′(∅), and so C ′, being structurally
complete, is defined by B, as required. �

The []-optional case of this theorem provides an effective procedure of finding
finite matrix semantics of any finitely-valued logic, practical applications of which
are demonstrated in Paragraphs 8.3.1.1 and 8.3.2.1 below.

4. Three-valued logics with subclassical negation versus
super-classical matrices

A Σ-matrix A is said to be ∼-super-classical, if A�{∼} has a ∼-classical subma-
trix, in which case A is both consistent and truth-non-empty, while, by (2.16), ∼
is a subclassical negation for the logic of A, and so we have the “if” part of the
following preliminary marking the framework of the present subsection:

Theorem 4.1. Let A be a Σ-matrix. [Suppose |A| 6 3.] Then, ∼ is a subclassical
negation for the logic of A if[f ] A is ∼-super-classical.

Proof. [Assume ∼ is a subclassical negation for the logic of A. First, by (3.2) with
m = 1 and n = 0, there is some a ∈ DA such that ∼Aa 6∈ DA. Likewise, by (3.2)
with m = 0 and n = 1, there is some b ∈ (A \DA) such that ∼Ab ∈ DA, in which
case a 6= b, and so |A| 6= 1. Then, if |A| = 2, we have A = {a, b}, in which case A
is ∼-classical, and so ∼-super-classical. Now, assume |A| = 3.

Claim 4.2. Let A be a three-valued Σ-matrix, ā ∈ A2 and i ∈ 2. Suppose ∼ is a
subclassical negation for the logic of A and, for each j ∈ 2, (aj ∈ DA) ⇔ (∼Aaj 6∈
DA) ⇔ (a1−j 6∈ DA). Then, either ∼Aai = a1−i or ∼A∼Aai = ai.

Proof. By contradiction. For suppose both ∼Aai 6= a1−i and ∼A∼Aai 6= ai. Then,
in case ai ∈ / 6∈ DA, as |A| = 3, we have both (DA/(A \ DA)) = {ai}, in which
case ∼Aa1−i = ai, and ((A \DA)/DA) = {a1−i,∼Aai}, respectively. Consider the
following exhaustive cases:

• ∼A∼Aai = a1−i.
Then, ∼A∼A∼Aai = ai. This contradicts to (3.2) with (n/m) = 0 and
(m/n) = 3, respectively.

• ∼A∼Aai = ∼Aai.
Then, for each c ∈ ((A \ DA)/DA), ∼A∼A∼Ac = ∼Aai 6∈ / ∈ DA. This
contradicts to (3.2) with (n/m) = 3 and (m/n) = 0, respectively.

Thus, in any case, we come to a contradiction, as required. �

Finally, consider the following exhaustive cases:
• both ∼Aa = b and ∼Ab = a.

Then, {a, b} forms a subalgebra of A�{∼}, (A�{∼})�{a, b} being a ∼-
classical submatrix of A�{∼}, as required.

• ∼Aa 6= b.
Then, by Claim 4.2, ∼A∼Aa = a, in which case {a,∼Aa} forms a subalgebra
of A�{∼}, (A�{∼})�{a,∼Aa} being a ∼-classical submatrix of A�{∼}, as
required.

• ∼Ab 6= a.
Then, by Claim 4.2, ∼A∼Ab = b, in which case {b,∼Ab} forms a subalgebra
of A�{∼}, (A�{∼})�{b,∼Ab} being a ∼-classical submatrix of A�{∼}, as
required.] �
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The following counterexample shows that the optional condition |A| 6 3 is es-
sential for the optional “only if” part of Theorem 4.1 to hold:

Example 4.3. Let n ∈ ω and A any Σ-matrix with A , (n ∪ (2 × 2)), DA ,
{〈1, 0〉, 〈1, 1〉}, ∼A〈i, j〉 , 〈1− i, (1− i+ j) mod 2〉, for all i, j ∈ 2, and ∼Ak ,
〈1, 0〉, for all k ∈ n. Then, for any subalgebra B of A�{∼}, we have (2 × 2) ⊆ B,
in which case 4 6 |B|, and so A is not ∼-super-classical, for 4 
 2. On the other
hand, 2× 2 forms a subalgebra of A�{∼}, B , (A�{∼})�(2× 2) being ∼-negative,
in which case χA�(2 × 2) is a surjective strict homomorphism from B onto the
canonical ∼-classical {∼}-matrix C, and so, by (2.16), ∼ is a subclassical negation
for the logic of A. �

Let A be a three-valued ∼-super-classical (in particular, both consistent and
truth-non-empty) Σ-matrix and B a ∼-classical submatrix of A�{∼}. Then, as
4 
 3, A is either false-singular, in which case the unique non-distinguished value
0A of A is that 0B of B, so 1∼A , ∼A0A = ∼B0B = 1B, or truth-singular, in which
case the unique distinguished value 1A of A is that 1B of B, so 0∼A , ∼A1A =
∼B1B = 0B, but not both, for |A| = 3 6= 2. Thus, in case A is false-/truth-singular,
B = 2∼A , {0/∼

A , 1∼/
A } is uniquely determined by A and ∼, the unique element of

A\2∼A being denoted by ( 1
2 )∼A. (The indexes A and, especially, ∼ are often omitted,

unless any confusion is possible.) Strict homomorphisms from A to itself retain
both 0 and 1, in which case surjective ones retain 1

2 , and so:

hom[S]
S (A,A) ⊇ [=]{∆A}, (4.1)

the inclusion [not] being allowed to be proper (cf. Example 4.9 below). Then, A is
said to be canonical, provided A = (3÷ 2) and aA = a, for all a ∈ A.

Lemma 4.4. Let A and B be canonical three-valued ∼-super-classical Σ-matrices
and e an isomorphism from A onto B. Then, e is diagonal, in which case A = B.

Proof. Then, A is “false-/-truth-singular”|∼-negative iff B is so“|, in view of Re-
mark 2.8(ii)”, in which case DA = DB, while ∼A 1

2 is equal to 0/1 iff ∼B 1
2 is so.

Moreover, since A and B are isomorphic, we have (∼A 1
2 = 1

2 ) ⇔ (∃a ∈ A : ∼Aa =
a) ⇔ (∃b ∈ B : ∼Bb = b) ⇔ (∼B 1

2 = 1
2 ). Hence, ∼A = ∼B. In this way, e is an iso-

morphism from the three-valued∼-super-classicalA�{∼} onto (B�{∼}) = (A�{∼}),
in which case, by (4.1), e is diagonal, and so A = B, as required. �

Lemma 4.5. Any three-valued ∼-super-classical Σ-matrix A is isomorphic to a
unique canonical one.

Proof. Then, the mapping e : (3 ÷ 2) 7→ A, a 7→ aA is a bijection, in which case
it is an isomorphism from the canononical three-valued ∼-super-classical Σ-matrix
〈e−1[A], e−1[DA]〉 onto A. In this way, Lemma 4.4 completes the argument. �

As an immediate consequence of (2.16), Theorem 4.1 and Lemma 4.5, we have:

Corollary 4.6. Three-valued Σ-logics with subclassical negation ∼ are exactly log-
ics of canonical three-valued ∼-super-classical Σ-matrices.

From now on, unless otherwise specified, C is supposed to be the logic of an
arbitrary but fixed canonincal three-valued ∼-super-classical Σ-matrix A. In view
of Corollary 4.6, this exhaust all three-valued Σ-logics with subclassical negation ∼.
Then, C is “ (weakly) Z-conjunctive”/“weakly Y-disjunctive” iff A is so. It appears
that such does hold for both disjunctivity and implicativity too, as it ensues from
the following two lemmas:
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Lemma 4.7. Let B be a Σ-matrix and C ′ the logic of B. Suppose [either] B is false-
singular (in particular, ∼-classical) [or both B is ∼-super-classical and |B| 6 3].
Then, the following are equivalent:

(i) C ′ is Y-disjunctive;
(ii) B is Y-disjunctive;
(iii) (2.3) with i = 0, (2.4) and (2.5) [as well as (2.8) for the material implication

(x0 A x1) , (∼x0 Y x1)] are satisfied in C ′ (viz., true in B).

Proof. First, (ii)⇒(i) is immediate.
Next, assume (i) holds. Then, (2.3) with i = 0, (2.4) and (2.5) are immediate.

[In addition, suppose B is not false-singular, in which case it is ∼-super-classical,
while |B| 6 3, and so it is both truth-singular and, therefore, not ∼-paraconsistent.
Hence, x1 ∈ (C ′({x0, x1})∩C ′({x0,∼x0})) = C ′({x0,∼x0Yx1}), so (2.8) is satisfied
in C ′.] Thus, (iii) holds.

Finally, assume (iii) holds. Consider any a, b ∈ B. In case (a/b) ∈ DB, by
(2.3) with i = 0 /“and (2.4)”, we have (a YB b) ∈ DB. Now, assume ({a, b} ∩
DB) = ∅. Then, in case a = b (in particular, B is false-singular), by (2.5), we
get DB 63 (a YB a) = (a YB b). [Otherwise, B is not false-singular, in which case
it is ∼-super-classical, while |B| 6 3, whereas (2.8) is true in B, and so, for some
c ∈ (B \DB) = {a, b}, it holds that ∼Bc ∈ DB, while ∼B∼Bc = c. Let d be the
unique element of {a, b}\{c}, in which case {a, b} = {c, d}. Then, since ∼Bc ∈ DB,
we conclude that (cYBd) = (∼B∼BcYBd) 6∈ DB, for, otherwise, by (2.8), we would
get d ∈ DB. Hence, by (2.4), we eventually get (aYB b) 6∈ DB.] Thus, (ii) holds. �

Lemma 4.8. Let B be a Σ-matrix and C ′ the logic of B. Suppose [either] B is false-
singular (in particular, ∼-classical) [or both B is ∼-super-classical and |B| 6 3].
Then, the following [but (i)] are equivalent:

(i) C ′ is weakly A-implicative;
(ii) C ′ is A-implicative;
(iii) B is A-implicative;
(iv) (2.6), (2.7) and (2.8) [as well as both (2.9) and (2.11)] are satisfied in C ′

(viz., true in B).
In particular, any ∼-classical/“three-valued ∼-paraconsistent” Σ-logic /“with sub-
classical negation ∼” is A-implicative iff it is weakly so.

Proof. First, (iii)⇒(ii) is immediate, while (i) is a particular case of (ii).
Next, assume (i[i]) holds. Then, (2.6), (2.7) and (2.8) [as well as (2.9)] are

immediate. [In addition, suppose B is not false-singular, in which case it is ∼-
super-classical, while |B| 6 3, and so it is both truth-singular and, therefore, non-
∼-paraconsistent, and so is C ′. Hence, by Deduction Theorem, (2.11) is satisfied
in C ′.] Thus, (iv) holds.

Finally, assume (iv) holds. Consider any a, b ∈ B. In case b ∈ DB, by (2.7) and
(2.8), we have (a AB b) ∈ DB. Likewise, in case {a, a AB b} ⊆ DB, by (2.8), we
have b ∈ DB. Now, assume ({a, b} ∩DB) = ∅. Then, in case a = b (in particular,
B is false-singular), by (2.6), we get DB 3 (a AB a) = (a AB b). [Otherwise, B
is not false-singular, in which case it is ∼-super-classical, while |B| 6 3, whereas
both (2.9) and (2.11) and true in B, and so, for some c ∈ (B \ DB) = {a, b},
it holds that ∼Bc ∈ DB. Let d be the unique element of {a, b} \ {c}, in which
case {a, b} = {c, d}. Then, since ∼Bc ∈ DB, by (2.8) and (2.11), we conclude
that (c AB d) ∈ DB. Let us prove, by contradiction, that (d AB c) ∈ DB.
For suppose (d AB c) 6∈ DB, in which case (d AB c) = (c/d), and so we have
((d AB c) AB d) = ((c AB d)/(d AB d)) ∈ DB/, by (2.6). Hence, by (2.8) and
(2.9), we get d ∈ DB. This contradiction shows that (d AB c) ∈ DB 3 (c AB d).
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In particular, we eventually get (a AB b) ∈ DB.] Thus, (iii) holds, as required/“,
in view of Corollary 4.6”. �

Three-valued logics with subclassical negation ∼ (even both implicative [and so
disjunctive; cf. Lemma 4.8] and conjunctive ones) need not, generally speaking, be
non-∼-classical, as it ensues from the following elementary example:

Example 4.9. Let Σ , Σ+,∼ and (B/E)|F the canonical “∼-negative false-/truth-
singular three-valued ∼-super-classical”|∼-classical Σ-matrix with (((B/E)|F)�Σ+)
, D3|2. Then, (B/E)|F is both ∧-conjunctive and ∨-disjunctive, and so A∼

∨ -
implicative, in view of Remark 2.8(i)c). And what is more, χB/E ∈ homS

S(B/E ,F).
Therefore, by (2.16), B/E define the same ∼-classical Σ-logic of F . On the other
hand, B, being false-singular, is not isomorphic to E , not being so. Moreover,
h , (∆2 ◦ χB/E) is a non-diagonal (for h( 1

2 ) = (1/0) 6= 1
2 ) strict homomorphism

from B/E to itself, so the non-[]-optional inclusion in (4.1) may be proper. �

On the other hand, ∼-classical three-valued Σ-logics with subclassical negation
∼ and with[out] theorems are [not] structurally complete, in view of Corollary 3.7.
This makes the following subsection especially acute.

4.1. Classical three-valued logics with subclassical negation.

Lemma 4.10. The following are equivalent:
(i) A is a strict surjective homomorphic counter-image of a ∼-classical Σ-matrix;
(ii) A is not simple;
(iii) A is not hereditarily simple;
(iv) θA ∈ Con(A).

Proof. First, (i)⇒(ii) is by Remark 2.7(iii) and the fact that 3 
 2. Next, (iii) is
a particular case of (ii). The converse is by the fact that any proper submatrix of
A, being either one-valued or ∼-classical, is simple. Further, (ii)⇒(iv) is by the
following claim:

Claim 4.11. Let B be a three-valued as well as both consistent and truth-non-empty
Σ-matrix. Then, any non-diagonal congruence θ of it is equal to θB.

Proof. First, we have θ ⊆ θB. Conversely, consider any ā ∈ θB. Then, in case
a0 = a1, we have ā ∈ ∆B ⊆ θ. Otherwise, take any b̄ ∈ (θ \ ∆B) 6= ∅, in which
case b̄ ∈ θB, for θ ⊆ θB. Then, as |B| = 3 � 4, there are some i, j ∈ 2 such
that ai = bj . Hence, if a1−i was not equal to b1−j , then we would have both
|{ai, a1−i, b1−j}| = 3 = |B|, in which case we would get {ai, a1−i, b1−j} = B, and
χB(b1−j) = χB(bj) = χB(ai) = χB(a1−i), and so B would be either truth-empty or
inconsistent. Therefore, both a1−i = b1−j and ai = bj . Thus, since θ is symmetric,
we eventually get ā ∈ θ, for b̄ ∈ θ, as required. �

Finally, assume (iv) holds. Then, θ , θA, including itself, is a congruence of A,
in which case νθ ∈ homS

S(A,A/θ), while A/θ is ∼-classical, and so (i) holds. �

Set h+/2 : 22 → (3÷ 2), 〈i, j〉 7→ i+j
2 .

Theorem 4.12. The following are equivalent:
(i) C is ∼-classical;
(ii) A is either a strict surjective homomorphic counter-image of a ∼-classical

Σ-matrix or a strict surjective homomorphic image of a submatrix of a direct
power of a ∼-classical Σ-matrix;

(iii) either A is a strict surjective homomorphic counter-image of a ∼-classical
Σ-matrix or A is a strict surjective homomorphic image of the direct square
of a ∼-classical Σ-matrix;
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(iv) either A is not simple or both 2 forms a subalgebra of A and A is a strict
surjective homomorphic image of (A�2)2;

(v) either θA ∈ Con(A) or both 2 forms a subalgebra of A, A is truth-singular
and h+/2 ∈ hom((A�2)2,A).

Proof. We use Lemma 4.10 tacitly. First, (ii/iii/iv) is a particular case of (iii/iv/v),
respectively. Next, (iv)⇒(i) is by (2.16). Further, (i)⇒(ii) is by Lemma 2.10 and
Remark 2.7(iii).

Now, let B be a ∼-classical Σ-matrix, I a set, D a submatrix of BI and h ∈
homS

S(D,A), in which case D is both consistent and truth-non-empty, for A is so,
and so I 6= ∅. Take any a ∈ DB 6= ∅. Then, as B is truth-singular, D 3 a =
(I × {1B}) ∈ DD, in which case D 3 b , ∼Da = (I × {0B}) 6∈ DD, for I 6= ∅,
while ∼Db = a, and so E , {a, b} forms a subalgebra of D�{∼}, E , ((D�{∼})�E)
being ∼-classical with 1E = a and 0E = b, and so being (A�{∼})�h[E]), in view of
Remark 2.8(ii). Hence, h(a/b) = (1/0). Therefore, there is some c ∈ (D \ {a, b})
such that h(c) = 1

2 . In this way, I 6= J , {i ∈ I | πi(c) = 1B} 6= ∅. Given
any ā ∈ B2, set (a0‖a1) , ((J × {a0}) ∪ ((I \ J) × {a1})) ∈ BI . Then, D 3
a = (1B‖1B) and D 3 b = (0B‖0B) as well as D 3 c = (1B‖0B), in which case
D 3 ∼Dc = (0B‖1B), and so e , {〈〈x, y〉, (x‖y)〉 | x, y ∈ B} is an embedding of B2

into D such that {a, b, c} ⊆ (img e). Hence, since h[{a, b, c}] = A, we conclude that
(h ◦ e) ∈ homS

S(B2,A). Thus, (ii)⇒(iii) holds.
Likewise, let B be a ∼-classical Σ-matrix and g ∈ homS

S(B2,A). Then, e′ ,
(∆B ×∆B) is an embedding of B into B2, in which case, by Remark 2.7(iii), g′ ,
(g ◦ e′) is an embedding of B into A, and so E , (img g′) forms a two-element
subalgebra of A, g′ being an isomorphism from B onto E , (A�E), in which case
h , ((g′−1 ◦ (π0�E2)) × (g′−1 ◦ (π1�E2))) is an isomorphism from E2 onto B2.
Therefore, as A�{∼} has no two-element subalgebra other than that with carrier 2,
E = 2. And what is more, (g ◦ h) ∈ homS

S(E2,A). Thus, (iii)⇒(iv) holds.
Finally, assume (iv) holds, while A is simple. Then, A is truth-singular, for F ,

(A�2) is so. Let f ∈ homS
S(F2,A). Then, 〈1, 1〉 ∈ DF2

, in which case f(〈1, 1〉) ∈
DA, and so f(〈1, 1〉) = 1. Hence, f(〈0, 0〉) = f(∼A2〈1, 1〉) = ∼Af(〈1, 1〉) = ∼A1 =
0. Moreover, ∼A2〈0/1, 1/0〉 = 〈1/0, 0/1〉 6∈ DF2

. Hence, f(〈0/1, 1/0〉) 6∈ DA 63
∼Af(〈0/1, 1/0〉). Therefore, f(〈0/1, 1/0〉) = 1

2 . Thus, f = h+/2, so (v) holds. �

Corollary 4.13. [Providing A is either false-singular or Z-conjunctive or Y-disj-
unctive] C is ∼-classical if[f ] A is not (hereditarily) simple.

Proof. The “if” part is by Theorem 4.12(iv)⇒(i) (and Lemma 4.10(iii)⇒(ii)). [The
converse is proved by contradiction. For suppose C is ∼-classical, while A is simple.
Then, by Lemma 4.10(iv)⇒(ii) and Theorem 4.12(i)⇒(v), 2 forms a subalgebra of
A, while h , h+/2 ∈ hom((A�2)2,A), whereas A is truth-singular, in which case
it is not false-singular, and so Z-conjunctive|Y-disjunctive, and so is A�2, in view
of Remark 2.8(ii). Hence, (i(Z|Y)Aj) = (min |max)(i, j), for all i, j ∈ 2. There-
fore, 1

2 = h(01) = h((01)(Z|Y)A2
(01)) = (h(01)(Z|Y)A2

h(01)) = ( 1
2 (Z|Y)A2 1

2 ) =
(h(01)(Z|Y)A2

h(10)) = h((01)(Z|Y)A2
(10)) = h((00)|(11)) = (0|1). This contradic-

tion completes the argument.] �

Generally speaking, the optional stipulation cannot be omitted in the formulation
of Corollary 4.13, even if C is weakly conjunctive/disjunctive, as it follows from:

Example 4.14. Let Σ , {�,∼} with binary � and A truth-singular with (a�A b) ,
(0/1) and ∼Aa , (1 − a), for all a, b ∈ A. Then, A is weakly �-conjunctive/-
disjunctive, respectively, while 〈0, 1

2 〉 ∈ θA 63 〈1, 1
2 〉 = 〈∼A0,∼A 1

2 〉, in which case
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θA 6∈ Con(A), and so, by Lemma 4.10(ii)⇒(iv), A is simple. On the other hand,
2 forms a subalgebra of A, while h+/2 ∈ hom((A�2)2,A). Hence, by Theorem
4.12(v)⇒(i), C is ∼-classical. �

4.1.1. Uniqueness of three-valued super-classical matrices defining non-classical log-
ics. A (2[+1])-ary [ 1

2 -relative] {classical} semi-conjunction for A is an arbitrary
ϕ ∈ Fm2[+1]

Σ such that both ϕA(0, 1[, 1
2 ]) = 0 and ϕA(1, 0[, 1

2 ]) ∈ {0[, 1
2 ]}. (Clearly,

any binary semi-conjunction for A is a ternary 1
2 -relative one.)

Lemma 4.15. Let B be a ∼-paraconsistent model of C. Suppose either A has a
ternary 1

2 -relative semi-conjunction or { 1
2} does not form a subalgebra of A or B

is weakly ∼-negative or
x0 ` ∼x0 (4.2)

is not true in B. Then, A is embeddable into a strict surjective homomorphic image
of a ∼-paraconsistent submatrix of B.

Proof. Then, C (viz., A) is ∼-paraconsistent, and so, by Remark 2.8(i)d), is not
∼-classical, in which case, by Theorem 4.12(iv)⇒(i), A is simple. Moreover, [in
case (4.2) is not true in B] there are some a, b[, c] ∈ B such that DB ⊇ {∼Ba[, c]}
is disjoint with {b[,∼Bc]}. Therefore, by (2.16), the submatrix D of B generated
by {a, b[, c]} is a finitely-generated ∼-paraconsistent model of C [in which (4.2) is
not true]. Hence, by Lemma 2.10, there are some finite set I, some C ∈ S∗(A)I ,
some subdirect product E of it, some strict surjective homomorphic image F of D
and some h ∈ homS(E ,F), in which case, by (2.16), E is ∼-paraconsistent, and so
consistent (in particular, I 6= ∅) [while (4.2) is not true in E ]. Given any a′ ∈ A

and any J ⊆ I, set (J : a′) , (J × {a′}) ∈ AJ . Likewise, given any ā ∈ A2 and
any J ⊆ I, set (a0‖Ja1) , ((J : a0) ∪ ((I \ J) : a1)) ∈ AI . Then, there are some
d ∈ (E \ DE) and some e[, f ] ∈ DE such that ∼Ee ∈ DE [63 ∼Ef ], in which case
e = (I : 1

2 ) and J , {i ∈ I | πi(d) = 0} 6= ∅[6= K , {i ∈ I | πi(f) = 1}], for A
is ∼-paraconsistent, and so false-singular. Consider the following complementary
cases:

• { 1
2} forms a subalgebra of A,

in which case ∼A 1
2 = 1

2 . We are going to prove that there is some non-
empty L ⊆ I such that (0‖L

1
2 ) ∈ E. For consider the following exhaustive

subcases:
– A has a ternary 1

2 -relative semi-conjunction ϕ.
Let g , ϕE(d,∼Ed, e). Consider the following exhaustive subsubcases:

∗ ϕA(1, 0, 1
2 ) = 0.

Let L , {i ∈ I | πi(d) 6= 1
2} ⊇ J . Then, E 3 g = (0‖L

1
2 ).

∗ ϕA(1, 0, 1
2 ) = 1

2 .
Let L , J . Then, E 3 g = (0‖L

1
2 ).

– B is weakly ∼-negative.
Then, by Remark 2.8(ii), E is weakly ∼-negative, in which case ∼Ed ∈
DE , and so d ∈ {0, 1

2}
I . Let L , J . Then, E 3 d = (0‖L

1
2 ).

– (4.2) is not true in B.
Let L , K. Then, f ∈ DE ⊆ { 1

2 , 1}
I , in which case E 3 f = (1‖L

1
2 ),

and so E 3 ∼Ef = (0‖L
1
2 ).

In this way, (0‖L
1
2 ) ∈ E 3 e = ( 1

2‖L
1
2 ), in which case E 3 ∼E(0‖L

1
2 ) =

(1‖L
1
2 ), and so, as L 6= ∅, while { 1

2} forms a subalgebra of A, h′ ,
{〈x, (x‖L

1
2 )〉 | x ∈ A} is an embedding of A into E .

• { 1
2} does not form a subalgebra of A,

in which case there is some ϕ ∈ Fm1
Σ such that ϕA( 1

2 ) ∈ 2, and so A =
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{ 1
2 , ϕ

A( 1
2 ),∼AϕA( 1

2 )}. Hence, {I : x | x ∈ A} = {e, ϕE(e),∼EϕE(e)} ⊆ E.
Therefore, as I 6= ∅, h′ , {〈x, I : x〉 | x ∈ A} is an embedding of A into E .

Thus, (h◦h′) ∈ homS(A,F) is injective, in view of Remark 2.7(iii), as required. �

Theorem 4.16. Let B be a [canonical] three-valued ∼-super-classical Σ-matrix.
Suppose C is defined by B as well as non-∼-classical. Then, B is isomorphic [and
so equal] to A.

Proof. In that case, both A and B are simple, in view of Theorem 4.12(iv)⇒(i).
Consider the following complementary cases:

• B is ∼-paraconsistent,
in which it is false-singular, and so weakly ∼-negative. Then, any proper
submatrix of B is either ∼-classical or one-valued (in which case it is either
truth-empty or inconsistent, and so its logic is inferentially inconsistent),
and so is not∼-paraconsistent (cf. Remark 2.8(i)d)). Therefore, by Remark
2.7(iii) and Lemma 4.15, there is an embedding of A into B, being then an
isomorphism from A onto B, because |A| = 3 6 n, for no n ∈ 3 = |B|.

• B (and so A) is not ∼-paraconsistent.
Then, as B is simple and finite, by Lemma 2.10 and Remark 2.7(iii), there
are some finite set I, some C ∈ S∗(A)I , some subdirect product D of it
and some g ∈ homS

S(D,B), in which case D is both truth-non-empty and
consistent (in particular, I 6= ∅), for B is so. Given any x ∈ A, set (I : x) ,
(I×{x}) ∈ AI . Then, by the following claim, a , (I : 1) ∈ D 3 b , (I : 0):

Claim 4.17. Let I be a finite set, C ∈ S∗(A)I and D a subdirect product of
it. Suppose A is weakly conjunctive, whenever it is ∼-paraconsistent, and
D is truth-non-empty, otherwise. Then, {I × {j} | j ∈ 2} ⊆ D.

Proof. Consider the following complementary cases:
– A is ∼-paraconsistent,

in which case it is false-singular and weakly conjunctive, and so, by
Lemma 3.1, b , (I × {0}) ∈ D.

– A is not ∼-paraconsistent,
in which case D is truth-non-empty. Take any a ∈ DD 6= ∅. Let
b , ∼Da ∈ D. Consider any i ∈ I. Then, πi(a) ∈ DA. Consider the
following complementary subcases:

∗ 1
2 ∈ D

A,
in which case, since A is not ∼-paraconsistent but is consistent,
πi(b) = ∼Aπi(a) 6∈ DA, and so, as 1 ∈ DA, πi(b) = 0.

∗ 1
2 6∈ D

A,
in which case, as 0 6∈ DA, πi(a) = 1, and so πi(b) = ∼Aπi(a) = 0.

In this way, D 3 b = (I × {0}).
Then, D 3 ∼Db = (I × {1}). �

Consider the following complementary subcases:
– 2 does not form a subalgebra of A,

in which case there is some ϕ ∈ Fm2
Σ such that ϕA(1, 0) = 1

2 , and so
D ∈ ϕD(a, b) = (I : 1

2 ). In this way, as I 6= ∅, e , {〈x, I : x〉 | x ∈
A} is an embedding of A into D, in which case, by Remark 2.7(iii),
(g◦e) ∈ homS(A,B) is injective, and so bijective, because |A| = 3 6 n,
for no n ∈ 3 = |B|.

– 2 forms a subalgebra of A,
in which case E , (A�2) is ∼-classical, while a, b ∈ EI . Moreover,
a ∈ DD 63 b, for I 6= ∅, while ∼D(a/b) = (b/a), in which case F ,
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((D�{∼})�{a, b}) is ∼-classical (in particular, simple) with 0F = b
and 1F = a, whereas (g�F ) ∈ homS(F ,B�{∼}), and so, by Remarks
2.7(iii) (implying the injectivity of g�F ) and 2.8(ii), (B�{∼})�g[F ] is
∼-classical, while g(a) ∈ DB 63 g(b). Hence, g(a) = 1B and g(b) = 0B.
Then, (1

2 )B ∈ B = g[D], in which case there is some c ∈ D such
that g(c) = ( 1

2 )B. Let G be the submatrix of D generated by {a, b, c},
in which case f , (g�G) ∈ homS

S(G,B), for g[{a, b, c}] = B. Let
J , {i ∈ I | πi(c) = 1

2}, in which case πi(c) ∈ E, for all i ∈ (I \ J),
and so, if J was empty, then c would be in EI , in which case G would
be a submatrix of EI , and so, by (2.16), C, being defined by B, would
be ∼-classical. Therefore, J 6= ∅. Take any j ∈ J . Let us prove,
by contradiction, that (πj�G) ∈ homS

S(G,A). For suppose (πj�G) 6∈
homS

S(G,A). Then, as (πj�G) ∈ homS(G,A), for πj [{a, b, c}] = A,
there is some d ∈ (G \ DG) such that πj(d) ∈ DA. Consider the
following complementary subsubcases:

∗ A is not truth-singular.
Then, by Lemma 2.10 and Remark 2.7(iii), A, being simple and
finite, is a strict surjective homomorphic image of a subdirect
product of a tuple constituted by submatrices of B, in which case
this is not truth-singular, and so is false-singular. Therefore, as
d 6∈ DG , we have f(d) 6∈ DB, in which case f(d) = 0B, for
B is false-singular, and so ∼Bf(d) = 1B ∈ DB. On the other
hand, as A is not ∼-paraconsistent but is consistent, πj(∼Gd) =
∼Aπj(d) 6∈ DA, in which case ∼Gd 6∈ DG , and so ∼Bf(d) =
f(∼Gd) 6∈ DB.

∗ A is truth-singular.
Then, πj(d) = 1 = πi(d), for all i ∈ J , because πj(e) = πi(e),
for all e ∈ {a, b, c}, and so for all e ∈ G 3 d, in which case d ∈
EI ⊇ {a, b}, and so the submatrix H of G generated by {a, b, d}
is a submatrix of EI . Moreover, πj(∼Gd) = ∼Aπj(d) = 0 6∈ DA,
in which case ({d,∼Gd} ∩DG) = ∅, and so ({f(d),∼Bf(d)} ∩
DB) = ∅. Hence, f(d) = ( 1

2 )B, in which case f [{a, b, d}] = B,
and so (f�H) ∈ homS

S(H,B). In this way, by (2.16), C, being
defined by B, is ∼-classical.

Thus, anyway, we come to a contradiction. Therefore, (πj�G) ∈
homS

S(G,A). Hence, since f ∈ homS
S(G,B), by Remark 2.7(iii) and

Lemma 2.9, A and B, being both simple, are isomorphic.
[Then, Lemma 4.4 completes the argument.] �

In view of Corollary 4.6 [and Theorem 4.16], any [non-∼-classical] three-valued
Σ-logic with subclassical negation ∼ is defined by a [unique] canonical three-valued
∼-super-classical Σ-matrix [said to be characteristic for/of the logic], A being
characteristic for C, unless this is ∼-classical. On the other hand, the uniqueness
is not, generally speaking, the case for ∼-classical (even both implicative {and so
disjunctive; cf. Lemma 4.8} and conjunctive) ones, in view of Corollary 4.6 and
Example 4.9.

Corollary 4.18. Let Σ′ ⊇ Σ be a signature and C ′ a three-valued Σ′-expansion of
C. Suppose C is not ∼-classical. Then, C ′ is defined by a unique Σ′-expansion of
A.

Proof. In that case, ∼ is a subclassical negation for C ′, being, in its turn, non-
∼-classical. Hence, by Corollary 4.6, C ′ is defined by a canonical three-valued
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∼-super-classical Σ′-matrix A′, in which case C is defined by the canonical three-
valued ∼-super-classical Σ-matrix A′�Σ, and so, by Theorem 4.16, this is equal to
A. Finally, as any Σ′-expansion of A is canonical, Theorem 4.16 completes the
argument. �

5. Paraconsistent extensions

Set M2 , (22 \∆2).

Theorem 5.1. Suppose A is false-singular (in particular, ∼-paraconsistent) [and
C is ∼-subclassical]. Then, the following are equivalent:

(i) C has no proper ∼-paraconsistent [∼-subclassical] extension;
(ii) C has no proper ∼-paraconsistent non-∼-subclassical extension;
(iii) either A has a ternary 1

2 -relative semi-conjunction or { 1
2} does not form a

subalgebra of A (in particular, ∼A 1
2 6=

1
2);

(iv) L3 , (M2 ∪ {〈 1
2 ,

1
2 〉}) does not form a subalgebra of A2;

(v) A has no truth-singular ∼-paraconsistent subdirect square;
(vi) A2 has no truth-singular ∼-paraconsistent submatrix;
(vii) C has no truth-singular ∼-paraconsistent model;
(viii) A 1

2
, 〈A, { 1

2}〉 is not a ∼-paraconsistent model of C;
(ix) C has no truth-singular ∼-paraconsistent model with underlying algebra A.

In particular, C has a ∼-paraconsistent proper extension iff it has a [non-]non-∼-
subclassical one, and if any three-valued expansion of C does so.

Proof. First, assume (iii) holds. Consider any ∼-paraconsistent extension C ′ of C,
in which case x1 6∈ T , C ′({x0,∼x0}) ⊇ {x0,∼x0}, and so, by the structurality
of C ′, 〈Fmω

Σ, T 〉 is a ∼-paraconsistent model of C ′ (in particular, of C). Hence, by
Lemma 4.15 and (2.16), A is a model of C ′, in which case C ′ = C, and so both (i)
and (ii) hold.

Next, assume L3 forms a subalgebra of A2. Then, by (2.16), B , (A2�L3) ∈
Mod(C) is a subdirect square of A, because πi[L3] = A, for each i ∈ 2. More-
over, M2 is disjoint with DB 3 〈 1

2 ,
1
2 〉, for 0 6∈ DA 3 1

2 , because A is false-
singular, in which case we have DB = {〈 1

2 ,
1
2 〉} = (L3 ∩ ∆A), and so B is both

truth-singular and, being consistent, for L3 ⊇ M2 6= ∅, ∼-paraconsistent, for
L3 3 ∼A2〈 1

2 ,
1
2 〉 = 〈∼A 1

2 ,∼
A 1

2 〉 ∈ ∆A. Moreover, (π0�L3) ∈ homS
S(B,A 1

2
). Hence,

by (2.16), A 1
2
∈ Mod(C) is ∼-paraconsistent. Thus, (v/viii)⇒(iv) holds, while

(v/viii/ix) is a particular case of (vi/ix/vii), respectively, whereas (vii)⇒(vi) is by
(2.16).

Now, let B ∈ Mod(C) be both ∼-paraconsistent and truth-singular, in which
case (4.2) is true in B, and so is its logical consequence

{x0, x1,∼x1} ` ∼x0, (5.1)

not being true in A under [x0/1, x1/
1
2 ] [but, being a logical consequence of (2.10)[x0

/x1, x1/∼x0], true in any ∼-classical model C′ of C, in view of Remark 2.8(i)d)].
Thus, the logic of {B[, C′]} is a proper ∼-paraconsistent [∼-subclassical] extension
of C, so (i)⇒(vii) holds. And what is more, (4.2), being true in B, is not true in
any ∼-[super-]classical Σ-matrix [in particular, in A], in view of [Theorem 4.1 and]
(3.2) with n = 0 and m = 1. Thus, the logic of B is a proper ∼-paraconsistent
non-∼-subclassical extension of C, so (ii)⇒(vii) holds.

Finally, assume A has no ternary 1
2 -relative semi-conjunction and { 1

2} forms a
subalgebra of A, in which case ∼A 1

2 = 1
2 . Let B be the subalgebra of A2 generated

by L3. If 〈0, 0〉 was in B, then there would be some ϕ ∈ Fm3
Σ such that ϕA(0, 1, 1

2 ) =
0 = ϕA(1, 0, 1

2 ), in which case it would be a ternary 1
2 -relative semi-conjunction for
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A. Likewise, if either 〈 1
2 , 0〉 or 〈0, 1

2 〉 was in B, then there would be some ϕ ∈ Fm3
Σ

such that ϕA(0, 1, 1
2 ) = 0 and ϕA(1, 0, 1

2 ) = 1
2 , in which case it would be a ternary 1

2 -
relative semi-conjunction for A. Therefore, as ∼A1 = 0 and ∼A 1

2 = 1
2 , we conclude

that ({〈0, 1
2 〉, 〈1,

1
2 〉, 〈

1
2 , 1〉, 〈

1
2 , 0〉, 〈0, 0〉, 〈1, 1〉} ∩ B) = ∅. Thus, B = L3 forms a

subalgebra of A2. In this way, (iv)⇒(iii) holds.
After all, Corollary 4.18 completes the argument, for any expansion of A inherits

ternary 1
2 -relative semi-conjunctions (if any). �

Theorem 5.1(i)⇔(iii[iv]) is especially useful for [effective dis]proving the maxi-
mal ∼-paraconsistency of C, as we show below [cf. Example 7.6]. And what is
more, since, by Remark 2.8(i)d), A has no proper ∼-paraconsistent submatrix, by
Corollaries 2.15 and 4.6, we immediately have the following “axiomatic” version of
Theorem 5.1:

Corollary 5.2. Any [non-]non-∼-paraconsistent three-valued Σ-logic with subclas-
sical negation ∼ has no ∼-paraconsistent [proper axiomatic] extension [and so is
axiomatically maximally ∼-paraconsistent].

Remark 5.3. Suppose either A is both false-singular and weakly Z-conjunctive or
both 2 forms a subalgebra of A and A�2 is weakly Z-conjunctive. Then, (x0 Z x1)
is a binary semi-conjunction for A. �

By Corollary 4.6, Theorem 5.1(iii)⇒(i) and Remark 5.3, we first have:

Corollary 5.4 (cf. the reference [Pyn 95b] of [14]). Any weakly conjunctive three-
valued Σ-logic with subclassical negation ∼ has no proper ∼-paraconsistent exten-
sion.

The principal advance of this universal maximal paraconsistency result with re-
gard to its particular case obtained in the reference [Pyn 95b] of [14] but for merely
∼-subclassical logics, subsuming particular results first obtained ad hoc for LP
(being ∧-conjunctive) in [14], HZ (being ∨∼-conjunctive; cf. the last paragraph
of Subsubsection 8.1.1 below) in [17] and LA (being ∧-conjunctive) in [20], and
so providing these with a first generic insight, as well as yielding a first proof of
the maximal paraconsistency of P 1 [22] (being conjunctive too; cf. either Remark
8.10 below or [13]), in its turn, subsuming its axiomatic maximal paraconsistency
discovered in [22] and equally subsumed by either Corollary 5.2 or both Corollary
6.6 below (in particular, Theorem 6.3 of [13]) and Remark 2.8(i)d), consists in ex-
tending the latter beyond subclassical logics towards those with merely subclassical
negation, in which case, contrary to the latter, the former is equally applicable to
arbitrary three-valued expansions (cf. Corollary 4.18 in this connection) of log-
ics under consideration, because expansions retain (weak) conjunction, subclassical
negation and paraconsistency, but do not, generally speaking, inherit the property
of being subclassical, and so the former, as opposed to the latter, covers arbitrary
three-valued expansions of LP (including those of its three-valued expansion LA),
HZ and P 1. In view of Example 7.15 below, the stipulation of the weak conjunc-
tivity cannot be omitted in the formulation of Corollary 5.4.

5.1. Premaximal paraconsistency. Let C 1
2

be the logic of A 1
2
.

Lemma 5.5. Let B ∈ Mod(C). Suppose C is a non-purely-inferential ∼-para-
consistent sublogic of C 1

2
. Then, B is consistent iff it is ∼-paraconsistent. In

particular, A 1
2

is ∼-paraconsistent.

Proof. The “if” part is immediate. Conversely, assume B is consistent. Then, by the
structurality of C, applying the Σ-substitution extending [xi/x0]i∈ω to any theorem
of C, we conclude that there is some φ ∈ (Fm1

Σ ∩C(∅)), and so, as A 1
2
∈ Mod(C),
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φA(a) = 1
2 , for all a ∈ A. Take any b ∈ (B \DB) 6= ∅, for B is consistent. Then,

by (2.16), the submatrix D of B generated by {b} is a finitely-generated consistent
model of C. Hence, by Lemma 2.10, there are some set I and some submatrix
E ∈ H−1(H(D)) of AI . Take any e ∈ E 6= ∅. Then, φE(e) = (I × { 1

2}) ∈ DE , in
which case ∼EφE(e) ∈ DE , for A is ∼-paraconsistent, and so E , being consistent,
for D is so, is ∼-paraconsistent. Thus, B is so, in view of (2.16), as required. �

Theorem 5.6. Suppose C has a proper ∼-paraconsistent extension. Then, the
following hold:

(i) C 1
2

is the proper (∼-para)consistent extension of C relatively axiomatized by
(4.2);

(ii) C 1
2

has no proper inferentially consistent (in particular, ∼-paraconsistent)
extension;

(iii) the following are equivalent:
a) C has a theorem;
b) 2 does not form a subalgebra of A;
c) C is not ∼-subclassical;
d) C 1

2
is the only proper (∼-para)consistent extension of C;

e) C 1
2

has no proper sublogic being a proper extension of C.
In particular, any three-valued ∼-paraconsistent Σ-logic with subclassical nega-
tion ∼ is premaximally ∼-paraconsistent extension iff it is either maximally ∼-
paraconsistent or not ∼-subclassical/purely-inferential (in particular, weakly dis-
junctive [in particular, implicative]).

Proof. Then, C (viz., A) is ∼-paraconsistent (in which case it is false-singular,
and so weakly ∼-negative). Hence, by Theorem 5.1(iii/iv/viii)⇒(i), A 1

2
∈ Mod(C)

is ∼-paraconsistent, while A has no ternary 1
2 -relative semi-conjunction, whereas

{ 1
2}|L3 forms a subalgebra of A|A2, respectively (in particular, ∼A 1

2 = 1
2 ).

(i) Then, (4.2), not being true in A under [x0/1], is true in A 1
2
. In this way,

the logic of A 1
2

is a proper (∼-para)consistent extension of C satisfying (4.2).
Conversely, consider any Σ-rule Γ ` φ not satisfied in the extension C ′ of C
relatively axiomatized by (4.2), in which case, as ∼[Γ] ⊆ C ′(Γ), the Σ-rule
(Γ ∪ ∼[Γ]) ` φ is not satisfied in C ′, and so in its sublogic C. Then, there
is some h ∈ hom(Fmω

Σ,A) such that h[Γ ∪ ∼[Γ]] ⊆ DA = { 1
2 , 1} 63 h(φ). In

particular, h(φ) 6= 1
2 . And what is more, for each ψ ∈ Γ, both h(ψ) ∈ DA

and ∼Ah(ψ) = h(∼ψ) ∈ DA, in which case h(ψ) = 1
2 , for ∼A1 = 0 6∈ DA,

and so h[Γ] ⊆ { 1
2} = D

A 1
2 63 h(φ). Thus, C ′ = C 1

2
.

(ii) Consider any inferentially consistent extension C ′ of C 1
2
, in which case x1 6∈

T , C ′(x0) 3 x0. Then, by the structurality of C ′, 〈Fmω
Σ, T 〉 is a model

of C ′ (in particular, of C 1
2
), and so is its finitely-generated consistent truth-

non-empty submatrix B , 〈Fm2
Σ, T ∩ Fm2

Σ〉, in view of (2.16). Hence, by
Lemma 2.10, there are some set I and some submatrix D ∈ H−1(H(B))
of AI

1
2
, in which case, by (2.16), D is a consistent truth-non-empty model

of C ′, for B is so, and so I 6= ∅, while there are some a ∈ DD and some
b ∈ (D \DD). Then, D 3 a = (I × { 1

2}) 6= b, in which case either J , {i ∈
I | πi(b) = 1} or K , {i ∈ I | πi(b) = 0} is non-empty. Given any c̄ ∈ A3, set
(c0‖c1‖c2) , ((J×{c0})∪(K×{c1})∪((I\(J∪K))×{c2})) ∈ AI . In this way,
D 3 a = ( 1

2‖
1
2‖

1
2 ) and D 3 b = (1‖0‖ 1

2 ), in which case D 3 ∼Db = (0‖1‖ 1
2 ).

Consider the following exhaustive cases:
• J 6= ∅ 6= K.

Then, as { 1
2}|L3 forms a subalgebra of A|A2, {〈〈x, y〉, (x‖y‖ 1

2 )〉 | 〈x, y〉 ∈
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L3} is an embedding of E , (A2�L3) into D, in which case, by (2.16), E
is a model of C ′, for D is so, and so is A 1

2
, for (π0�L3) ∈ homS

S(E ,A 1
2
).

• K = ∅,
in which case J 6= ∅, while D 3 a = (1

2‖
1
2‖

1
2 ), whereas D 3 b = (0‖ 1

2‖
1
2 ),

and so D 3 ∼Db = (1‖ 1
2‖

1
2 ). Then, as { 1

2} forms a subalgebra of A,
{〈x, (x‖ 1

2‖
1
2 )〉 | x ∈ A} is an embedding of A 1

2
into D, in which case, by

(2.16), A 1
2

is a model of C ′, for D is so.
• J = ∅,

in which case K 6= ∅, while D 3 a = ( 1
2‖

1
2‖

1
2 ), whereas D 3 b =

( 1
2‖0‖

1
2 ), and so D 3 ∼Db = ( 1

2‖1‖
1
2 ). Then, as { 1

2} forms a subalgebra
of A, {〈x, ( 1

2‖x‖
1
2 )〉 | x ∈ A} is an embedding of A 1

2
into D, in which

case, by (2.16), A 1
2

is a model of C ′, for D is so.
Thus, in any case, A 1

2
∈ Mod(C ′), and so C ′ = C 1

2
.

(iii) First, assume a) holds. Consider any consistent extension C ′ of C, in which
case C ′(∅) ⊇ C(∅) 6= ∅, and so, if C ′ was inferentially inconsistent, then
it, being structural, would be inconsistent, and the following complementary
cases:
• (4.2) is satisfied in C ′,

in which case, by (i), C ′ is an inferentially consistent extension of C 1
2
,

and so, by (ii), C ′ = C 1
2
.

• (4.2) is not satisfied in C ′,
in which case ∼x0 6∈ T , C ′(x0) 3 x0. Then, by the structurality of C ′,
B , 〈Fmω

Σ, T 〉 is a model of C ′ (in particular, of C), in which (4.2) is not
true under the diagonal Σ-substitution, in which case, by Lemma 5.5,
B, being consistent, is ∼-paraconsistent, for C is so, and so, by (2.16)
and Lemma 4.15, A is a model of C ′, for B is so, in which case C ′ = C.

Thus, by (i), d) holds.
Next, d)⇒e) is by the (∼-para)consistency of A 1

2
, and so of any sublogic

of C 1
2
.

Now, let B be a ∼-classical model of C. Then, (5.1), being a logical con-
sequence of ((2.10)[x0/x1, x1/∼x0])/(4.2), is true in B/A 1

2
, for (2.10)/(4.2)

is so, in view of “Remark 2.8(i)d)”/(i), respectively. However, it is not true
in A under [x0/1, x1/

1
2 ]. Moreover, by (3.2) with n = 0 and m = 1, (4.2)

is not true in B. In this way, by (i), the logic of {A 1
2
,B} is a proper exten-

sion/sublogic of C/ 1
2
. Thus, e)⇒c) holds.

Further, if 2 forms a subalgebra of A, then, by (2.16), A�2 is a ∼-classical
model of C. Therefore, c)⇒b) holds.

Finally, assume b) holds. Then, there is some ϕ ∈ Fm2
Σ such that

ϕA(1, 0) = 1
2 = ϕA( 1

2 ,
1
2 ), for { 1

2} forms a subalgebra of A, in which case, if
ϕA(0, 1) was equal to 0, then ϕ would be a ternary 1

2 -relative semi-conjunction
for A, and so ϕA(0, 1) ∈ DA ⊇ {ϕA(1, 0), ϕA( 1

2 ,
1
2 )}. In this way, (ϕ[x1/∼x0])

∈ C(∅), and so a) holds.

After all, Corollary 4.6, Lemma 4.8 and Remark 2.8(i)d) complete the proof. �

In this way, Corollary 4.6 as well as Theorem[s] 5.1(i)⇔(iv) [and 5.6(iii)b)⇔d)]
provide an effective algebraic criterion of the [pre]maximal ∼-paraconsistency of
three-valued ∼-paraconsistent Σ-logics with subclassical negation ∼.
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6. Classical extensions

Next, A is said to satisfy [Diagonal] Generation Condition ([D]GC), provided
either 〈0, 0〉 or 〈 1

2 , 0[+ 1
2 ]〉 or 〈0[+1], 1

2 [+1
2 ]〉 belongs to [i.e., ∆A is not disjoint with]

the carrier of the subalgebra of A2 generated by [M2∪]{〈1, 1
2 〉}.

Lemma 6.1. Let I be a finite set, C ∈ S∗(A)I and D a consistent truth-non-empty
non-∼-paraconsistent subdirect product of it. Suppose A is not a model of the logic
of D, while either A is either non-∼-paraconsistent or weakly conjunctive, or D
is ∼-negative or both A either has a binary semi-conjunction or satisfies GC, and
either 2 forms a subalgebra of A or L4 , (A2 \ (22 ∪ { 1

2}
2)) forms a subalgebra of

A2 or A satisfies DGC. Then, the following hold:
(i) if 2 forms a subalgebra of A, then A�2 is embeddable into D;
(ii) if 2 does not form a subalgebra of A, then A is both ∼-paraconsistent (in

particular, false-singular) and not weakly conjunctive, while L4 forms a sub-
algebra of A2, whereas A2�L4 is embeddable into D.

Proof. In that case, I 6= ∅, for D is consistent. Consider the following complemen-
tary cases:

(1) (I × {i}) ∈ D, for some i ∈ 2,
in which case D 3 ∼D(I × {i}) = (I × {1− i}), and so, if 2 did not form a
subalgebra of A, then there would be some ϕ ∈ Fm2

Σ such that ϕA(0, 1) = 1
2 ,

in which case D would contain ϕD(I × {0}, I × {1}) = (I × { 1
2}), and so,

as I 6= ∅, {〈a, I × {a}〉 | a ∈ A} would be an embedding of A into D (in
particular, by (2.16), A would be a model of the logic of D). Therefore, 2
forms a subalgebra of A, in which case {〈j, I × {j}〉 | j ∈ 2} is an embedding
of A�2 into D, and so (i,ii) hold, in that case.

(2) (I × {i}) ∈ D, for no i ∈ 2,
in which case, by Claim 4.17, A is both not weakly conjunctive and ∼-
paraconsistent, and so false-singular. In particular,

e , (I × { 1
2}) 6∈ D, (6.1)

for, otherwise, we would have {e,∼De} ⊆ DD, contrary to the fact that D
is not ∼-paraconsistent but is consistent. Take any a ∈ DD 6= ∅, for D is
truth-non-empty, Then, a ∈ { 1

2 , 1}
I , in which case, by (2) with i = 1 and

(6.1), I 6= J , {i ∈ I | πi(a) = 1} 6= ∅, and so b , ∼Da ∈ (D \DD). Given
any ā ∈ A2, set (a0‖a1) , ((J × {a0}) ∪ ((I \ J) × {a1})) ∈ AI . Then,
a = (1‖ 1

2 ).
Let us prove, by contradiction, that ∼A 1

2 = 1
2 . For suppose ∼A 1

2 6=
1
2 .

Then, as A is ∼-paraconsistent, we have ∼A 1
2 ∈ DA = { 1

2 , 1}, in which
case we get ∼A 1

2 = 1, and so both b = (0‖1) ∈ D and ∼Bb = (1‖0) ∈ D do
not belong to DD, for I 6= J 6= ∅. Hence, D is not ∼-negative. Moreover,
if A had a binary semi-conjunction ϕ, then D would contain ϕA(b,∼Bb) =
(0‖0) = (I × {0}), contrary to (2) with i = 0. Likewise, if A satisfied
GC, then there would be some ψ ∈ Fm1

Σ such that ψA(〈1, 1
2 〉) would be in

{〈0, 1
2 〉, 〈

1
2 , 0〉, 〈0, 0〉}, in which case ∼AψA(〈1, 1

2 〉) would be equal to 〈1, 1〉,
and so D would contain ∼DψD(a) = (1‖1) = (I×{1}), contrary to (2) with
i = 1. This contradicts to the fact that A is neither weakly conjunctive nor
non-∼-paraconsistent. Thus, ∼A 1

2 = 1
2 , in which case b = (0‖ 1

2 ). Consider
the following complementary subcases:

(i) 2 forms a subalgebra of A.
Let us prove, by contradiction, that so does { 1

2}. For suppose { 1
2}

does not form a subalgebra of A. Then, there is some ψ ∈ Fm1
ω such
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that ψA( 1
2 ) ∈ 2, in which case ψA[A] ⊆ 2, for 2 forms a subalgebra

of A, and so ψA : A → 2 is not injective, for |A| = 3 
 2 = |2|.
Therefore, we have the following exhaustive subsubcases:

• ψA( 1
2 ) = ψA(0).

Then, (I × {1}) ∈ {ψD(b),∼DψD(b)} ⊆ D.
• ψA( 1

2 ) = ψA(1).
Then, (I × {1}) ∈ {ψD(a),∼DψD(a)} ⊆ D.

• ψA(1) = ψA(0).
Then, (I × {1}) ∈ {ψD(ψD(a)),∼DψD(ψD(a))} ⊆ D.

Thus, anyway, (I × {1}) ∈ D. This contradicts to (2) with i = 1.
In this way, { 1

2} forms a subalgebra of A. Then, as J 6= ∅, while
(1‖ 1

2 ) = a ∈ D 3 b = (0‖ 1
2 ), {〈i, (i‖ 1

2 )〉 | i ∈ 2} is an embedding of
A�2 into D.

(ii) 2 does not form a subalgebra of A.
Then, there is some ϕ ∈ Fm2

Σ such that ϕA(0, 1) = 1
2 , in which case

ψ , ϕ[x1/∼x0] ∈ Fm1
Σ, while ψA(0) = ϕA(0, 1) = 1

2 , and so, as
D 3 ψD(b), by (6.1), we have ψD( 1

2 ) ∈ 2. Hence, we get c , ( 1
2‖1) ∈

{ψD(b),∼DψD(b)} ⊆ D, in which case D 3 d , ∼Dc = ( 1
2‖0),

and so {(u‖v) | 〈u, v〉 ∈ L4} = {a, b, c, d} ⊆ D. Let us prove, by
contradiction, that L4 forms a subalgebra of A2. For suppose L4 does
not form a subalgebra of A2, in which case there is some φ ∈ Fm4

Σ such
that φA2

(〈1, 1
2 〉, 〈0,

1
2 〉, 〈

1
2 , 1〉, 〈

1
2 , 0〉) ∈ (A2 \L4) = (22∪{ 1

2}
2), and so

D 3 f , φD(a, b, c, d) = (x‖y), where 〈x, y〉 ∈ (22 ∪ { 1
2}

2). Then, by
(2) and (6.1), 〈x, y〉 ∈ (22 \∆2), in which case 0 ∈ {x, y}, and so f ∈
(D\DD) 3 (y‖x) = ∼Df , for I 6= J 6= ∅. Hence, D is not ∼-negative.
Therefore, A satisfies DGC, for it is is neither weakly conjunctive
nor non-∼-paraconsistent, in which case there are some ξ ∈ Fm3

Σ and
some z ∈ A such that ξA2

(〈1, 1
2 〉, 〈1, 0〉, 〈0, 1〉) = 〈z, z〉, and so D 3

ξD(a, (1‖0), (0‖1)) = (z‖z), for {(1‖0), (0‖1)} = {f,∼Df} ⊆ D 3 a.
This contradicts to (2) and (6.1). Therefore, L4 forms a subalgebra
of A2. Hence, as J 6= ∅ 6= (I \ J), {〈〈u, v〉, (u‖v)〉 | 〈u, v〉 ∈ L4} is an
embedding of A2�L4 into D, as required. �

Corollary 6.2. Let B be a ∼-classical model of C. Suppose C is not ∼-classical.
Then, the following hold:

(i) if 2 forms a subalgebra of A, then A�2 is isomorphic to B;
(ii) if 2 does not form a subalgebra of A, then both B is not disjunctive and C is

both not weakly conjunctive and maximally ∼-paraconsistent, in which case
A is ∼-paraconsistent, and so is false-singular, while L4 forms a subalgebra
of A2, whereas θA

2�L4 ∈ Con(A2�L4), 〈χA2�L4 [A2�L4], {1}〉 being isomorphic
to B.

Proof. Then, B is finite and simple. Therefore, by Lemma 2.10 and Remark 2.7(iii),
there are some finite set I, some C ∈ S∗(A)I , some subdirect product D of it and
some h ∈ homS

S(D,B), in which case, by Remark 2.8(ii), D is ∼-negative, for B is
so, and so both consistent and truth-non-empty, while, by (2.16), the logic C ′ of
D is the ∼-classical (in particular, non-∼-paraconsistent; cf. Remark 2.8(i)d)) one
of B, and so, by Corollary 3.7, A, being both consistent and truth-non-empty, in
which case C is inferentially-consistent, is not a model of C ′. Consider the following
complementary cases:

(i) 2 forms a subalgebra of A.
Then, by Lemma 6.1(i), there is some embedding e of A�2 into D, in which
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case, by Remark 2.7(iii), h ◦ e is that into B, and so is an isomorphism from
A�2 onto B, for this has no proper submatrix.

(ii) 2 does not form a subalgebra of A.
Then, by Theorem 5.6(iii)b)⇒c) and Lemma 6.1(ii), C is both not weakly
conjunctive and maximally ∼-paraconsistent, in which case A is ∼-paracon-
sistent, and so false-singular, while L4 forms a subalgebra of A2, whereas
there is some embedding e of of F , (A2�L4) into D, in which case g ,
(h ◦ e) ∈ homS

S(F ,B), for B, being ∼-classical, has no proper submatrix,
and so, by Remark 2.7(i), (kerχF ) = θF = g−1[θB] = g−1[∆B ] = (ker g) ∈
Con(F), in which case χF is a strict surjective homomorphism from F onto
G , 〈χF [F], {1}〉, and so, by the Homomorphism Theorem, χF ◦ g−1 is an
isomorphism from B onto G. Finally, let us prove, by contradiction, that
B is not disjunctive. For suppose B is Y-disjunctive, and so is F , in view
of Remark 2.8(ii). Then, as 〈 1

2 , 1〉 ∈ DF , for A is false-singular, we have
{〈0, 1

2 〉Y
F 〈 1

2 , 1〉, 〈
1
2 , 1〉Y

F 〈0, 1
2 〉} ⊆ DF , in which case we get {0YA 1

2 ,
1
2 YA0} ⊆

DA, and so we eventually get (〈0, 1
2 〉Y

F 〈 1
2 , 0〉) ∈ D

F . This contradicts to the
fact that ({〈0, 1

2 〉, 〈
1
2 , 0〉} ∩D

F ) = ∅. Thus, B is not disjunctive. �

Combining [Lemmas 3.6, 4.7 and] Corollary 6.2 with (2.16) [and Remark 2.8(ii)],
we immediately get:

Theorem 6.3. C has a [ Y-disjunctive] ∼-classical extension iff either of the fol-
lowing [but (iii)] holds:

(i) C is ∼-classical [and Y-disjunctive];
(ii) 2 forms a subalgebra of A [with Y-disjunctive A�2], in which case A�2 is a

canonical ∼-classical model of C isomorphic to any ∼-classical model of C,
and so is a unique canonical one and defines a unique ∼-classical extension
of C;

(iii) C is both not weakly conjunctive and maximally ∼-paraconsistent, in which
case A is ∼-paraconsistent, and so false-singular, while L4 forms a subal-
gebra of A2, whereas θA

2�L4 ∈ Con(A2�L4), in which case 〈χA2�L4 [A2�L4],
{1}〉 is a canonical ∼-classical model of C isomorphic to any ∼-classical
model of C, and so is a unique canonical one and defines a unique ∼-classical
extension of C.

In view of Lemma 3.6 and Theorem 6.3, C, being ∼-subclassical, has a unique
∼-classical extension/“canonical model” to be denoted by CPC/APC, respectively,
and referred to as characteristic of |for C, in which case CPC = [6=]C, whenever C
is [not] ∼-classical. It is remarkable that the Y-disjunctivity of C is not required
in the []-optional version of Theorem 6.3, making this the right characterization of
C’s being genuinely ∼-subclassical in the sense of having a functionally complete
∼-classical extension. And what is more, by Lemma 4.7 and Theorem 6.3, we have:

Corollary 6.4. [Suppose A is either truth-singular or weakly conjunctive or dis-
junctive (in particular, implicative).] Then, C is ∼-subclassical if[f ] either of the
following holds:

(i) C is ∼-classical;
(ii) 2 forms a subalgebra of A, in which case A�2 is a canonical ∼-classical model

of C isomorphic to any ∼-classical model of C, and so is a unique canonical
one and defines a unique ∼-classical extension of C.

The []-optional stipulation(s) in the formulation of Corollary 6.4 (resp., Theorem
6.3) cannot be omitted {or, even, “weakened”}, because of existence of three-valued
{even, weakly disjunctive} non-∼-classical 〈even, ∼-paraconsistent〉 ∼-subclassical
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Σ-logics, the underlying algebras of the characteristic matrices of which do not have
subalgebras with carrier 2, as it ensues from:

Example 6.5. Let i ∈ 2, Σ , {q,∼} with binary q, B the canonical ∼-classical
Σ-matrix with (jqB k) , i, for all j, k ∈ 2, and A false-singular with ∼A 1

2 , 1
2 and

(aqA b) ,

{
i if a = 1

2 ,
1
2 otherwise,

for all a, b ∈ A, in which case A is both ∼-paraconsistent and, providing i = 1,
weakly q-disjunctive, and so is C. Then, we have:

(〈 1
2 , a〉 q

A2
〈b, 1

2 〉) = 〈i, 1
2 〉,

(〈b, 1
2 〉 q

A2
〈 1
2 , a〉) = 〈 1

2 , i〉,

(〈 1
2 , a〉 q

A2
〈 1
2 , b〉) = 〈i, 1

2 〉,

(〈a, 1
2 〉 q

A2
〈b, 1

2 〉) = 〈 1
2 , i〉,

for all a, b ∈ 2. Hence, L4 forms a subalgebra of A2, while χA
2�L4 ∈ homS

S(A2�L4,B),
in which case, by (2.16), B ∈ Mod(C), and so C is ∼-subclassical. However,
(0qA 1) = 1

2 , in which case 2 does not form a subalgebra of A, and so, by Corollary
6.4, C is neither disjunctive nor weakly conjunctive. �

Corollary 6.6. Suppose A is A-implicative (viz., C is so; cf. Lemma 4.8). Then,
C has a proper consistent axiomatic extension iff it is non-∼-classical (in partic-
ular, ∼-paraconsistent) and ∼-subclassical, in which case CPC is a unique proper
consistent axiomatic extension of C and is relatively axiomatized by φ̄ A ψ, where
φ̄ ∈ (Fm1

Σ)∗ and ψ ∈ (CPC(img φ̄) \ C(img φ̄)) (in particular, by (2.11)).

Proof. According to Corollary 2.15, any [proper] {consistent} axiomatic extension
of C is defined by some {non-empty} S ⊆ S∗(A) [not containing A, in which case
S ⊆ {=}{A�2}, if 2 forms a subalgebra of A, and S = ∅, otherwise {and so (2.6),
Corollaries 2.15, 3.7, 6.4 and Remark 2.8(ii)(,(i)d)) complete the argument}. �

This subsumes Theorem 6.3 of [13] proved ad hoc therein.

7. Theorems versus consistent and proper paraconsistent versus
inferentially consistent non-subclassical extensions

Lemma 7.1. Let S be a set of Σ-matrices and C ′ the logic of S. Then, the
following are equivalent:

(i) C ′ has a theorem;
(ii) for any set I, any e ∈ SI , any function f with domain I, and any S ⊆∏

i∈Ide(i)ef(i), the submatrix of
∏

i∈I e(i)
f(i) generated by S is truth-non-

empty;
(iii) for any set I, any e ∈ SI , any function f with domain I, and any ~̄g ∈∏

i∈Ide(i)ef(i), the submatrix of
∏

i∈I e(i)
f(i) generated by {~̄g} is truth-non-

empty;
(iv) for any enumeration e of S and any |S|-tuple ~̄g such that, for every i ∈ |S|,

ḡi is an enumeration of de(i)e, the submatrix of
∏

i∈I e(i)
|de(i)e| generated by

{~̄g} is truth-non-empty.

Proof. First, (i)⇒(ii) is by (2.16) and Corollary 2.13(ii)⇒(i). Next, (iii/iv) is a
particular case of (ii/iii), respectively. Finally, assume (iv) holds. Take any enu-
meration e of S and, for each i ∈ |S|, any enumeration ḡi of de(i)e. Let D be
the submatrix of

∏
i∈I e(i)

|de(i)e| generated by {~̄g}. Then, DD 6= ∅, in which case
there is some ϕ ∈ Fm1

Σ such that ϕD(~̄g) ∈ DD, and so for each i ∈ |S| and every
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j ∈ |de(i)e|, ϕe(i)(gi
j) = πj(πi(ϕD(~̄g))) ∈ De(i). In this way, ϕ ∈ C ′(∅). Thus, (i)

holds. �

In case both S and all members of it are finite, Lemma 7.1(i)⇔(iv) provides an
effective algebraic criterion of C ′’s having a theorem.

A semi-conjunction for/of a canonical ∼-classical Σ-matrix B is any ϕ ∈ Fm2
Σ

such that ϕA(i, 1− i) = 0, for all i ∈ 2.

Corollary 7.2. Let B be a canonical ∼-classical Σ-matrix and C ′ the logic of B.
Then, the following are equivalent:

(i) C ′ has a theorem;
(ii) M2 does not form a subalgebra of B2;
(iii) B has a semi-conjunction.

Proof. First, given any semi-conjunction ϕ of B, ∼ϕ[x1/∼x0] is a theorem of C ′.
Hence, (iii)⇒(i) holds.

Next, assume (ii) holds. Then, there are some φ ∈ Fm2
Σ and some j ∈ 2 such

that φB(i, 1 − i) = j, for all i ∈ 2, in which case ∼jφ is a semi-conjunction of B,
and so (iii) holds.

Finally, assume (i) holds. Then, by Lemma 7.1(i)⇒(ii), the submatrix D of B2

generated by M2 is truth-non-empty, in which case the unique distinguished value
〈1, 1〉 6∈M2 of B2 belongs to D, and so D 6= M2. Thus, (ii) holds. �

Lemma 7.3. Suppose C is ∼-subclassical. Then, the following are equivalent:
(i) CPC has a theorem;
(ii) A has a binary semi-conjunction;
(iii) M

0/1
2[+2(+4)] does not form a subalgebra of (A([2])(�L2[+2]))2, whenever L2 , 2

does [not] form a subalgebra of A, while θA ∈ (6∈) Con(A), whereas A is false-
/truth-singular, where, for all i ∈ 2, M i

2 , M2, M i
4 , (M2 ∪ {〈i, 1

2 〉, 〈
1
2 , i〉})

and M{i}
8 , {〈{〈j, 1

2 〉, 〈1− j, l〉}, {〈k, 1
2 〉, 〈1− k, 1− l〉}〉 | j, k, l ∈ 2}.

Proof. Let B , APC. Consider the following complementary cases:
• C is ∼-classical,

in which case, by Lemma 3.6, it is defined by B, and so there are some
submatrix D of A and some g ∈ homS(D,B). Then, D is both consis-
tent and truth-non-empty, for B is so, and so is not one-valued. Hence,
2 ⊆ D. Assume A is false-/truth-singular. Then, both B and D are so
with the unique non-distinguihed/distinguished value 0/1, in which case
g(0/1) = (0/1), and so (1/0) = ∼B(0/1) = ∼Bg(0/1) = g(∼D(0/1)) =
g(∼A(0/1)) = g(1/0). Thus, g(i) = i, for all i ∈ 2. Consider the following
complementary subcases:

– 2 forms a subalgebra of A,
and so of D, for 2 ⊆ D, in which case g�2 is a diagonal strict homomor-
phism from (D�2) = (A�2) onto B. Hence, B = (A�2). In particular,
semi-conjunctions of B are exactly binary semi-conjunctions for A.
Moreover, M2 ⊆ 22 forms a subalgebra of B2, being a subalgebra of
A2, iff it forms a subalgebra of A2.

– 2 does not form a subalgebra of A.
Then, D = A, for 2 ⊆ D, while (A\2) = { 1

2} is a singleton. Therefore,
as B is truth-/false-singular, g( 1

2 ) = (1/0) = g(1/0), in which case g is
not injective, and so, by Remark 2.7(iii) and Lemma 4.10(iv)⇒(ii),
θA ∈ Con(A). Moreover, f , ((g ◦ (π0�A2)) × (g ◦ (π1�A2))) ∈
hom(A2,B2) is surjective. Hence, M2 forms a subalgebra of B2 iff
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M
0/1
4 = f−1[M2] forms a subalgebra of A2. Next, given any binary

semi-conjunction ϕ for A and any i ∈ 2, we have ϕA(i, 1 − i) = 0, in
which case we get ϕB(i, 1− i) = ϕB(g(i), g(1− i)) = g(ϕA(i, 1− i)) =
g(0) = 0, and so ϕ is a semi-conjunction of B. Conversely, consider any
semi-conjunction ϕ of B, in which case, for all i ∈ 2, g((∼A)0/1ϕA(i, 1−
i)) = (∼B)0/1ϕB(g(i), g(1− i))) = (∼B)0/1ϕB(i, 1− i) = (∼B)0/10 =
(0/1) 6∈ / ∈ DB, and so (∼A)0/1ϕA(i, 1 − i) 6∈ / ∈ DA, in which case
(∼A)0/1ϕA(i, 1− i) = (0/1), and so

(∼A)0/2ϕA(i, 1− i) = (∼A)0/1(∼A)0/1ϕA(i, 1− i) = (∼A)0/1(0/1) = 0.

In this way, ∼0/2ϕ is a binary semi-conjunction for A.
• C is not ∼-classical,

in which case, by Theorem 4.12(v)⇒(i), θA 6∈ Con(A). Consider the fol-
lowing complementary subcases:

– 2 forms a subalgebra of A,
in which case B = (A�2), in view of (2.16) and Theorem 6.3, and so
binary semi-conjunctions for A are exactly semi-conjunctions of B.

– 2 does not form a subalgebra of A.
Then, by Theorem 6.3, A is false-singular, while L4 forms a sub-
algebra of A2, whereas θA

2�L4 ∈ Con(A2�L4), in which case B =
〈h[A2�L4], {1}〉, where h , χA2�L4 is a strict surjective homomor-
phism from D , (A2�L4) onto B, and so g′ , ((h ◦ (π0�D2)) × (h ◦
(π1�D2))) ∈ hom(D2,B2) is surjective. In particular, M2 forms a
subalgebra of B2 iff M8 = g′

−1[M2] forms a subalgebra of D2. More-
over, as 0 6∈ DA 3 1

2 , for A is false-singular, a , 〈1, 1
2 〉 ∈ DD 63 b ,

〈0, 1
2 〉 ∈ D, in which case we have h(a|b) ∈ | 6∈ DB, and so h(a|b) =

(1|0). Consider any binary semi-conjunction ϕ for A. Then, D 3
ϕD(a|b, b|a) = ϕA2

(a|b, b|a), in which case, as (π0�A2) ∈ hom(A2,A),
we have π0(ϕD(a|b, b|a)) = ϕA(π0(a|b), π0(b|a)) = ϕA(1|0, 0|1) = 0,
and so ϕD(a|b, b|a) 6∈ DD. Hence, ϕB(1|0, 0|1) = ϕB(h(a|b), h(b|a)) =
h(ϕD(a|b, b|a)) 6∈ DB, in which case ϕB(1|0, 0|1) = 0, and so ϕ is a
semi-conjunction of B. Conversely, consider any semi-conjunction ϕ
of B. Then, h(ϕD(a|b, b|a)) = ϕB(h(a|b), h(b|a)) = ϕB(1|0, 0|1) =
0 6∈ DB, in which case 〈ϕA(1|0, 0|1), ϕA( 1

2 ,
1
2 )〉 = ϕD(a|b, b|a) 6∈ DD.

Consider the following complementary subsubcases:
∗ ϕA( 1

2 ,
1
2 ) = 1

2 .
Then, as 1

2 ∈ DA, for A is false-singular, ϕA(1|0, 0|1) = 0, and
so ϕ is a binary semi-conjunction for A.

∗ ϕD( 1
2 ,

1
2 ) 6= 1

2 .
Then, as 22 is disjoint with L4 = D 3 ϕD(a|b, b|a), ϕA(1|0, 0|1) =
1
2 , in which case, as 1

2 ∈ D
A, for A is false-singular, ϕA( 1

2 ,
1
2 ) =

0, and so ϕ[xi/ϕ]i∈2 is a binary semi-conjunction for A.
In this way, Corollary 7.2 completes the argument. �

Corollary 7.4. Suppose C is ∼-subclassical and and weakly Y-disjunctive. Then,
A has a binary semi-conjunction.

Proof. In that case, CPC ⊇ C is weakly Y-disjunctive, and so, by Remark 2.8(i)d),
satisfies (2.12). In this way, Lemma 7.3(i)⇒(ii) completes the argument. �

By Corollaries 4.6, 7.4, Lemmas 4.7, 4.8 and Theorem{s} 5.1(iii)⇒(i) [including
the last assertion] {and 5.6}, we get the following “disjunctive” analogue of Corol-
lary 5.4, being essentially beyond the scopes of the reference [Pyn 95b] of [14], and
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so becoming a one more substantial advance of the present study with regard to
that one:

Corollary 7.5. Any [three-valued expansion of any] disjunctive (in particular, im-
plicative) {non-}∼-subclassical three-valued Σ-logic {with subclassical negation ∼}
has no {more than one} proper ∼-paraconsistent extension. In particular, any
disjunctive (in particular, implicative) ∼-paraconsistent three-valued Σ-logic with
subclassical negation ∼ is premaximally ∼-paraconsistent.

This (more precisely, the {}-non-optional part) is immediately applicable to ar-
bitrary (not necessarily ∼-subclassical) three-valued expansions of the implicative
∼-subclassical P 1 and HZ. On the other hand, as opposed to Corollary 5.4, the
condition of being ∼-subclassical in the formulation of the {}-non-optional part of
Corollary 7.5 is essential, as it follows from:

Example 7.6. Let A be false-singular, Σ , {∼[,∨]}, ∼A 1
2 , 1

2 [and:

(a ∨A b) ,

{
a if a = b,
1
2 otherwise,

for all a, b ∈ A, in which case (2.3), (2.4) and (2.5) are true in A, and so, by
Lemma 4.7, C is ∨-disjunctive]. Then, L3 forms a subalgebra of A2, in which
case, by Theorem 5.1(i)⇒(iv), C is non-maximally ∼-paraconsistent [and so is not
∼-subclassical, in view of Corollary 7.5]. �

Theorem 7.7. Suppose A is [not] false-singular, while C is ∼-subclassical. Then,
the following are equivalent:

(i) C has a theorem;
(ii) CPC has a theorem [and { 1

2} does not form a subalgebra of A];
(iii) A has a binary semi-conjunction [and { 1

2} does not form a subalgebra of A];
(iv) [ { 1

2} does not form a subalgebra of A, and] providing L2 does (not) form a
subalgebra of A, while θA ∈ {6∈}Con(A), whereas A is false-/truth-singular,
M

0/1
2(+2{+4}) does not form a subalgebra of (A{(2)}{�L2(+2)})2;

(v) Any consistent extension of C is a sublogic of CPC.

Proof. First, the equivalence of (ii–iv) is by Lemma 7.3. Next, (i)⇒(ii) is by the
fact that C(∅) ⊆ CPC(∅) [as well as both (2.16) and Corollary 2.13(ii)⇒(i), for
1
2 6∈ DA]. Conversely, assume (ii,iii) hold. Then, in case C is ∼-classical, and so,
by Lemma 3.6, C = CPC, (i) is a particular case of (ii). Otherwise, (i) is by (iii)
and the following claim:

Claim 7.8. Let ϕ be a binary semi-conjunction for A. Suppose either A is false-
singular or both C is ∼-subclassical but not ∼-classical, and { 1

2} does not form a
subalgebra of A. Then, C has a theorem.

Proof. Let D the submatrix of A3 generated by the enumeration a , (10 1
2 ) of A.

Consider the following complementary cases:
• A is false-singular.

Consider the following exhaustive subcases:
– ∼A 1

2 = 1
2 .

Then, D 3 b , ∼Da = (01 1
2 ). Let x , ϕA( 1

2 ,
1
2 ) ∈ A. Consider the

following exhaustive subsubcases:
∗ x = 1

2 .
Then, D 3 c , ϕD(a, b) = (00 1

2 ). In this way, D 3 d , ∼Dc =
(11 1

2 ) ∈ (DA)3.
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∗ x = 0.
Then, D 3 c , ϕD(a, b) = (000). In this way, D 3 d , ∼Dc =
(111) ∈ (DA)3.

∗ x = 1.
Then, D 3 c , ϕD(a, b) = (001), in which case D 3 ∼Dc =
(110), and so D 3 d , ∼DϕD(c,∼Dc) = (111) ∈ (DA)3.

– ∼A 1
2 = 1.

Then, D 3 b , ∼Da = (011), in which case D 3 ∼Db = (100), and so
D 3 d , ∼DϕD(b,∼Db) = (111) ∈ (DA)3.

– ∼A 1
2 = 0.

Then, D 3 b , ∼Da = (010), in which case D 3 ∼Db = (101), and so
D 3 d , ∼DϕD(b,∼Db) = (111) ∈ (DA)3.

• A is not false-singular,
in which case { 1

2} does not form a subalgebra of A, while, by Theorem 6.3, 2
forms a subalgebra of A, and so there is some ψ ∈ Fm1

Σ such that ψA[A] ⊆ 2.
Then, D 3 b , ψD(a) ∈ 23, in which case D 3 c , ϕD(b,∼Db) = (3×{0}),
and so D 3 d , ∼Dc = (3× {1}) ∈ (DA)3.

Thus, anyway, d ∈ ((DA)3 ∩D) = DD, in which case D is truth-non-empty, and so
Lemma 7.1(iv)⇒(i) completes the argument. �

Finally, if C has no theorem, then the purely inferential (and so consistent) IC+0

is an extension of C, for C ⊆ IC, in which case C = C+0 ⊆ IC+0. And what is more,
IC+0, being inferentially inconsistent, for IC, being an inconsistent (∞\1)-sublogic
of IC+0, is inferentially inconsistent, is not ∼-subclassical. Thus, (v)⇒(i) holds.
Conversely, assume (i,iii) hold. Consider any consistent extension C ′ of C. In case
C ′ = C, we have C ′ = C ⊆ CPC. Likewise, in case C is ∼-classical, by Lemma
3.6, we have C = CPC, and so, by (i) and Corollary 3.7, we get C ′ = CPC ⊆ CPC.
Now, assume C 6= C ′ is not ∼-classical. If C ′ was ∼-paraconsistent, then so would
be its sublogic C, in which case A, being ∼-paraconsistent, would be false-singular,
and so, by (iii) and Theorem 5.1(iii)⇒(i), C ′ would be equal to C. Therefore, C ′

is not ∼-paraconsistent. Then, x0 6∈ T , C ′(∅). Moreover, by the structurality of
C ′, 〈Fmω

Σ, T 〉 is a model of C ′ (in particular, of C), and so is its consistent finitely-
generated submatrix B , 〈Fm1

Σ, T ∩ Fm1
Σ〉, in view of (2.16). Then, by Lemma

2.10, there are some finite set I, some C ∈ S∗(A)I and some subdirect product
D ∈ H−1(H(B)) of it, in which case, by (2.16), D is a consistent model of C ′, for B
is so, and so D is non-∼-paraconsistent, for C ′ is so, while A is not a model of the
logic of D, for C ( C ′. And what is more, by (i) and Corollary 2.13(iv)⇒(i), D is
truth-non-empty. Hence, by (2.16), (iii), Lemma 6.1 and Theorem 6.3, a Σ-matrix
defining CPC is embeddable into D, in which case C ′ ⊆ CPC, and so (v) holds. �

Corollary 7.2(i)⇔(ii) [resp., Theorem 7.7(i)⇔(iv)] provides an effective algebraic
criterion of a [three-valued] ∼-[sub]classical Σ-logic’s having a theorem. In this
connection, in view of Corollary 7.4, the instance of the disjunctive K3/LP with-
out/with theorems and the same underlying algebra of their characteristic matrices,
shows that the []-optional reservations in the formulation of Theorem 7.7 are in-
deed necessary/irrelevant in the “truth-/false-singular” case. This equally concerns
the following immediate consequence of Remark 5.3, Corollary 7.4 and Theorem
7.7(i)⇔(iii):

Corollary 7.9. Suppose C is both ∼-subclassical and weakly either conjunctive or
disjunctive, while A is [not] false-singular. Then, C has a theorem [iff { 1

2} does
not form a subalgebra of A].
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The following simple example shows that the stipulation of the weak conjuncti-
vity/disjunctivity cannot be omitted in Corollary 7.9 and “Remark 5.3”/”Corollary
7.4”, respectively:

Example 7.10. Let Σ , {∼} and A false-|truth-singular with ∼A 1
2 = (1|0), in

which case [A\]2 does [not] form a subalgebra of A, and so, by Theorem 6.3, C
is ∼-subclassical, while 〈∼A 1

2 ,∼
A(1|0)〉 = 〈1|0, 0|1〉 6∈ θA 3 〈 1

2 , 1|0〉, in which case
θA 6∈ Con(A), whereas M2 forms a subalgebra of (A�2)2, in which case, by Lemma
7.3(ii)⇒(iii), A has no binary semi-conjunction, and so, by Theorem 7.7(i)⇒(iii),
C has no theorem. In particular, by Corollary 7.9, C is weakly neither conjunctive
nor disjunctive. And what is more, if h , h+/2 would be a homomorphism from
(A�2)2 to A, then we would have (1|0) = ∼A 1

2 = ∼Ah(〈1, 0〉) = h(∼A2〈1, 0〉) =
h(〈0, 1〉) = 1

2 . Therefore, h 6∈ hom((A�2)2,A). Hence, by Theorem 4.12(i)⇒(v), C
is not ∼-classical. �

Theorem 7.11. [Suppose A is both ∼-paraconsistent and weakly conjunctive.]
Then, CNP is consistent if[f ] C is ∼-subclassical.

Proof. The “if” part is by Remark 2.8(i)d) and the consistency of any ∼-classical
Σ-matrix/-logic. [Conversely, assume CNP is consistent. Then, by Remark 5.3 and
Claim 7.8, C has a theorem, in which case, by its structurality, applying the Σ-
substitution extending [xi/x0]i∈ω to any theorem of C, we get some ϕ ∈ (C(∅) ∩
Fm1

Σ) ⊆ T , CNP(∅) 63 x0. Moreover, by the structurality of CNP, 〈Fmω
Σ, T 〉

is a model of C [NP], and so is its consistent truth-non-empty finitely-generated
submatrix B , 〈Fm1

Σ, T ∩ Fm1
Σ〉, in view of (2.16). Hence, by Lemma 2.10, there

are some finite set I, some C ∈ S∗(A)I and some subdirect product D ∈ H−1(H(B))
of it, in which case, this is both consistent, truth-non-empty and, by (2.16), non-∼-
paraconsistent, for B is so, and so A, being ∼-paraconsistent, is not a model of the
logic of it. In this way, Lemma 6.1(ii) and Theorem 6.3 complete the argument.] �

The logic IC+0 invoked in the proof of Theorem 7.7(v)⇒(i) (held in general) is,
though being consistent, is inferentially inconsistent. A proper “inferential” version
of this result is then as follows:

Theorem 7.12. Suppose A is [not] truth-singular, while C is ∼-subclassical. Then,
any inferentially consistent extension of C is a sublogic of CPC [iff A has GC and
C has no proper ∼-paraconsistent extension iff A satisfies GC and L3 does not
form a subalgebra of A2].

Proof. [First, the second “iff” part is by Theorem 5.1(i)⇔(iv). Likewise, by Theo-
rem 5.1(i)⇒(ii), C has a ∼-paraconsistent (and so inferentially consistent) non-∼-
subclassical extension, whenever it has a proper∼-paraconsistent one. Now, assume
A does not satisfy GC. Let B be the submatrix of A2 generated by ∅ 6= {〈1, 1

2 〉} ⊆
DB, for A is false-singular. Then, by (2.16) and the following claim, the logic of B is
an inferentially consistent (for B is both consistent and truth-non-empty) extension
of C, not being a sublogic of CPC:

Claim 7.13. Let B be the submatrix of A2 generated by {〈1, 1
2 〉} and C ′ the logic of

B. Suppose A is false-singular and does not satisfy GC. Then, (B\DB) = M2 6= ∅,
in which case ∼x0 ` x0 is true in B, and so, by (3.2) with n = 1 and m = 0, ∼ is
not a subclassical negation for C ′ (in particular, C ′ 6= C is not ∼-subclassical; cf.
Corollary 4.6).

Proof. Then, (B ∩ {〈0, 0〉, 〈0, 1
2 〉, 〈

1
2 , 0〉}) = ∅, in which case ∼A 1

2 = 1, and so
(B \DB) = M2 6= ∅. On the other hand, for every a ∈M2, ∼Ba ∈M2, so the rule
∼x0 ` x0 is true in B, as required. �
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Thus, the first “only if” part holds. Conversely, assume A has GC, while C
has no proper ∼-paraconsistent extension.] Consider any inferentially consistent
extension C ′ of C. In case C ′ = C, we have C ′ = C ⊆ CPC. Likewise, in case
C is ∼-classical, by Lemma 3.6, we have C = CPC, and so, by Corollary 3.7,
we get C ′ = CPC ⊆ CPC. Now, assume C 6= C ′ is not ∼-classical. If C ′ was
∼-paraconsistent, then so would be its sublogic C, in which case A, being ∼-
paraconsistent, would be false-singular, and so, by the []-optional assumption, C ′

would be equal to C. Therefore, C ′ is not ∼-paraconsistent. Then, x1 6∈ T ,
C ′(x0) 3 x0. Moreover, by the structurality of C ′, 〈Fmω

Σ, T 〉 is a model of C ′

(in particular, of C), and so is its consistent truth-non-empty finitely-generated
submatrix B , 〈Fm2

Σ, T ∩ Fm2
Σ〉, in view of (2.16). Then, by Lemma 2.10, there

are some finite set I, some C ∈ S∗(A)I and some subdirect product D ∈ H−1(H(B))
of it, in which case, by (2.16), D is a consistent truth-non-empty model of C ′, for B
is so, and so D is non-∼-paraconsistent, for C ′ is so, while A is not a model of the
logic of D, for C ( C ′. Hence, by (2.16), Lemma 6.1 and Theorem 6.3, a Σ-matrix
defining CPC is embeddable into D, in which case C ′ ⊆ CPC, as required. �

Theorem 7.14. Suppose A is either non-∼-paraconsistent (in particular, truth-
singular) or weakly conjunctive (viz., C is so). Then, C has a proper inferentially
consistent extension iff it is ∼-subclassical but not ∼-classical, in which case CPC

is an extension of any inferentially consistent extension of C.

Proof. The “if” part is by the inferential consistency of ∼-classical Σ-logics. Con-
versely, consider any proper inferentially consistent extension C ′ of C, in which
case, by Corollary 3.7, C is not ∼-classical. Moreover, if C ′ was ∼-paraconsistent,
then so would be its sublogic C, in which case this would be weakly conjunctive,
and so, by Corollaries 4.6 and 5.4, C ′ would be equal to C. Therefore, C ′ is not
∼-paraconsistent. Then, x1 6∈ T , C ′(x0) 3 x0. Moreover, by the structurality of
C ′, 〈Fmω

Σ, T 〉 is a model of C ′ (in particular, of C), and so is its consistent truth-
non-empty finitely-generated submatrix B , 〈Fm2

Σ, T ∩ Fm2
Σ〉, in view of (2.16).

Then, by Lemma 2.10, there are some finite set I, some C ∈ S∗(A)I and some
subdirect product D ∈ H−1(H(B)) of it, in which case, by (2.16), D is a consistent
truth-non-empty model of C ′, for B is so, and so D is non-∼-paraconsistent, for C ′

is so, while A is not a model of the logic of D, for C ( C ′. Hence, by Lemma 6.1,
2 forms a subalgebra of A, while A�2 is embeddable into D, whereas, by Theorem
6.3, C is ∼-subclassical, in which case CPC is defined by A�2, and so, by (2.16),
C ′ ⊆ CPC, as required. �

The initial stipulation in the formulation of Theorem 7.14 cannot be omitted, as
it ensues from:

Example 7.15. Let A be false-singular, Σ , {∼,>} with nullary > and >A ,
∼A 1

2 , 1
2 , in which case 2 63 1

2 = >A does not form a subalgebra of A, while
〈∼A1,∼A 1

2 〉 = 〈0, 1
2 〉 6∈ θA 3 〈1, 1

2 〉, in which case θA 6∈ Con(A), whereas L4 63
〈 1
2 ,

1
2 〉 = >A2

does not form a subalgebra of A2, and so, by Theorem[s] 4.12(i)⇒(v)
[and 6.3], C is not ∼-[sub]classical. On the other hand, L3 3 〈 1

2 ,
1
2 〉 = >A2

, being
closed under ∼A2

, forms a subalgebra of A2, in which case, by Theorem 5.1(i)⇒(iv),
C has a proper ∼-paraconsistent (and so inferentially consistent) extension, and so,
by Corollary 5.4, C is not weakly conjunctive. �

8. Structural completeness, completions and extensions

8.1. Paraconsistent logics.
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Theorem 8.1. Suppose A is false-singular [while, providing C is ∼-subclassical,
it is either ∼-paraconsistent or disjunctive]. Then, C is structurally complete if[f ]
the following hold:

(i) C has a theorem;
(ii) C has no proper ∼-paraconsistent extension;
(iii) A satisfies GC;
(iv) A satisfies DGC;
(v) L4 does not form a subalgebra of A2;
(vi) C is not ∼-subclassical, unless it is ∼-classical,

in which case any three-valued expansion of C is structurally complete, unless C is
∼-classical. In particular, providing C is ∼-paraconsistent, it is structurally com-
plete iff A satisfies both GC and DGC, while C is both maximally ∼-paraconsistent
and neither ∼-subclassical nor purely-inferential, whereas L4 does not form a sub-
algebra of A2.

Proof. First, assume (i–vi) hold. Then, in case C is ∼-classical, by (i) and Corollary
3.7, it is structurally complete. Now, assume C is not ∼-classical, and so is not
∼-subclassical, in view of (vi). Let C ′ be any extension of C such that T , C ′(∅) =
C(∅) 63 x0, in view of the consistency of A, and so of C. Then, by (2.16), (i) and
the structurality of C ′, B , 〈Fm1

Σ, T ∩Fm1
Σ〉 is a finitely-generated consistent truth-

non-empty model of C ′ (in particular, of C), in which case, by Lemma 2.10, there
are some finite set I, some C ∈ S∗(A)I and some subdirect product D ∈ H−1(H(B))
of it, in which case, by (2.16), D is a consistent truth-non-empty model of C ′, for
B is so. Consider the following complementary cases:

• D is ∼-paraconsistent.
Then, by (2.16), (ii), Lemma 4.15 and Theorem 5.1(i)⇒(iii), A is a model
of C ′, for D is so.

• D is not ∼-paraconsistent.
Then, as C is not ∼-subclassical, by (iii-v), Lemma 6.1(ii) and Theorem
6.3, A is a model of the logic of D, and so of C ′, for D is a model of C ′.

Thus, anyway, A ∈ Mod(C ′), in which case C ′, being an extension of C, is equal
to C, and so C is structurally complete. [Conversely, assume either of (i-vi) does
not hold. Consider respective cases:

(i) does not hold.
Then, by Remark 2.4, C, being inferentially consistent, for A is both consis-
tent and truth-non-empty, is not structurally complete.

(ii) does not hold.
Then, by Theorem 5.6(i), C 1

2
is a proper extension of C, and ∆A ∈ homS(A 1

2
,

A), in which case, by (2.17), C 1
2
(∅) = C(∅), and so C is not structurally

complete.
(iii) does not hold.

Let B′ be the submatrix of A2 generated by {〈1, 1
2 〉}. Then, by (2.16) and

Claim 7.13, the logic C ′ of B′ is a proper extension of C, while (π1�B′) ∈
homS(B′,A), for π1[M2] = 2, while M2 ⊆ B′, in which case, by (2.17),
C ′(∅) = C(∅), and so C is not structurally complete.

(iv) does not hold.
Let B′ be the submatrix of A2 generated by M2 ∪ {〈1, 1

2 〉} and C ′ the logic
of B′. Then, as 〈0, 0〉 6∈ B′, while ∼A1 = 0, ∼A 1

2 6= 0, in which case A
is ∼-paraconsistent, and so is C. Moreover, as 〈 1

2 ,
1
2 〉 6∈ B′, B′ is non-∼-

paraconsistent, and so is C ′, in which case, by (2.16), C ′ is a proper extension
of C. And what is more, (π1�B′) ∈ homS(B′,A), for π1[M2] = 2, in which
case, by (2.17), C ′(∅) = C(∅), and so C is not structurally complete.
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(v) does not hold.
Let B′ , (A2�L4) and C ′ the logic of B′. Then, as 〈0, 0〉 6∈ L4 3 〈 1

2 , 1〉,
while ∼A1 = 0, ∼A 1

2 6= 0, in which case A is ∼-paraconsistent, and so is C.
Moreover, as 〈 1

2 ,
1
2 〉 6∈ L4, B′ is non-∼-paraconsistent, and so is C ′, in which

case, by (2.16), C ′ is a proper extension of C. And what is more, (π0�L4) ∈
homS(B′,A), for π0[L4] = A, in which case, by (2.17), C ′(∅) = C(∅), and so
C is not structurally complete.

(vi) does not hold,
in which case C is ∼-subclassical but not ∼-classical. Let B′ , APC ∈
Mod(C). Then, D , (A× B′) is a model of C, in which case the logic C ′ of
D is an extension of C, and so, as (π0�D) ∈ homS(D,A), by (2.17), we have
C ′(∅) = C(∅). For proving the fact that C ′ 6= C, consider the following
complementary cases:
• A is ∼-paraconsistent,

and so is C. Then, by Remark 2.8(i)d),(iii), C ′ is not ∼-paraconsistent,
and so C ′ 6= C.

• A is not ∼-paraconsistent,
in which case it is ∼-negative. Then, C, being both ∼-subclassical and
non-∼-paraconsistent, is Y-disjunctive, and so is A, in view of Lemma
4.7, in which case, by Remark 2.8(i)c), it is A-implicative, while D is
weakly Y-disjunctive, whereas, by Corollary 6.4, 2 forms a subalgebra
of A, in which case B′ = (A�2). Moreover, by Corollary 4.13, A is
hereditarily simple, in which case, by Theorem 3.4(i)⇔(iii), it has a
unary equality determinant ε, and so {φ A ψ | (φ ` ψ) ∈ ε} is an
axiomatic equality determinant for it, and so for D, in view of Lemmas
3.3, 3.5, in which case it is hereditarily simple too. We prove that C ′ 6= C
by contradiction. For suppose C ′ = C, in which case A is a finite model
of C ′, and so, by Corollary 2.12 and Remark 2.7(iii), there is some
h ∈ homS

S(A,D). Then, g , ((π1�D) ◦ h) ∈ homS(A,B′), in which case,
as DA = {1, 1

2}, we have g(1) = 1 = g( 1
2 ), and so g is not injective,

while 0 = ∼B1 = ∼Bg(1) = g(∼A1) = g(0). Hence, g is strict. This
contradicts to Remark 2.7(iii). Thus, C ′ 6= C.

Thus, anyway, C ′ 6= C, in which case C is not structurally complete.
Thus, in any case, C is not structurally complete.]

Finally, as expansions of A/C inherit (iii-v)/“both (i) and absence of ∼-classic-
al models”, respectively, Remark 2.8(i)d), Corollary 4.18 and the last assertion of
Theorem 5.1 complete the argument. �

Remark 2.4 and Theorem 8.1 inevitably raise the problem of finding the struc-
tural completion of C, whenever it is both ∼-paraconsistent and ∼-subclassical but
not purely-inferential. Among other things, it is this case that covers all already-
known instances of ∼-paraconsistent three-valued Σ-logics with subclassical nega-
tion ∼.

Lemma 8.2. Let i ∈ 2, K′
3,i the submatrix of A2 generated by K3,i , (∆2∪{〈 1

2 , i〉}).
Suppose 2 forms a subalgebra of A, in which case C is ∼-subclassical, CPC being
defined by A�2; cf. Theorem 6.3. Then, the following are equivalent:

(i) 〈0, 1〉 ∈ K ′
3,i;

(ii) 〈1, 0〉 ∈ K ′
3,i;

(iii) M2 ⊆ K ′
3,i;

(iv) (M2 ∩K ′
3,i) 6= ∅;

(v) K ′
3,i * K4 , (

⋃
j∈2K3,j);
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(vi) neither K3,i nor K4 forms a subalgebra of A2.
Moreover, providing A is ([both Z-conjunctive and] Y-disjunctive as well as) false-
singular {more specifically, ∼-paraconsistent}, a)⇔b)⇒ (⇔)c)⇒ {⇔}d)⇐ ([⇔
])e)〈⇒b)〉, where:

a) CPC is a proper axiomatic extension of C;
b) CPC(∅) 6= C(∅);
c) 〈0, 1〉 ∈

⋂
j∈2K

′
3,j 〈while C is not ∼-classical〉;

d) 〈0, 1〉 ∈ K ′
3,0 〈while C is not ∼-classical〉;

e) A is implicative 〈while C is not ∼-classical〉.
In particular, the non-〈〉-optional versions of a)–e) are equivalent, whenever C is
both conjunctive and disjunctive as well as ∼-subclassical, while A is false-singular
(in particular, ∼-paraconsistent), whereas C is not ∼-classical (in particular, ∼-
paraconsistent).

Proof. First, (i)⇔(ii) is by the fact that ∼Aj = (1− j), for all j ∈ 2, while (iii/iv)
is the conjunction/disjunction of (i) and (ii), respectively. Next, (iii)⇒(v) is by the
fact that M2 * K4. Further, (v)⇒(vi) is by the fact that K3,i ⊆ K4. The converse
is by the fact that K4 = (K3,i ∪ {〈 1

2 , 1− i〉}), while K3,i ⊆ K ′
3,i. Furthermore,

(v)⇒(iv) is by the fact that K4 = ((A × 2) \ M2), while K ′
3,i ⊆ (A × 2), for

π1[K3,i] = 2 forms a subalgebra of A.
Now, suppose A is ([both Z-conjunctive and] Y-disjunctive, in which case A�2

is so, in view of Remark 2.8(ii), as well as) false-singular {more specifically, ∼-
paraconsistent}.

First, b) is a particular case of a). Conversely, assume b) holds. Then, CPC(∅)
* C(∅), for C ⊆ CPC, in which case there is some ϕ ∈ (CPC(∅) \ C(∅)) 6= ∅,
and so ϕ is true in A�2 but is not true in A. On the other hand, A�2 is the only
proper consistent submatrix of A. Hence, by Corollary 2.15, CPC is the axiomatic
extension of C relatively axiomatized by ϕ. Thus, a) holds.

Next, d) is a particular case of c). {Conversely, assume 〈0, 1〉 ∈ K ′
3,0. Consider

the following complementary cases:
• ∼A 1

2 = 1
2 .

Then, 〈 1
2 , 0〉 = ∼A2〈 1

2 , 1〉 ∈ K
′
3,1, for K ′

3,1 ⊇ K3,1 3 〈 1
2 , 1〉 forms a subalge-

bra of A2, in which case K3,0 = (∆2 ∪ {〈 1
2 , 0〉}) ⊆ K ′

3,1, for ∆2 ⊆ K3,1 ⊆
K ′

3,1, and so, K ′
3,1, forming a subalgebra of A2, includes K ′

3,0 3 〈0, 1〉.
• ∼A 1

2 6=
1
2 , in which case ∼A 1

2 = 1,
for A is ∼-paraconsistent, and so 〈0, 1〉 = ∼A2∼A2〈 1

2 , 1〉 ∈ K
′
3,1, for K ′

3,1 ⊇
K3,1 3 〈 1

2 , 1〉 forms a subalgebra of A2.
Thus, in any case, 〈0, 1〉 ∈

⋂
j∈2K

′
3,j , and so d)⇒c) holds.}

(Further, assume 〈0, 1〉 ∈
⋂

j∈2K
′
3,j . Then, there is some φ̄ ∈ (Fm3

Σ)2 such that,
for each j ∈ 2, φA

j (0, 1
2 , 1) = 0 and φA

j (0, j, 1) = 1. Moreover, by Remark 2.8(i)d),
ϕ , (2.12) ∈ (CPC(∅) ∩ Fm1

Σ). Set ψ , (Yφ̄[x0/∼ϕ, x2/ϕ]) ∈ Fm2
Σ. Then,

since both A and A�2 are Y-disjunctive as well as false-singular, while the latter
is also both ∼-negative and truth-singular, we have, for all k ∈ 2, ψA(k, 1

2 ) = 0
as well as ψA(k, l) = 1, for all l ∈ 2, in which case ψ is not true in A under
[x0/k, x1/

1
2 ] but is true in A�2, and so ψ ∈ (CPC(∅)\C(∅)). Thus, c)⇒b) holds.)

Conversely, if 〈0, 1〉 6∈ K ′
3,j , for some j ∈ 2, then (π1�K ′

3,j) ∈ homS
S(K′

3,j ,A�2),
because π1[K3,j ] = 2 forms a subalgebra of A, in which case, by (2.16), CPC is
defined by K′

3,j , and so, by (2.17), CPC(∅) = C(∅), for (π0�K ′
3,j) ∈ homS

S(K′
3,j ,A),

because π0[K3,j ] = A. 〈Likewise, if C is ∼-classical, then, by Lemma 3.6, CPC = C,
for C ⊆ CPC.〉 Thus, b)⇒c) holds.
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〈Furthermore, if e) holds, then b) is by Remark 2.8(ii) and the following claim:〉

Claim 8.3. Let C ′ be a finitary Σ-logic and C ′′ a 1-extension of C ′. Suppose C ′

has DT with respect to A, while (2.8) is satisfied in C ′′. Then, C ′′ is an extension
of C ′. In particular, any exiomatically-equivalent finitary weakly A-implicative Σ-
logics are equal.

Proof. By induction on any n ∈ ω, we prove that C ′′ is an n-extension of C ′. For
consider any X ∈ ℘n(Fmω

Σ), in which case n 6= 0, and any ψ ∈ C ′(X). Then, in case
X = ∅, we have X ∈ ℘1(Fmω

Σ), and so ψ ∈ C ′(X) ⊆ C ′′(X), for C ′′ is a 1-extension
of C ′. Otherwise, take any φ ∈ X, in which case Y , (X \ {φ}) ∈ ℘n−1(Fmω

Σ),
and so, by DT with respect to A, that C ′ has, and the induction hypothesis, we
have (φ A ψ) ∈ C ′(Y ) ⊆ C ′′(Y ). Therefore, by (2.8)[x0/φ, x1/ψ] satisfied in C ′′,
in view of its structurality, we eventually get ψ ∈ C ′′(Y ∪ {φ}) = C ′′(X). Hence,
as ω = (

⋃
ω), we eventually conclude that C ′′ is an ω-extension of C ′, and so an

extension of C ′, for this is finitary. �

Finally, assume A is A-implicative. Then, as 0 6∈ DA, we have both ( 1
2 AA

0) = 0, for A is false-singular, and (0 AA 0) = 1, for 2 forms a subalgebra of
A. Therefore, since K ′

3,0 ⊇ K3,0 3 〈0/ 1
2 , 0〉 forms a subalgebra of A2, we get

〈0, 1〉 = (〈 1
2 , 0〉 AA2 〈0, 0〉) ∈ K ′

3,0. Thus, e)⇒d) holds. ([Conversely, assume
〈0, 1〉 ∈ K ′

3,0. Then, there is some φ ∈ Fm3
Σ such that φA( 1

2 , 0, 1) = 0, while
φA(0, 0, 1) = 1, in which case ψ , (φ[x2/∼x1]) ∈ Fm2

Σ, while ψA( 1
2 , 0) = 0, whereas

ψA(0, 0) = 1, and so ϕ , (ψ Z ∼x0) ∈ Fm2
Σ, while ϕA(a, 0) = (1 − χA(a)), for all

a ∈ A, for A is both Z-conjunctive and false-singular, while 2 forms a subalgebra
of A. In this way, by the following claim, A, being Y-disjunctive, is implicative:

Claim 8.4. Let N ′
2 be the submatrix of A3 generated by N2 , {〈0, 1, 1

2 〉, 〈0, 0, 0〉}.
Suppose A is false-singular, while 2 forms a subalgebra of A. Then, A is implicative
iff it is disjunctive, while 〈1, 0, 0〉 ∈ N ′

2.

Proof. First, if A is A-implicative, then it is ]A-disjunctive, while N ′
2 3 (〈0, 1, 1

2 〉
AA3 〈0, 0, 0〉) = 〈1, 0, 0〉, for N ′

2 ⊇ N2 forms a subalgebra of A3, while 2 forms a
subalgebra of A, whereas A is false-singular. Conversely, assume A is Y-disjunctive,
while, 〈1, 0, 0〉 ∈ N ′

2, in which case there is some φ ∈ Fm2
Σ such that φA(a, 0) =

(1−χA(a)), for all a ∈ A, and so ψ , (φYx1) ∈ Fm2
Σ, while A is ψ-implicative. �

In this way, d)⇒e) holds.])
Thus, Remark 2.8(i)d), Lemmas 4.7, 4.8 and Corollary 6.4 complete the argu-

ment. �

By Remark 2.8(i)d), Corollary 6.4 and Lemma 8.2, we immediately get:

Corollary 8.5. Suppose C is [both conjunctive and] disjunctive as well as ∼-
subclassical, while A is false-singular (more specifically, ∼-paraconsistent). Then,
CPC is the structural completion of C iff [either C is ∼-classical or] either K4 or
K3,i, for some i ∈ (2(∩1)[∩1]), forms a subalgebra of A2 [if and] only if C is either
∼-classical or non-implicative. In particular, providing C is ∼-paraconsistent, CPC

is the structural completion of it iff either K4 or K3,0 forms a subalgebra of A2 [if
and] only if it is not implicative.

The opposite case is analyzed in Subsubsection 8.1.1 below within the framework
of ∼-paraconsistent three-valued Σ-logics with subclassical negation ∼ as well as
lattice conjunction and disjunction. On the other hand, the []-optional stipulation
of conjunctivity cannot be omitted in the formulations of Lemma 8.2 and Corollary
8.5, even if C is ∼-paraconsistent, in view of:
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Example 8.6. Let Σ , {�,∨,∼} with binary � and A false-singular with ∼A 1
2 , 1

2
and

(a(∨|�)Ab) ,

{
1
2 |0 if 1

2 ∈ {a, b},
max(a, b)|1 otherwise,

for all a, b ∈ A. Then, 2 forms a subalgebra of A, while A is both ∼-paraconsistent
and ∨-disjunctive, whereas 〈0, 1〉 = (〈 1

2 , 0〉 �
A2 〈0, 0〉) ∈ K ′

3,0, for K ′
3,0 ⊇ K3,0 ⊇

{〈 1
2 , 0〉, 〈0, 0〉} forms a subalgebra of A2. On the other hand, ((22×{ 1

2})∪(∆2×2)) ⊇
N2 forms a subalgebra of A3 but does not contain 〈1, 0, 0〉, for 1 6= 0 6= 1

2 , in which
case, by Claim 8.4, A is not implicative, and so is not conjunctive, in view of Lemma
8.2d)⇒e). �

Remark 8.7. Let ϕ be a binary semi-conjunction for A. Then, ϕA2
(〈0, 1〉, 〈1, 0〉) =

〈0, 0〉, so A satisfies DGC. �

Remark 8.8. Suppose A is both false-singular and weakly Z-conjunctive (viz., C is
so). Then, as 0 is the only non-distinguished value of A, we have (0 ZA a) = 0 =
(a ZA 0), for all a ∈ A, in which case we get (〈0, a〉 ZA2 〈a, 0〉) = 〈0, 0〉 6∈ L4 ⊇
{〈0, 1

2 〉, 〈
1
2 , 0〉}, and so, in particular, L4 does not form a subalgebra of A2, while, in

case ∼A 1
2 = 1, we have 〈0, 0〉 = (∼A2〈1, 1

2 〉 ZA2 ∼A2∼A2〈1, 1
2 〉), whereas, otherwise,

we have ∼A2〈1, 1
2 〉 ∈ {〈0, 0〉, 〈0,

1
2 〉}. Thus, in addition, A satisfies GC. �

Combining Theorems 5.1(iii)⇒(i), 7.7(iii)⇒(i), 8.1 with Remarks 5.3, 8.7 and
8.8, we immediately get:

Corollary 8.9. Suppose A is false-singular (in particular, ∼-paraconsistent) and
weakly conjunctive. Then, C is structurally complete iff it is either ∼-classical or
non-∼-subclassical.

Further, A is said to be classically-hereditary, provided 2 forms a subalgebra of A.
Likewise, A is said to be classically-valued, provided, for each ς ∈ Σ, (img ςA) ⊆ 2,
in which case it is classically-hereditary.

Remark 8.10. Suppose A is both classically-valued and Y-disjunctive. Then, as
1 ∈ DA 63 0, we have (a YA a) = χA(a), for all a ∈ A, in which case, since
∼Ai = (1− i), for all i ∈ 2, A is ¬-negative, where (¬x0) , ∼(x0 Yx0), and so both
Y¬-conjunctive and A¬

Y-implicative, in view of Remark 2.8(i)a),c). �

Combining Remarks 2.8(i)d) and 8.10 with Corollaries 4.6, 5.4, 6.4 and 8.9, we
also have:

Corollary 8.11. Let c 6∈ Σ be a nullary connective, Σ′ , (Σ ∪ {c}), A′ the Σ′-
expansion of A with cA

′
, 1

2 and C ′ the logic of A′. Suppose A is ∼-paraconsistent
as well as both classically-hereditary and weakly conjunctive (in particular, both
classically-valued and implicative [i.e., disjunctive]). Then, C ′ is structurally com-
plete, while C is not so, whereas both C and C ′ are maximally ∼-paraconsistent.

This covers, in particular, both LP , LA, HZ (recall that this is ∨∼-conjunctive)
— as non-classically-valued conjunctive classically-hereditary instances — and P 1

— as a term-wise definitionally minimal classically-valued disjunctive instance; cf.
Remark 8.10 — as well as their bounded expansions by classical constants ⊥ and
> interpreted as 0 and 1, respectively. (In this connection, recall that the fact
that LP is “maximally ∼-paraconsistent”/“not structurally complete” has been
due to [14]/[16], respectively, proved ad hoc therein.) Thus, in view of Remark
2.8(i)d), Corollaries 4.6, 8.11 and Theorem 8.1, any ∼-paraconsistent three-valued
∼-paraconsistent Σ-logic with subclassical negation ∼ is maximally so, whenever
it is structurally complete, while the converse does not, generally speaking, hold,
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whereas the structural completeness of such a logic subsumes absence of its ∼-
classical extensions. On the other hand, the situation with paracompleteness is
quite different, as we show in Subsection 8.2 below.

8.1.1. Extensions of logics with lattice conjunction and disjunction. Throughout
this subsubsection, it is supposed that:

• A is a (Z,Y)-lattice, in which case 〈A,≤A〉 is a chain poset for |A| = 3, and
so A, being finite, is a distributive (Z,Y)-lattice with zero and unit;

• A is ∼-paraconsistent (and so false-singular) and Z-conjunctive, in which
case [AZ = 0, and so A is Y-disjunctive (in particular, C is maximally ∼-
paraconsistent [cf. Corollary 5.4], while it is ∼-subclassical iff 2 forms a
subalgebra of A, in which case CPC is defined by A�2 [cf. Corollary 6.4]);

• unless otherwise specified, A is the material implication A∼
Y , in which case,

by (2.3) satisfied in C, in view of its Y-disjunctivity, we have CNP ⊆ CMP,
and so C, being ∼-paraconsistent, is not (weakly) A-implicative.

Lemma 8.12. Let B be a three-valued ∼-super-classical Σ-matrix, I a finite set,
C ∈ S∗(B)I , D a subdirect product of it and J , {i ∈ I | 1

2 ∈ πi[D]}. Suppose B

is a (Z,Y)-lattice with 0 ≤B
Z 1 and 1

2 (≤ | 6≤)B
Z ∼B 1

2 , while A is weakly conjunctive,
whenever it is ∼-paraconsistent, whereas D is truth-non-empty, otherwise. Then,
there is some a ∈ (D ∩ { 1

2 , 0|1}
I) including J × { 1

2}.

Proof. Then, by Claim 4.17, for each j ∈ 2, (I × {j}) ∈ D. Moreover, 〈B,≤B
Z 〉

is a chain, for |B| = 3, in which case 1
2 (≤ | ≥)B

Z ∼B 1
2 , while 1

2 (≤ / ≥)B
Z (0|1).

By induction on the cardinality of any K ⊆ J , let us prove that there is some
a ∈ (D∩{ 1

2 , 0|1}
I) including K×{ 1

2}. In case K = ∅, we have j , (0|1) ∈ 2, while
(K × { 1

2}) = ∅ ⊆ (I × {j}) ∈ (D ∩ { 1
2 , 0|1}

I). Now, assume K 6= ∅. Take any
j ∈ K ⊆ J , in which case L , (K \ {j}) ⊆ J , while |L| < |K|, and so, by induction
hypothesis, there is some b ∈ (D ∩ { 1

2 , 0|1}
I) including L × { 1

2}. Moreover, since
1
2 ∈ πj [D], there is some c ∈ D such that πj(c) = 1

2 . Let d , (c(Z|Y)D∼Dc) ∈ D

and a , (b(Z/Y)Dd) ∈ D. Then, as 0 ≤B
Z 1, while 1

2 (≤ | ≥)B
Z ∼B 1

2 , for each i ∈ I,
πi(d) is equal to 1

2 , if πi(c) is so, and is equal to 0|1, otherwise, in which case, as
b ∈ { 1

2 , 0|1}
I , while 1

2 (≤ / ≥)B
Z (0|1), πi(a) is equal to 1

2 , if either πi(b) or πi(d) is
so, and is equal to 0|1, otherwise, and so a ∈ (D ∩ { 1

2 , 0|1}
I) includes K × { 1

2}, for
K = (L ∪ {j}). Thus, the case, when K = J , completes the argument. �

Corollary 8.13. Let I be a finite set, C ∈ S∗(A)I and D a consistent non-
∼-paraconsistent subdirect product of C. Then, 2 forms a subalgebra of A and
hom(D,A�2) 6= ∅.

Proof. First, by Lemma 8.12 with J = I, if 1
2 was in πi[D] = Ci, for each i ∈ I,

then a , (I × { 1
2}) would be in D, in which case (2.10) would not be true in D

under [x0/a, x1/b], where b ∈ (D \DD) 6= ∅, for D is consistent, and so D would be
∼-paraconsistent. Hence, there is some i ∈ I such that 1

2 6∈ B , πi[D] = Ci 6= ∅,
in which case B ⊆ 2 forms a subalgebra of A, and so B = 2, while (πi�D) ∈
hom(D,A�B). �

Theorem 8.14. Suppose C is ∼-subclassical (i.e., 2 forms a subalgebra of A;
cf. Corollary 6.4). Then, CNP is defined by L6 , (A × (A�2)), in which case
CNP(∅) = C(∅).

Proof. Then, by Theorem 2.14 with M , {A} and K , PSD
ω (S∗(M)), CNP is

finitely-defined by the class S of all consistent members of K∩Mod(CNP). Consider
any D ∈ S ⊆ Mod (2.10), in which case there are some finite set I and some
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C ∈ S∗(A)I such that D is a subdirect product of it, and so, by Corollary 8.13,
hom(D,A�2) 6= ∅. Take any g ∈ hom(D,A�2). Consider any a ∈ (D \DD). Then,
there is some i ∈ I such that πi(a) 6∈ DA, while f , (πi�D) ∈ hom(D,A), in which
case h , (f×g) ∈ J , hom(D,L6), while h(a) 6∈ DL6 , and so (

∏
J) ∈ homS(D,LJ

6 ).
Thus, by (2.16), CNP is finitely-defined by the finite L6, in which case it, being
finitary, for (2.10) is so, while A is finite, is defined by L6, and so (2.17) and the
fact that (π0�L6) ∈ homS(L6,A) complete the argument. �

Theorem 8.15. CMP is consistent iff C is ∼-subclassical, in which case CNP (
CMP = CPC, and so CNP is not Y-disjunctive.

Proof. First, if CMP is consistent, then so is its sublogic CNP (in view of (2.3)
satisfied in C), in which case C is ∼-subclassical, by Theorem 7.11. Conversely,
assume C is ∼-subclassical, in which case, by Corollary 6.4, 2 forms a subalgebra
of A, while CPC is defined by A�2. Then, by Remark 2.8(i)c),(ii), A�2 is A∼

Y -
implicative, and so is CPC, in which case CMP ⊆ CPC. For proving the converse,
consider the following complementary cases:

• CPC(∅) = C(∅).
Then, Claim 8.3 implies that CPC ⊆ CMP.

• CPC(∅) 6= C(∅).

1st argument. Then, by Lemma 8.2b)⇒e), A is implicative. Hence, by
the following claim, there is some ϕ ∈ (Fm1

Σ ∩C(∅)) ⊆ CMP(∅) such that
ϕA( 1

2 ) = 1
2 :

Claim 8.16. Suppose A is implicative. Then, there is some ϕ ∈ (Fm1
Σ ∩

C(∅)) such that ϕA( 1
2 ) = 1

2 .

Proof. By contradiction. For suppose, for all ϕ ∈ (Fm1
Σ ∩C(∅)), ϕA( 1

2 ) 6=
1
2 , in which case ϕA( 1

2 ) ∈ DA = { 1
2 , 1}, and so ϕA( 1

2 ) = 1. In particular,
since A is both Y-disjunctive and, being false-singular, weakly ∼-negative,
it is not (Y,∼)-paracomplete, in view of Remark 2.8(i)d), in which case
( 1
2 YA ∼A 1

2 ) = 1, and so

1
2 ≤

A
Z 1 = ∼A 1

2 , (8.1)

in view of the linearity of the poset 〈A,≤A
Z 〉. Consider any φ ∈ C(∅) and

any h ∈ hom(Fmω
Σ,A). Let Ua , (Vω∩h−1[{a}]), where a ∈ A, and σ the Σ-

substitution extending (U 1
2
×{x0})∪(U1×{∼x0})∪(U0×{∼∼x0}), in which

case, by the structurality of C, we have ψ , σ(φ) ∈ (Fm1
Σ ∩C(∅)), and so,

by (8.1), we get h(φ) = ψA( 1
2 ) = 1. Hence, B , 〈A, {1}〉 ∈ Mod1(C).

Let ⊃ be any (possibly, secondary) binary connective of Σ, such that A is
⊃-implicative, and (x0 A x1) , ((x0 ⊃ x1) Z (x0 A∼

Y x1)), in which case
A is A-implicative, for it is ⊃-implicative, Z-conjunctive, Y-disjunctive and
false-singular, and so (1 AA 0) = 0. Moreover, (1 ⊃A 1

2 ) ∈ DA = { 1
2 , 1}, in

which case, by (8.1), we have 1
2 ≤

A
Z (1 ⊃A 1

2 ), and so we get (1 AA 1
2 ) = 1

2 ,
for ∼A1 = 0 ≤A

Z
1
2 . Therefore, (2.8) is true in B ∈ Mod1(C), in which

case, by Claim 8.3, B ∈ Mod(C) is both finite and, by (8.1), Y-disjunctive,
and so, by Remarks 2.7(iii), 2.8(i)d) and Corollaries 2.12 and 4.13, there is
some h ∈ homS(B,A). Then, h(0) = h( 1

2 ) = 0, in which case 0 = h(0) =
h( 1

2 ⊃
A 0) = (h( 1

2 ) ⊃A h(0)) = (0 ⊃A 0) ∈ DA, and so this contradiction
completes the argument. �
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Hence, ∼AϕA( 1
2 ) = ∼A 1

2 ∈ D
A, for A is ∼-paraconsistent, in which case

∼ϕY(2.11) is true in A under any [x0/
1
2 , x1/a], where a ∈ A, for A is Y-

disjunctive, and so, since (2.11) is true in A under any [x0/i, x1/a], where
i ∈ 2, ∼ϕY(2.11) is true in A. Thus, (∼ϕY(2.11))∈ C(∅) ⊆ CMP(∅), in
which case, by the structurality of CMP and (2.8)[x0/ϕ, x1/(2.11)], (2.11)
is satisfied in CMP, and so, by Corollary 6.6, CPC ⊆ CMP.

2nd argument. Then, by Lemma 8.2b)⇒c), 〈0, 1〉 ∈ K ′
3,i, for each i ∈ 2, in

which case there is some ϕi ∈ Fm3
Σ such that ϕA

i (0, 1
2 [− 1

2 + i], 1) = (0[+1]).
Moreover, by Theorem 2.14 with M , {A} and K , PSD

ω (S∗(M)), CMP is
finitely-defined by S , (K∩Mod(CMP)). Consider any D ∈ S ⊆ Mod (2.8),
in which case there are some finite set I and some C ∈ S∗(A)I such that
D is a subdirect product of it. Let J , {i ∈ I | 1

2 ∈ πi[D]}. Given any
ā ∈ A2, set (a0‖a1) , ((J ×{a0})∪ ((I \J)×{a1})) ∈ AI . Then, by Claim
4.17, D 3 (a/b) , (0/1‖0/1). Moreover, by Lemma 8.12, D 3 c , ( 1

2‖0|1),
whenever 1

2 (≤ | 6≤)A
Z∼A 1

2 . Then, D 3 d , ϕD
0|1(a, c, b) = (0‖1), in which

case D 3 e , (cYDd) = ( 1
2‖1), and so (∼DeYDd) = (∼A 1

2‖1) ∈ DD 3 e, for
A, being ∼-paraconsistent, is false-singular. Hence, by (2.8) true in D, we
have d ∈ DD, in which case J = ∅, and so D is a subdirect I-power of A�2.
Therefore, by (2.16), D ∈ Mod(CPC). In this way, S ⊆ Mod(CPC), in which
case, for all X ∈ ℘ω(Fmω

Σ), it holds that CPC(X) ⊆ Cnω
S (X) = CMP(X),

and so CPC, being finitary, for it is two-valued, is a sublogic of CMP.

Thus, CMP = CPC is consistent. Moreover, by Theorem 8.14, CNP is defined by L6,
in which (2.8) is not true under [x0/〈 1

2 , 1〉, x1/〈0, 1〉]. Finally, the following claim
completes the argument:

Claim 8.17. Any Y-disjunctive extension C ′ of CNP is an extension of CMP.

Proof. In that case, we have x1 ∈ (C ′({x0,∼x0}) ∩ C ′({x0, x1})) = C ′({x0,∼x0 Y
x1}), as required. �

Next, by CDMP we denote the extension of C relatively axiomatized by the Dual
Modens Ponens rule:

{∼x0, x0 Y x1} ` x1, (8.2)
being actually dual to (2.8) for material implication. Clearly, by (2.3) satisfied in
C, in view of its Y-disjunctivity, CDMP is an extension of CNP.

Lemma 8.18. Suppose C is ∼-subclassical (i.e., 2 forms a subalgebra of A, CPC

being defined by A�2; cf. Corollary 6.4). Then, the following hold:
(i) CDMP is a proper extension of CNP;
(ii) (A�2) ∈ Mod(CDMP);
(iii) providing L5 , (K3,1 ∪M2) forms a subalgebra of A2, the following hold:

a) ∼A 1
2 = 1 ≤A

Z
1
2 , that is, ∼(x0 Z∼x0) 6∈ C(∅);

b) A is generated by { 1
2};

c) L6 is generated by L6 \ L5;
d) A is implicative;
e) L5 , (A2�L5) ∈ Mod(CDMP);
f) the logic of L5 is an axiomatically-equivalent to C (and so proper)

sublogic of CPC, and so is its sulogic CDMP.

Proof. (i) Then, by Theorem 8.14, CNP is defined by L6, in which (8.2) is not
true under [x0/〈 1

2 , 0〉, x1/〈0, 1〉], for A is both Y-disjunctive and ∼-paracon-
sistent, and so false-singular.
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(ii) Since ∼A∼Ai = i, for all i ∈ 2, the Σ-rule (x0 Y x1) ` (∼∼x0 Y x1) is true
in A�2, and so is (8.2), for (2.8) for the material implication is so, in view of
Theorem 8.15.

(iii) a) If it did hold that (∼A 1
2 = 1

2 )|( 1
2 ≤

A
Z 1), then we would have (∼A2〈 1

2 , 1〉|
(〈 1

2 , 1〉 ZA2 〈1, 0〉)) = 〈 1
2 , 0〉 6∈ L5, in which case L5 ⊇ {〈 1

2 , 1〉, 〈1, 0〉}
would not form a subalgebra of A2, and so the ∼-paraconsistency of A
and the linearity of the poset 〈A,≤A

Z 〉 complete the argument.
b) Then, by a), we have (∼A)2−i 1

2 = i, for all i ∈ 2.
c) Likewise, by a), we have (∼A2

)2−i〈 1
2 , 0〉 = 〈i, i〉, for all i ∈ 2, while

(〈 1
2 , 0〉 YA2 〈1, 1〉) = 〈 1

2 , 1〉, whereas (∼A2
)2−i〈 1

2 , 1〉 = 〈i, 1− i〉, for all
i ∈ 2.

d) Then, as (L6 \ L5) ⊆ K3,0, by c), we have K ′
3,0 ⊇ L6 3 〈0, 1〉, and so

Lemma 8.2d)⇒e) completes the argument.
e) Then, by (ii), (8.2) is true in (A�2)2 = (L5�22), while (L5 \ 22) =

{〈 1
2 , 1〉} ⊆ DL5 , whereas ∼L5〈 1

2 , 1〉 = 〈∼A 1
2 , 0〉 6∈ DL5 , in which case

(8.2) is true in L5, and so (2.16), due to which L5 is a model of C, for
A2 is so, completes the argument.

f) Then, as ∆2 ⊆ K3,1 ⊆ L5, ∆2 × ∆2 is an embedding of A�2 into L5,
while (π0�L5) ∈ homS(L5,A), for A = π0[A2] ⊇ π0[L5] ⊇ π0[K3,1] = A.
In this way, d), e), (2.16), (2.17) and Lemma 8.2e)⇒b) complete the
argument. �

Lemma 8.19. Let C ′ be an extension of C and L′5 the submatrix of A2 generated
by L5. Suppose C is ∼-subclassical (i.e., 2 forms a subalgebra of A, CPC being
defined by A�2; cf. Corollary 6.4), while (2.8) is not satisfied in C ′. Then, L′5 ∈
Mod(C ′). In particular, CDMP = CPC, unless L5 forms a subalgebra of A2.

Proof. Then, by Theorem 8.14, CNP is defined by L6. On the other hand, as C ′

does not satisfy the finitary (2.8), by Theorem 2.14, there are some finite set I,
some C ∈ S∗(A)I and some subdirect product D ∈ Mod(C ′) of it not being a model
of (2.8), in which case there are some a ∈ DD ⊆ { 1

2 , 1}
I and some b ∈ (D \ DD)

such that (∼Da YD b) ∈ DD, and so J , {i ∈ I | πi(a) = 1
2} ⊇ K , {i ∈ I |

πi(b) = 0} 6= ∅. Put L , {i ∈ I | πi(b) = 1}. Then, given any ā ∈ A5, set
(a0‖a1‖a2‖a3‖a4) , ((((I \ (L ∪K)) ∩ J) × {a0}) ∪ ((I \ (L ∪ J)) × {a1}) ∪ ((L \
J)× {a2}) ∪ ((L ∩ J)× {a3}) ∪ (K × {a4})) ∈ AI . In this way:

D 3 a = ( 1
2‖1‖1‖

1
2‖

1
2 ), (8.3)

D 3 b = ( 1
2‖

1
2‖1‖1‖0). (8.4)

Moreover, by Claim 4.17, we also have:

D 3 f , (0‖0‖0‖0‖0), (8.5)

D 3 t , (1‖1‖1‖1‖1). (8.6)

Consider the following exhaustive (as ∼A 1
2 ∈ D

A = { 1
2 , 1}) cases:

• ∼A 1
2 = 1

2 .
Then, in case 1

2 ≤
A
Z 1, by (8.3) and (8.4), we have:

D 3 e , (a ZD b) = ( 1
2‖

1
2‖1‖

1
2‖0), (8.7)

D 3 ∼De = ( 1
2‖

1
2‖0‖

1
2‖1), (8.8)

D 3 c , (e YD ∼Db) = ( 1
2‖

1
2‖1‖

1
2‖1), (8.9)

D 3 ∼Dc = ( 1
2‖

1
2‖0‖

1
2‖0). (8.10)
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Likewise, in case 1
2 (≤Z / ≥)A1, by (8.3) and (8.7)/(8.4), we have:

D 3 d , ((e/b) YD ∼Da) = ( 1
2‖

1
2‖1‖

1
2‖

1
2 ), (8.11)

D 3 ∼Dd = (1
2‖

1
2‖0‖

1
2‖

1
2 ). (8.12)

Consider the following complementary subcases:
– L ⊆ J .

Then, since I ⊇ K 6= ∅ = (L \ J), by (8.5), (8.6) and (8.11),
〈g, I × {g}〉 | g ∈ A} is an embedding of A into D, in which case,
by (2.16), A is a model of C ′, for D is so, and so is L′5.

– L * J .
Then, consider the following complementary subsubcases:

∗ there is some ϕ ∈ Fm2
Σ such that ϕA( 1

2 , 0) = 0 and ϕA(0, 0)
= 1,
in which case, by (8.5) and (8.12), we have:

D 3 ϕD(∼Dd, f) = (0‖0‖1‖0‖0), (8.13)

D 3 ∼DϕD(∼Dd, f) = (1‖1‖0‖1‖1). (8.14)

Then, since (L \ J) 6= ∅ 6= K, taking (8.5), (8.6), (8.11), (8.12),
(8.13) and (8.14) into account, we see that {〈〈g, h〉, (g‖g‖h‖g‖g)〉
| 〈g, h〉 ∈ L6} is an embedding of L6 into D, and so, by (2.16),
L6 is a model of C ′, for D is so, and so is its submatrix L′5, for
L6 ⊇ L5 forms a subalgebra of A2, because 2 forms a subalgebra
of A.

∗ there is no ϕ ∈ Fm2
Σ such that ϕA( 1

2 , 0) = 0 and ϕA(0, 0) = 1,
Then, 1

2 ≤
A
Z 1, for, otherwise, we would have 1 ≤A

Z
1
2 , in which

case we would get ϕA( 1
2 , 0) = 0 and ϕA(0, 0) = 1, where ϕ ,

∼(x0 Z ∼x1) ∈ Fm2
Σ. Consider the following complementary

subsubsubcases:
· (((I \ (L ∪K)) ∩ J) ∪ (I \ (L ∪ J)) ∪ (L ∩ J)) = ∅.

Then, taking (8.7), (8.8), (8.9), (8.10), (8.11) and (8.12)
into account, as K 6= ∅ 6= (L\J), we conclude that {〈〈g, h〉,
( 1
2‖

1
2‖h‖

1
2‖g)〉 | 〈g, h〉 ∈ L6} is an embedding of L6 into D,

and so, by (2.16), L6 is a model of C ′, for D is so, and so
is its submatrix L′5, for L6 ⊇ L5 forms a subalgebra of A2,
because 2 forms a subalgebra of A.

· (((I \ (L ∪K)) ∩ J) ∪ (I \ (L ∪ J)) ∪ (L ∩ J)) 6= ∅.
Let G be the subalgebra of L6 × A generated by ((L6 ×
{ 1

2}) ∪ {〈〈i, i〉, i〉 | i ∈ 2}). Then, as (((I \ (L ∪K)) ∩ J) ∪
(I \ (L ∪ J)) ∪ (L ∩ J)) 6= ∅ 6∈ {K,L \ J}, by (8.5), (8.6),
(8.7), (8.8), (8.9), (8.10), (8.11) and (8.12), we see that
{〈〈〈g, h〉, j〉, (j‖j‖h‖j‖g)〉 | 〈〈g, h〉, j〉 ∈ G} is an embed-
ding of G , ((L6 ×A)�G) into D, in which case, by (2.16),
G is a model of C ′, for D is so. Let us prove, by contra-
diction, that ((DL6 ×{0})∩G) = ∅. For suppose ((DL6 ×
{0}) ∩ G) 6= ∅. Then, there is some ψ ∈ Fm8

Σ such that
ψA(1, 1

2 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 0) = 0 and ψA(1, 1, 1, 1, 0, 0, 0, 0) = 1,

for π1[DL6 ] = {1}. Let ϕ , ψ(∼x1,∼x0,∼x0,∼x0, x0, x0,
x0, x1) ∈ Fm2

Σ. Then, ϕA( 1
2 , 0) = 0 and ϕA(0, 0) = 1. This

contradiction shows that ((DL6 × {0}) ∩G) = ∅, in which
case (π0�G) ∈ homS

S(G,L6), and so, by (2.16), L6 is a model
of C ′, for G is so, and so is its submatrix L′5, for L6 ⊇ L5
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forms a subalgebra of A2, because 2 forms a subalgebra of
A.

• ∼A 1
2 = 1,

Consider the following exhaustive (as 〈A,≤A
Z 〉 is a chain poset) subcases:

– 1
2 ≤

A
Z 1.

Then, by (8.3) and (8.4), we get:

D 3 c′ , (a YD b) = ( 1
2‖1‖1‖1‖

1
2 ), (8.15)

D 3 d′ , ∼Dc′ = (1‖0‖0‖0‖1), (8.16)

D 3 e′ , ∼Dd′ = (0‖1‖1‖1‖0), (8.17)

D 3 f ′ , (c′ ZD d′) = ( 1
2‖0‖0‖0‖

1
2 ). (8.18)

Consider the following complementary subsubcases:
∗ ((I \ (L ∪ J)) ∪ (L \ J) ∪ (L ∩ J)) = ∅.

Then, since I ⊇ K 6= ∅, by (8.5), (8.6) and (8.15), we see that
{〈g, I × {g}〉 | g ∈ A} is an embedding of A into D, in which
case, by (2.16), A is a model of C ′, for D is so, and so is L′5.

∗ ((I \ (L ∪ J)) ∪ (L \ J) ∪ (L ∩ J)) 6= ∅.
Then, as K 6= ∅, by (8.5), (8.6), (8.15), (8.16), (8.17) and (8.18),
we conclude that {〈〈g, h〉, (g‖h‖h‖h‖g)〉 | 〈g, h〉 ∈ L6} is an em-
bedding of L6 into D, in which case, by (2.16), L6 is a model of
C ′, for D is so, and so is its submatrix L′5, for L6 ⊇ L5 forms a
subalgebra of A2, because 2 forms a subalgebra of A.

– 1 ≤A
Z

1
2 .

Then, by (8.3) and (8.4), we get:

D 3 c′′ , (a YD b) = ( 1
2‖

1
2‖1‖

1
2‖

1
2 ), (8.19)

D 3 d′′ , ∼Dc′′ = (1‖1‖0‖1‖1), (8.20)

D 3 e′′ , ∼Dd′′ = (0‖0‖1‖0‖0). (8.21)

Consider the following complementary subsubcases:
∗ L ⊆ J .

Then, as I ⊇ K 6= ∅ = (L \ J), taking (8.5), (8.6) and (8.19)
into account, we see that {〈g, I × {g}〉 | g ∈ A} is an embedding
of A into D, in which case, by (2.16), A is a model of C ′, for D
is so, and so is L′5.

∗ L * J .
Then, as K 6= ∅ 6= (L\J), taking (8.5), (8.6), (8.19), (8.20) and
(8.21) into account, we see that {〈〈g, h〉, (g‖g‖h‖g‖g)〉 | 〈g, h〉 ∈
L′5} is an embedding of L′5 into D, in which case, by (2.16), L′5
is a model of C ′, for D is so.

In this way, Theorem 8.15 and Lemma 8.18(i,ii) complete the argument, for L′5 =
L6, unless L5 forms a subalgebra of A2, because (L6 \L5) = {〈 1

2 , 0〉} is a singleton,
while L6 ⊇ L5 forms a subalgebra of A2, since 2 forms a subalgebra of A. �

Corollary 8.20. Let C ′ be an extension of C. Suppose (8.2) is not satisfied in
C ′. Then, C ′ ⊆ CNP.

Proof. The case, when CNP is inconsistent, is evident. Now, assume CNP is con-
sistent. Then, by Theorem 7.11, C is ∼-subclassical (i.e., 2 forms a subalgebra of
A, CPC being defined by A�2; cf. Corollary 6.4), in which case, by Theorem 8.14,
CNP is defined by L6. Consider the following complementary cases:
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• L5 forms a subalgebra of A2.
Then, as C ′ does not satisfy the finitary (8.2), by Theorem 2.14, there
are some finite set I, some C ∈ S∗(A)I and some subdirect product D ∈
Mod(C ′) of it not being a model of (8.2), in which case there are some
a ∈ D and some b ∈ (D \DD) such that (a YD b) ∈ DD 3 ∼Da, in which
case a ∈ { 1

2 , 0}
I , and so J , {i ∈ I | πi(a) = 1

2} ⊇ {i ∈ I | πi(b) = 0} 6= ∅.
Then, given any ā ∈ A2, set (a0‖a1) , ((J×{a0})∪((I\J)×{a1})) ∈ AI . In
this way, D 3 a = (1

2‖0). Consider the following complementary subcases:
– J = I,

Then, D 3 a = (I × { 1
2}), in which case, as I = J 6= ∅, by Lemma

8.18(iii)b), {〈x, I × {x}〉 | x ∈ A} is an embedding of A into D, and so,
by (2.16), A is a model of C ′, for D is so. In this way, C ′ ⊆ C ⊆ CNP.

– J 6= I,
Then, as J 6= ∅ 6= (I \ J), by Lemma 8.18(iii)c), {〈〈x, y〉, (x‖y)〉 |
〈x, y〉 ∈ L6} is an embedding of L6 into D, in which case, by (2.16),
L6 is a model of C ′, for D is so, and so C ′ ⊆ CNP.

• L5 does not form a subalgebra of A2.
Then, L′5 = L6, for (L6 \ L5) = {〈 1

2 , 0〉} is a singleton, while L6 ⊇ L5

forms a subalgebra of A2, because 2 forms a subalgebra of A. And what is
more, by Theorem 8.15 and Lemma 8.18(ii), we have CDMP ⊆ CPC = CMP,
in which case (2.8) is not satisfied in C ′, and so, by Lemma 8.19, we get
C ′ ⊆ CNP. �

Finally, by Lemmas 4.7, 4.8, 8.2, 8.18, 8.19, Corollaries 3.7, 5.4, 6.4, 6.6, 8.20,
Theorems 7.11, 8.14, 8.15 and Remark 2.8(i)d), we eventually get:

Theorem 8.21. Suppose C is [not] non-∼-subclassical — i.e., 2 is [not] non-A-
closed — and (not) non-implicative [i.e., (n)either K3,0 (n)or K4 forms a subalgebra
of A2, while L5 is ( {not}) non-A2-closed ( {whereas CDMP is 〈not〉 defined by
L5})]. Then, the following hold:

(i) [( {〈some of 〉})] extensions of C form the (2[+2({+1〈+1〉})])-element chain
C ( CNP = [Cnω

L6
(]CDMP = [({〈(〉Cnω

L5
(})](CINP =)CMP = [CPC =

Cnω
A�2 (] IC [( {〈others being simultaneously extensions of CDMP and sublog-

ics of Cnω
L5
〉})];

(ii) C[∪(CPC(∩(CNP{∪Cnω
L5
})))] is the structural completion of C.

In view of Corollary 4.6, the item (ii) of this theorem exhausts the issue of finite
matrix semantics of the structural completions of ∼-paraconsistent three-valued Σ-
logics with subclassical negation ∼ as well as lattice conjunction and disjunction.
And what is more, its item (i) subsumes the particular results, thus providing a
generic insight into these, obtained ad hoc for LP in [16] as well as for arbitrary
three-valued expansions (cf. Corollary 4.18) of both LA and HZ in [20] (cf. [17]
for HZ as such) — in this connection, recall that the underlying algebra of the
characteristic Σ+,∼-matrix HZ of HZ is a (∧,∨)-lattice with zero 1

2 and unit 1 as
well as ∼HZ 1

2 = 1
2 , in which case it is a (∨∼,∧∼)-lattice with zero 0 and unit 1

2 ,
and so HZ, being �- neither conjunctive nor disjunctive, for any � ∈ Σ+, is still
both ∨∼-conjunctive and ∧∼-disjunctive, thus becoming a non-artificial instance
of a ∼-paraconsistent three-valued Σ-logic with subclassical negation ∼ as well as
lattice conjunction and disjunction but with unit rather 1

2 than 1, and, in this way,
justifying regarding such an extraordinary (at the first sight) case.

As a matter of fact, the condition of having lattice conjunction and disjunc-
tion is essential for the above advanced results to hold, as it is demonstrated in
Subsubsection 8.3.1 covering P 1.
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8.2. Paracomplete disjunctive logics. In general, we have:

Lemma 8.22. Suppose C is maximally (Y,∼)-paracomplete. Then, it is struc-
turally complete.

Proof. In that case, any extension C ′ of C such that C ′(∅) = C(∅) is (Y,∼)-
paracomplete as well, and so equal to C, as required. �

Lemma 8.23. Let K′
3 be the submatrix of A2 generated by K3 , K3,1 and C ′

the logic of K′
3. Suppose C is both Y-disjunctive and (Y,∼)-paracomplete (viz. A

is so; cf. Lemma 4.7) as well as ∼-subclassical. Then, C ′ is an axiomatically-
equivalent extension of C, in which case it is (Y,∼)-paracomplete, and so infer-
entially so(in particular, C ′ is a proper sublogic of CPC). Moreover, (i)⇒ [⇔
](ii)⇔(iii)⇔(iv)⇔(v), where:

(i) A is implicative;
(ii) 〈1, 0〉 ∈ K ′

3 [and C has a theorem];
(iii) K ′

3 * K4 [and C has a theorem];
(iv) [both] neither K3 nor K4 forms a subalgebra of A2 [and C has a theorem];
(v) C 6= C ′ [has a theorem].

Proof. In that case, A is truth-singular, while, by Remark 2.8(i)d), C is not ∼-
classical, and so, by Corollary 6.4, 2 forms a subalgebra of A, while, by (2.16), C ′ is
an extension of C. And what is more, as π0[K3] = A, (π0�K ′

3) ∈ homS(K′
3,A), in

which case, by (2.17), C ′(∅) = C(∅), and so C ′ (viz., K′
3) is (Y,∼)-paracomplete.

Hence, as K′
3 is truth-non-empty, for 〈1, 1〉 ∈ K3, it (viz., C ′) is inferentially

(Y,∼)-paracomplete, in which case C ′ is inferentially consistent, and so, by Re-
mark 2.8(i)d) and Theorem 7.12, is a proper sublogic of CPC.

Next, assume A is A-implicative, in which case, since DA = {1}, ( 1
2 AA 0) = 1

and, as 2 forms a subalgebra of A, (1 AA 0) = 0, and so 〈1, 0〉 = (〈 1
2 , 1〉 AA2 〈0, 0〉) ∈

K ′
3, for K ′

3 ⊇ K3 ⊇ {〈 1
2 , 1〉, 〈0, 0〉} forms a subalgebra of A2. Thus, (i)⇒(ii) holds

[in view of (2.6)].
[Conversely, assume (ii) holds, in which case, by the following claim, there is

some φ ∈ Fm1
Σ such that φA( 1

2 ) = 1, while φA(1) = 0:

Claim 8.24. Suppose A is truth-singular, while C has a theorem, whereas 〈1, 0〉 ∈
K ′

3. Then, there is some φ ∈ Fm1
Σ such that φA( 1

2 ) = 1, while φA(1) = 0.

Proof. In that case, there is some ϕ ∈ Fm3
Σ such that ϕA( 1

2 , 1, 0) = 1, while
ϕA(1, 1, 0) = 0, and so we have ψ , ϕ[x2/∼x1] ∈ Fm2

Σ such that ψA( 1
2 , 1) = 1,

while ψA(1, 1) = 0. Take any ζ ∈ (Fm1
Σ ∩C(∅)) 6= ∅, in view of the structurality

of C. Then, φ , ψ[x1/ζ] ∈ Fm1
Σ, while φA( 1

2 ) = 1, whereas φA(1) = 0, for A is
truth-singular. �

Then, ξ , (φ Y ∼x0) ∈ Fm1
Σ, in which case A, being truth-singular and Y-dis-

junctive, is ξ-negative, and so (i) is by Remark 2.8(i)c).]
Further, (ii)⇔(iii)⇔(iv) is by Lemma 8.2(ii)⇔(v)⇔(vi) with i = 1.
Finally, assume (ii) holds. We prove that C ′ 6= C, by contradiction. For suppose

C ′ = C, in which case A is a finite consistent truth-non-empty Y-disjunctive simple
(in view of Theorem 4.12(iv)⇒(i)) model of C ′ ⊇ C, being, in its turn, weakly
Y-disjunctive, and so being K′

3. Then, by Corollary 2.12 and Remark 2.7(iii), there
is some submatrix D of K′

3, being a strict surjective homomorphic counter-image of
A, in which case, by (2.16) and Remark 2.8(ii), it is both truth-non-empty, (Y,∼)-
paracomplete and Y-disjunctive, for A is so, and so DD = {〈1, 1〉}, while there is
some a ∈ D such that D 3 b , (a YA2 ∼A2

a) 6∈ DD = {〈1, 1〉}. On the other hand,
since π1[K3] = 2 forms a subalgebra of A, in which case π1[D] ⊆ π1[K ′

3] ⊆ 2, by
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the truth-singularity and Y-disjunctivity of A, we have π1(b) = 1, in which case
π0(b) 6= 1, and so we have the following two exhaustive cases:

• π0(b) = 1
2 .

Then, as 〈0, 0〉 = ∼A2〈1, 1〉 ∈ D, we have K3 ⊆ D, in which case, by (ii),
we get 〈1, 0〉 ∈ D, and so 〈0, 1〉 = ∼A2〈1, 0〉 ∈ D.

• π0(b) = 0.
Then, we also have 〈1, 0〉 = ∼A2〈0, 1〉 ∈ D.

Thus, anyway, M2 ⊆ (D \ DD), while, by the Y-disjunctivity of A, (〈0, 1〉 YA2

〈1, 0〉) = 〈1, 1〉 ∈ DD. This contradicts to the Y-disjunctivity of D. Thus, (v)
holds. Conversely, assume 〈1, 0〉 6∈ K ′

3, in which case (π0�B) ∈ homS
S(K′

3,A), and
so C ′ = C, by (2.16), as required. �

Lemma 8.25. Suppose C is Y-disjunctive (viz. A is so; cf. Lemma 4.7), while,
providing C is ∼-subclassical, either K3 or K4 forms a subalgebra of A2. Then, C
has no proper inferentially (Y,∼)-paracomplete extension.

Proof. Let C ′ be an inferentially (Y,∼)-paracomplete (and so inferentially con-
sistent) extension of C, in which case (x1 Y ∼x1) 6∈ T , C ′(x0) 3 x0, while,
by the structurality of C ′, 〈Fmω

Σ, T 〉 is a model of C ′ (in particular, of C), and
so is its (Y,∼)-paracomplete truth-non-empty finitely-generated submatrix B ,
〈Fm2

Σ,Fm2
Σ ∩T 〉, in view of (2.16), whereas C is [inferentially] (Y,∼)-paracomplete

(viz., A is so), in which case, since A is weakly Y-disjunctive and 1 ∈ DA, and so
((1/0) YA∼A(1/0)) = ((1/0) YA (0/1)) ∈ DA, we have ( 1

2 YA∼A 1
2 ) 6∈ DA, and so A

is truth-singular.
Then, in case C is not ∼-subclassical, by Theorem 7.14, we have C ′ = C. Now,

assume C is ∼-subclassical, in which case either K3 or K4 forms a subalgebra of
A2, and so (1

2 YA ∼A 1
2 ) = 1

2 , for, otherwise, we would have ( 1
2 YA ∼A 1

2 ) = 0, in
which case we would get (〈 1

2 , 1〉 YA2 ∼A2〈 1
2 , 1〉) = 〈0, 1〉 6∈ K4 ⊇ K3, and so neither

K3 3 〈 1
2 , 1〉 nor K4 would form a subalgebra of A2. Further, by Lemma 2.10, there

are some finite set I, some C ∈ S(A)I and some subdirect product D of it, being
a strict homomorphic counter-image of a strict homomorphic image of B, and so
a (Y,∼)-paracomplete (in particular, consistent, in which case I 6= ∅) truth-non-
empty model of C ′, in view of (2.16), for B is so. Hence, C ′ ⊆ C, by (2.16), Lemma
8.23(v)⇒(iv) and the following claim:

Claim 8.26. Let I be a finite set, C ∈ S(A)I and D a truth-non-empty (Y,∼)-
paracomplete subdirect product of it. Suppose both C is Y-disjunctive (viz., A is
so; cf. Lemma 4.7) and either ( 1

2 YA ∼A 1
2 ) = 1

2 or (I × { 1
2}) ∈ D. Then, A is

embeddable into D, if (I × { 1
2}) ∈ D, and K′

3 is embeddable into D, otherwise.

Proof. Then, by (2.16), D ∈ Mod(C), in which case C is (Y,∼)-paracomplete, for
D is so, and so is A. Therefore, A, being Y-disjunctive with 1 ∈ DA, is truth-
singular, and so not ∼-paraconsistent, in which case, by Claim 4.17, D contains
both a , (I×{1}) and b , (I×{0}). Consider the following complementary cases:

• (I × { 1
2}) ∈ D,

in which case, as I 6= ∅, for D, being (Y,∼)-paracomplete, is consistent,
{〈e, I × {e}〉 | e ∈ A} is an embedding of A into D.

• (I × { 1
2}) 6∈ D,

in which case ( 1
2 YA ∼A 1

2 ) = 1
2 , and so ((1/0/ 1

2 ) YA ∼A(1/0/ 1
2 )) = (1/1/ 1

2 ),
for A is Y-disjunctive and DA = {1}. Hence, as D is (Y,∼)-paracomplete,
there is some c ∈ D such that d , (c YD ∼Dc) 6∈ DD, in which case
d ∈ (D∩{ 1

2 , 1}
I) ⊆ D 63 (I×{ 1

2}), and so I 6= J , {i ∈ I | πi(d) = 1
2} 6= ∅.
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Given any ē ∈ A2, set (e0‖e1) , ((J × {e0}) ∪ ((I \ J) × {e1})) ∈ AI . In
this way, D 3 a = (1‖1), D 3 b = (0‖0) and D 3 d = ( 1

2‖1). Then, as J 6=
∅ 6= (I \ J) and {(x‖y) | 〈x, y〉 ∈ K3} ⊆ D, {〈〈x, y〉, (x‖y)〉 | 〈x, y〉 ∈ K ′

3} is
an embedding of K′

3 into D. �

Thus, C ′ = C, as required. �

By Lemmas 8.23(vi)⇒(v), 8.25, Corollaries 2.15, 2.13(ii)⇒(i), 6.4 and Remark
2.8(i)d), we first get the following effective algebraic criterion of the maximal infer-
ential (Y,∼)-paracompleteness of Y-disjunctive (Y,∼)-paracomplete Σ-logics with
subclassical negation ∼ (cf. Corollary 4.6):

Theorem 8.27. Suppose C is Y-disjunctive and (Y,∼)-paracomplete (viz., A is so;
cf. Lemma 4.7). Then, C has no proper axiomatic/inferentially (Y,∼)-paracom-
plete extension (i.e., C is maximally axiomatically/inferentially (Y,∼)-paracomp-
lete)/“ iff either 2 does not form a subalgebra of A or either K3 or K4 forms a
subalgebra of A2”.

And what is more, we have the following effective algebraic criterion of their
structural completeness:

Theorem 8.28. Suppose C is Y-disjunctive and (Y,∼)-paracomplete (viz., A is
so; cf. Lemma 4.7). Then, the following are equivalent:

(i) C is structurally complete;
(ii) C [has a theorem and] is maximally (Y,∼)-paracomplete;
(iii) C has a theorem and, providing it is ∼-subclassical, either K3 or K4 forms

a subalgebra of A2 (i.e., C {viz., A} is not implicative; cf. Lemmas 4.8 and
8.23(i)⇔(iv));

(iv) both { 1
2} does not form a subalgebra of A and either 2 does not form a

subalgebra of A or either K3 or K4 forms a subalgebra of A2.

Proof. First, (i)⇒(iii) is by Remark 2.4 and Lemma 8.23(iv)⇒(v). Next, as A is
then truth-singular, (iii)⇔(iv) is by Corollaries 2.13(i)⇔(iv) and 6.4. Further, in
case C has a theorem, any extension of it does so, and so is (Y,∼)-paracomplete iff
it is inferentially so. Therefore, (iii)⇒(ii) is by Lemma 8.25. Finally, (ii)⇒(i) is by
Lemma 8.22. �

Lemma 8.29. Suppose C is Y-disjunctive and (Y,∼)-paracomplete (viz., A is so;
cf. Lemma 4.7). Then, CEM is ∼-classical, whenever C is ∼-subclassical, in which
case CEM = CPC, and inconsistent, otherwise.

Proof. Then, by Remark 2.8(i)d),(ii), C is not ∼-classical, while there is a non-
(Y,∼)-paracomplete submatrix of A iff 2 forms a subalgebra of A, in which case
A�2 is the only non-(Y,∼)-paracomplete submatrix of A. In this way, Corollaries
2.15 and 6.4 complete the argument. �

Finally, by (2.14), Remarks 2.3, 2.5, 2.6, 2.8(i)d),(ii), Lemmas 4.7, 8.23, 8.25,
8.29, Corollaries 2.13(i)⇔(iv), 6.4 and Theorem 7.12, we also get:

Theorem 8.30. Suppose C is both Y-disjunctive, (Y,∼)-paracomplete and [not]
∼-subclassical as well as has a/no theorem. Then, proper (arbitrary/“merely non-
pseudo-axiomatic”) extensions of C form the four-element diamond (resp., two-
element chain) [resp., (2(−1))-element chain] depicted at Figure 1 (with merely
solid circles) [(and) with solely big circles] iff either C is not ∼-subclassical or,
otherwise, either K3 or K4 forms a subalgebra of A2 {“that is,”/“in which case”
C is not implicative}, IC〈/+0〉 |[=]CEM

〈/+0〉 being Y-disjunctive, relatively axiomatized
by (〈/x0 `〉(x1|(x1 Y ∼x1)) and defined by (∅|([∅∩]{A�([A∪]2)}))〈/ ∪ {A�{ 1

2}}〉,
respectively.
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Figure 1. The lattice of proper extensions of C.

Perhaps, most representative subclassical instances of this discussion are those
three-valued expansions of K3, which are ones by 〈“at least one”/none of〉 solely
classical constants ⊥ and > interpreted by 0 and 1, respectively, as instances
〈with/without theorems〉 with K4[−1] [not] forming a subalgebra of A2, {the imp-
lication-free fragment of} G3, as non-purely-inferential instances with K3[+1] [not]
forming a subalgebra of A2, and  L3 (as an implicative instance; cf. Example 7
of [19]). In this way, those of these instances, which are neither purely-inferential
nor implicative, show that, as opposed to ∼-paraconsistent three-valued Σ-logics
with subclassical negation ∼, the structural completeness of Y-disjunctive (Y,∼)-
paracomplete ones, though equally implying (even, being equivalent to) their max-
imal (Y,∼)-paracompleteness, does not subsume absence of their ∼-classical exten-
sions.

8.2.1. Implicative paracomplete logics. A Σ-matrix/-logic is said to be [/maximally]
A-implicatively ∼-paracomplete, provided the rule:

{∼ix0 A ∼1−ix0 | i ∈ 2} ` x0 (8.22)

is not true/satisfied in it [/and it has no proper A-implicatively ∼-paracomplete ex-
tension], in which case it is “truth-non-empty and”/inferentially consistent. (Clear-
ly, any A-implicative ∼-negative/-classical Σ-matrix/-logic is not A-implicatively
∼-paracomplete/, in view of Lemma 4.8.) By CINPC we denote the least A-impli-
catively non-∼-paracomplete extension of C, that is, the extension of C relatively
axiomatized by (8.22).

Throughout this subsubsection, it is supposed that C is both A-implicative, Y-
disjunctive and (Y,∼)-paracomplete (viz., A is so; cf. Lemmas 4.7, 4.8), in which
case ({ 1

2 ,∼
A 1

2} ∩ DA) = ∅ (in particular, A is truth-singular), and so ( 1
2 AA

∼A 1
2 ) = 1 = (∼A 1

2 AA 1
2 ). In particular, A is A-implicatively ∼-paracomplete

(and so is C), for (8.22) is not true in it under [x0/
1
2 ]. Let > , (x0 ⊃ x0) and

⊥ , ∼> be secondary nullary connectives and (¬x0) , (x0 ⊃ ⊥) a secondary unary
connective of Σ. Then, as A is truth-singular, we have >A(a) = 1, for all a ∈ A,
in which case ⊥A(a) = 0, and so A is ¬-negative. Hence, by Remark 2.8(i)a), it is
Y¬-conjunctive. And what is more, we have:

Theorem 8.31. C is maximally A-implicatively ∼-paracomplete.

Proof. Let C ′ be an A-implicatively ∼-paracomplete extension of C, in which case
x0 6∈ T , C ′({∼ix0 A ∼1−ix0 | i ∈ 2}), while, by the structurality of C ′,
〈Fmω

Σ, T 〉 is a model of C ′ ⊇ C, and so is its finitely-generated A-implicatively
∼-paracomplete submatrix B , 〈Fm1

Σ, T ∩ Fm1
Σ〉, in view of (2.16). Hence, by

Lemma 2.10, there are some finite set I, some C ∈ S∗(A)I and some subdirect
product D ∈ H−1(H(B)) of it, in which case, by (2.16), D is an A-implicatively
∼-paracomplete (and so both consistent and truth-non-empty) model of C ′ ⊇ C,
and so, if D was not (Y,∼)-paracomplete, then it would be a consistent truth-
non-empty model of CEM, in which case its logic C ′′ would be a[n inferentially]
consistent extension of CEM, and so, by Lemmas 4.8, 8.29 and Corollary 3.7,
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C ′′ would be both ∼-classical and A-implicative as well as A-implicatively ∼-
paracomplete, contrary to the fact that any A-implicative ∼-classical Σ-logic is not
A-implicatively ∼-paracomplete. Therefore, D is (Y,∼)-paracomplete. And what
is more, since it is A-implicatively ∼-paracomplete, there must be some a ∈ D such
that {a AD ∼Da,∼Da AD a} ⊆ DD, in which case D 3 a = (I × { 1

2}), and so, by
Claim 8.26, A is embeddable into D. Thus, by (2.16), C ′ = C, as required. �

8.2.1.1. Extensions of logics with lattice conjunction and disjunction. Throughout
this paragraph, it is also supposed that A is a (Z,Y)-lattice, in which case it is a
chain (and so distributive) one with unit 1, for A is three-valued, truth-singular
and Y-disjunctive, and so A is Z-conjunctive.

Lemma 8.32. Let I be a finite set, C ∈ S∗(A)I , and D an A-implcatively non-∼-
paracomplete consistent subdirect product of C. Then, 2 forms a subalgebra of A,
while hom(D,A�2) 6= ∅.

Proof. In that case, by (2.6) and Corollary 2.13(iv)⇒(i), D is truth-non-empty.
Therefore, if, for each i ∈ I, 1

2 was in πi[D] = Ci, then, by Lemma 8.12 with J = I,
a , (I × { 1

2}) would be in D, in which case (8.22) would not be true in D under
[x0/a], for I 6= ∅, because D is consistent, and so D would be A-implicatively
∼-paracomplete. Hence, there is some i ∈ I such that 1

2 6∈ B , πi[D] = Ci 6= ∅,
in which case B ⊆ 2 forms a subalgebra of A, and so B = 2, while (πi�D) ∈
hom(D,A�B). �

Theorem 8.33. The following are equivalent:
(i) CINPC is consistent;
(ii) CINPC is ∼-subclassical;
(iii) CINPC is (Y,∼)-paracomplete;
(iv) C is ∼-subclassical (i.e., 2 forms a subalgebra of A; cf. Corollary 6.4),

in which case CINPC is defined by K6 , (A× (A�2)), and so CINPC(∅) = C(∅).

Proof. First, (i/iii) is a particular case of (ii[i]/iv), respectively/, for A is (Y,∼)-
paracomplete. Next, (iv)⇒(ii) is by the consistency of K6, (2.6) and Theorem 7.12.
Further, (i)⇒(iv) is by (2.6) and Theorem 7.14.

Finally, assume (i,iv) hold. Then, by Theorem 2.14 with M , {A} and K ,
PSD

ω (S∗(M)), CINPC is finitely-defined by the class S of all consistent members of
K ∩ Mod(C ′). Consider any D ∈ S ⊆ Mod (8.22), in which case there are some
finite set I and some C ∈ S∗(A)I such that D is a subdirect product of it, and
so, by Lemma 8.32, hom(D,A�2) 6= ∅. Take any g ∈ hom(D,A�2). Consider
any a ∈ (D \ DD). Then, there is some i ∈ I such that πi(a) 6∈ DA, while
f , (πi�D) ∈ hom(D,A), in which case h , (f × g) ∈ J , hom(D,K6), while
h(a) 6∈ DK6 , and so (

∏
J) ∈ homS(D,KJ

6 ). Thus, by (2.16), CINPC is finitely-
defined by the finite K6, in which case it, being finitary, for (8.22) is so, while A
is finite, is defined by K6, and so (2.17) and the fact that (π0�K6) ∈ homS(K6,A)
complete the argument. �

Lemma 8.34. Suppose C is ∼-subclassical. Then, K6 is generated by K1 ,
{〈 1

2 , 1〉}.

Proof. Let D be the submatrix of K6 generated by K1. Then, by (2.6) and the
truth-singularity of A, we have D 3 a , (〈 1

2 , 1〉 AD 〈 1
2 , 1〉) = 〈1, 1〉, in which case

D 3 ∼Da = 〈0, 0〉, and so K3 = (∆2 ∪K1) ⊆ D. Hence, by Lemma 8.23(i)⇒[(ii)]
and Claim 8.24, D 3 b , 〈1, 0〉, in which case D 3 ∼Db = 〈0, 1〉, while there is
some φ ∈ Fm1

Σ such that φA( 1
2 ) = 1, whereas φA(1) = 0, in which case we have
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ϕ , (x0 Zφ) ∈ Fm1
Σ such that D 3 ϕD(〈 1

2 , 1〉) = 〈 1
2 , 0〉, for A is a (Z,Y)-lattice with

unit 1, and so K6 = (K3 ∪M2 ∪ {〈 1
2 , 0〉}) ⊆ D, as required. �

As ∼A1 = 0, by Lemma 8.34, we immediately have:

Corollary 8.35. Suppose C is ∼-subclassical, while ∼A 1
2 = 1

2 . Then, K6 is gen-
erated by {〈 1

2 , 0〉}.

Lemma 8.36. Let K′
5 be the submatrix of A2 generated by K5 , (K6\K1). Suppose

C is ∼-subclassical. Then, K′
5 is a model of any (Y,∼)-paracomplete extension of

CINPC. In particular, the structural completion of C [INPC] is defined by K′
5.

Proof. Then, by Theorem 8.33, CINPC(∅) = C(∅). while CINPC is defined by K6.
Let C ′ be any (Y,∼)-paracomplete (in particular, having same theorems, for C is
so) extension of CINPC, in which case, by (2.6), (2.12) 6∈ T , C ′(∅) ⊇ C(∅) 3
(2.6), while, by the structurality of C ′, 〈Fmω

Σ, T 〉 is a model of C ′ (in particular, of
C), and so is its truth-non-empty (Y,∼)-paracomplete finitely-generated submatrix
B , 〈Fm1

Σ, T ∩ Fm1
Σ〉, in view of (2.16). Therefore, by Lemma 2.10, there are

some finite set I, some C ∈ S(A)I and some subdirect product D of it, being a
strict homomorphic counter-image of a strict homomorphic image of B, and so a
(Y,∼)-paracomplete (in particular, consistent, in which case I 6= ∅) truth-non-
empty model of C ′ (in particular, of (8.22)), in view of (2.16), for B is so. Then,
since A, being truth-singular, for it is Y-disjunctive and (Y,∼)-paracomplete, is not
∼-paraconsistent, by Claim 4.17, D contains both a , (I ×{1}) and b , (I ×{0}).
Moreover, if D contained c , (I × { 1

2}), then (8.22) would not be true in D under
[x0/c], for I 6= ∅. Consider the following complementary cases:

• ( 1
2 YA ∼A 1

2 ) = 1
2 .

Then, by Lemma 8.34, K6 is generated by K3 ⊇ K1. Hence, as c 6∈ D,
by Lemma 8.26, K6 is embeddable into D ∈ Mod(C ′), and so, by (2.16), a
model of C ′, and so is its submatrix K′

5.
• ( 1

2 YA ∼A 1
2 ) 6= 1

2 ,
in which case ∼A 1

2 = 0, and so [AZ = 1
2 . Moreover, A�2 is a (Z,Y)-lattice

with zero 0, for A is that with unit 1. And what is more, since D is (Y,∼)-
paracomplete, J , {i ∈ I | 1

2 ∈ πi[D]} 6= ∅. Given any x, y ∈ A, set
(x‖y) , ((J × {x}) ∪ ((I \ J)× {y})) ∈ AI . Then, D 3 (a/b) = (1/0‖1/0).
Moreover, by Lemma 2.2, D, being finite, is a (Z,Y)-lattice with zero d ,
( 1
2‖0) ∈ D. Hence, I 6= J , for c 6∈ D. Then, D 3 [∼D]∼Dd = ([1−]0‖[1−]1).

Thus, {(x‖y) | 〈x, y〉 ∈ K5} ⊆ D. In this way, since J 6= ∅ 6= (I \ J),
{〈〈x, y〉, (x‖y)〉 | 〈x, y〉 ∈ K ′

5} is an embedding of K′
5 into D ∈ Mod(C ′), in

which case, by (2.16), K′
5 ∈ Mod(C ′).

Moreover, as K5 ⊆ K6, while π0[K5] = A, K′
5 is a submatrix of K6, while (π0�K ′

5) ∈
homS(K′

5,A), in which case, by (2.16) and (2.17), K′
5 is a model of C [INPC] such

that Cnω
K′

5
(∅) = C [INPC](∅), and so the structural completion of C [INPC] is defined

by it. �

Lemma 8.37. Suppose 2 forms a subalgebra of A (i.e., C is ∼-subclassical; cf.
Corollary 6.4). Then, (i)⇔(ii)⇔(iii)⇐(iv)⇔(v)⇔(vi), where:

(i) ((2.12)[x0/(2.12)]) ∈ C(∅);
(ii) neither ∼A 1

2 = 1
2 nor 0 ≤A

Z
1
2 ;

(iii) ( 1
2 (Y)A∼A 1

2 ) 6= 1
2 ;

(iv) K5 forms a subalgebra of A2;
(v) K6 is not generated by K2 , {〈 1

2 , 0〉, 〈1, 1〉};
(vi) neither K6 is generated by K2 nor A has a discriminator.
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In particular, K5 does not form a subalgebra of A2, whenever ∼A 1
2 = 1

2 .

Proof. First, (i)⇔(ii)⇔(iii) are immediate. Next, if ( 1
2 YA∼A 1

2 ) = 1
2 , then (〈 1

2 , 0〉Y
A

∼A〈 1
2 , 0〉) = 〈 1

2 , 1〉 6∈ K5, in which case K5 3 〈1
2 , 0〉 does not form a subalgebra of

A2, and so (iv)⇒(iii) holds.
Further, assume K5 does not form a subalgebra of A2, in which case K ′

5 = K6.
Let B be the subalgebra of A2 generated by K2 ⊆ K6. Then, in case ∼A 1

2 = 1
2 ,

by Corollary 8.35, K6 is generated by K2 3 〈 1
2 , 0〉. Otherwise, ∼A 1

2 = 0, in which
case B 3 ∼B〈 1

2 , 0〉 = 〈0, 1〉, and so K5 = (K2 ∪ ∆2 ∪M2) ⊆ B, in which case
K6 = K ′

5 ⊆ B ⊆ K6, and so B = K6. Thus, (v)⇒(iv) holds. Furthermore, (v) is a
particular case of (vi). Finally, if K6 is generated by K2 ⊆ K5, then K6 ⊆ K ′

5 ⊆ K6,
in which case K ′

5 = K6, and so K5 does not form a subalgebra of A2, for, otherwise,
K ′

5 ⊇ K5 would be equal to K5 6= K6. Likewise, if A has a discriminator δ, then
so does A�2, in which case δ is a congruence-permutation term for both A and
A�2, being simple, and so so K5 does not form a subalgebra of A2, for, otherwise,
D , (A2�K5) would be a subdirect product of 〈A,A�2〉, in which case, by Lemma
2.1, it would be isomorphic to either K6 or A or A�2, and so 5 = |D| would be equal
to either 6 = |K6| or 3 = |A| or 2 = |2|. Thus, (iv)⇒(vi) holds, as required. �

Next, by CINPC+DN we denote the extension of CINPC relatively axiomatized by
the Double Negation rule:

∼∼x0 ` x0, (8.23)
the inverse one being satisfied in C.

Lemma 8.38. Suppose C is ∼-subclassical 〈i.e., 2 forms a subalgebra of A; cf.
Corollary 6.4〉 (while ∼A 1

2 6= 1
2 {in particular, K5 forms a subalgebra of A2; cf.

Lemma 8.37}). Then, (8.23) is true in A�2 ( {as well as in K5 , (A2�K5)} but
not true in K6).

Proof. First, (8.23) is true in A�2, for ∼A∼Ai = i, for all i ∈ 2, and so in (A�2)2({=
(K5�22)}). (Finally, using the truth-singularity of A, it is routine checking that it
is [not] true in A2 under [x0/〈 1

2 , [1−]0〉]). �

Theorem 8.39. Suppose C is ∼-subclassical. Then, the following are equivalent:
(i) CINPC has a proper (Y,∼)-paracomplete extension;
(ii) CINPC is not structurally complete;
(iii) CINPC 6= CINPC+DN 6= CPC;
(iv) CINPC+DN 6= CINPC is (Y,∼)-paracomplete;
(v) K5 forms a subalgebra of A2,

in which case 1
2 ≤

A
Z 0 = ∼A 1

2 , while the logic of K5 has no proper (Y,∼)-paracom-
plete extension, whereas it is the structural completion of C [INPC].

Proof. First, since (K6 \K5) = K1 is a singleton, K5 forms a subalgebra of A2 iff
K ′

5 = [6=]K5[+1]. In this way, (2.6), (2.16), Remark 2.8(i)d),(ii), Corollaries 6.4,
Lemmas 8.29, 8.36, 8.37, 8.38, Theorem 8.33 and the linearity of the poset 〈A,≤A

Z 〉
complete the argument. �

Given any ϕ ∈ Fm1
Σ, by CINPC+ϕ we denote the extension of CINPC relatively

axiomatized by:
ϕ ` x0. (8.24)

In this way, CINPC+DN = CINPC+(∼∼x0). A characteristic formula for a K ⊆
(K6 \ ∆2) is any ϕ ∈ Fm1

Σ such that, for all a ∈ K6, it holds that (a ∈ K) ⇒
(ϕK6(a) = 〈1, 1〉) ⇒ (a 6= 〈0, 0〉), in which case, unless K = ∅, (8.24) is not true in
K6 under [x0/a], where a ∈ K 63 〈1, 1〉.
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Lemma 8.40. Let ϕ be any characteristic formula for K1 (in particular, ϕ =
∼∼x0, unless ∼A 1

2 = 1
2). Then, CINPC has no proper extension not satisfy-

ing (8.24) (in particular, (8.23), unless ∼A 1
2 = 1

2). In particular, CINPC+ϕ =
CINPC+DN, unless ∼A 1

2 = 1
2 .

Proof. The case, when CINPC is inconsistent, is evident. Now, assume it is con-
sistent. Then, by Theorem 8.33, C is ∼-subclassical (i.e., 2 forms a subalgebra of
A; cf. Corollary 6.4), while CINPC is defined by K6. Consider any extension C ′ of
CINPC not satisfying (8.24). Then, by Theorem 2.14, there are some set I, some
C ∈ S(A)I and some subdirect product D ∈ Mod(C ′) ⊆ Mod (8.22) of it, not satis-
fying (8.24), for this is finitary, in which case there is some a ∈ (D \DD) such that
ϕD(a) ∈ DD = {I × {1}}, and so (I × {1}) 6= a ∈ { 1

2 , 1}
I , for ϕA(0) 6= 1. Hence,

∅ 6= J , {i ∈ I | πi(a) = 1
2} 6= I, for, otherwise, (8.22) would not be true in D

under [x0/a]. Given any ā ∈ A2, set (a0‖a1) , ((J ×{a0})∪ ((I \J)×{a1})) ∈ AI .
Then, D 3 a , ( 1

2‖1). In this way, as J 6= ∅ 6= (I \ J), by Lemma 8.34,
{〈ā, (a0‖a1)〉 | ā ∈ K6} is an embedding of K6 into D ∈ Mod(C ′), in which case, by
(2.16), K6 ∈ Mod(C ′), and so C ′ = CINPC. Finally, the fact that (8.24) is not true
in K6 under [x0/〈 1

2 , 1〉] completes the argument. �

Finally, combining (2.6), Theorems 7.12, 7.14, 8.31, 8.33, 8.39, Lemmas 8.29,
8.37, 8.40 and Corollary 6.4, we get:

Theorem 8.41. Suppose C is [not] non-∼-subclassical [i.e., 2 forms a subalgebra
of A, while K5 is (not) non-A2-closed (in which case ∼A 1

2 6=
1
2 , whereas CINPC+DN

is {not} defined by K5)]. Then, the following hold:
(i) [( {some of })] extensions of C form the (2[+2(+1{+1})])-element chain

C ( CINPC = [Cnω
K6

( (CINPC+DN = {(}Cnω
K5

()]CEM = [CPC = Cnω
A�2 (

] IC [( {others being simultaneously extensions of CINPC+DN and sublogics of
Cnω

K5
})];

(ii) C is [(not) pre]maximally (Y,∼)-paracomplete;
(iii) C [INPC][(∪Cnω

K5
)] is the structural completion of C.

The []-optional ()-non-optional particular case of Theorem 8.41, covering the
both ∼-subclassical and implicative (cf. Example 7 of [19])  L3 [7], equally ensues
from Theorem 3.3 of [16], Corollaries 4.6, 4.12 and 4.13 with Λ = {Z,Y} of [20], the
linearity of the poset 〈A,≤A

Z 〉, the fact that A is generated by { 1
2 , 1}, for 0 = ∼A1,

while it is a (Z,Y)-lattice with unit 1, whereas (a = (a AA a)) ⇔ (a ∈ DA), for all
a ∈ A, Lemma 8.37(v)⇒(iv) and the following observation:

Remark 8.42. [Suppose 0 ≤A
Z

1
2 , while 2 forms a subalgebra of A (i.e., C is ∼-sub-

classical; cf. Corollary 6.4). Then, A is is a (Z,Y)-lattice with unit 1 and zero
0. Moreover,] Υ , {x0,∼x0} is a unitary equality determinant for A, because
∼A 1

2 6∈ DA = {1} 63 0, while ∼Ai = (1 − i), for all i ∈ 2, in which case, by the
A-implicativity of A, {φ A ψ | (φ ` ψ) ∈ εΥ} is an axiomatic equality determinant
for A, and so is (x0 ↔ x1) , (Z〈Z〈∼ixj A ∼ix1−j〉j∈2〉i∈2), in view of the Z-
conjunctivity of A. Therefore, since A is A-implicative and truth-singular, (x0 ≈
(x0 A x0))[x0/((x0 ↔ x1) A (x2 ↔ x3))] is an implicative system for A. [And what
is more, (img¬A) ⊆ 2, for 2 forms a subalgebra of A, in which case (∼A◦¬A) = χA,
and so ((∼¬(x0 ↔ x1) Z x2) Y (¬(x0 ↔ x1) Z x0)) is a discriminator for A.] �

In this connection, recall that it is this alternative argumentation (more specif-
ically, its “discriminator” particular case based upon Corollary 4.12 of [20]) that
has been invoked therein to find the lattice of extensions of  L3 upon the basis of
Example B.2 therein. On the other hand, the “discriminator” subcase does not
at all exhaust the []-optional ()-non-optional case of Theorem 8.41, in view of the
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following double counterexample equally showing the possibility of the []-optional
()-optional case of this theorem:

Example 8.43. Let Σ , (Σ+,∼ ∪ {>}), while A truth-singular with ∼A 1
2 ,

(0[+1
2 ]), >A , 1, Z , ∧, Y , ∨ and 1

2 ≤A
∧ 0 ≤A

∧ 1 [whereas B the Σ-algebra
with (B�(Σ \ {∼})) , (D2,01�(Σ \ {∼})) and ∼B , ∆2]. Then, 2 forms a subalge-
bra of A, in which case 22 forms a subalgebra of A2, and so K5 = (22 ∪ {〈 1

2 , 0〉}),
[though] forming a subalgebra of (A�(Σ \ {∼}))2, does [not] form a subalgebra of
A2, for 〈0[+ 1

2 ], 1〉 = ∼A2〈 1
2 , 0〉 does [not] belong to K5, while, by Theorem 6.3, C is

∼-subclassical, whereas, by Lemma 8.23[(ii)⇒(i)], A is implicative, for > ∈ C(∅),
while 〈1, 0〉 = ∼A2

(〈 1
2 , 1〉 YA2 ∼A2>A2

) ∈ K ′
3 ⊇ K3 ⊇ K1. [And what is more,

χ2
A ∈ hom(A,B) is surjective. Therefore, if A had a discriminator, then this would

be a congruence-permutation term for B, being simple, for it is two-element, in
which case, by Lemma 2.1, the subdirect square D , (B2�(22 \ {〈0, 1〉})) of B
would be isomorphic to either B or B2, and so 3 = |D| would be even.] Thus,
anyway, A has no discriminator, in view of Lemma 8.37(iv)⇒(vi). �

This — in addition to Subsection 5.5 of [20] — highlights the “non-discriminator”
advance of the mentioned study.

In this way, Remarks 2.4, 2.6, Corollary 4.6, Lemmas 4.7, 8.23 and Theorems
8.28 and 8.41 exhaust the issue of structural completions of (Y,∼)-paracomplete
Σ-logics with subclassical negation ∼ as well as lattice conjunction and disjunction
Y.

On the other, the condition of existence of lattice conjunction and disjunction is
essential for the above advanced results to hold, as it is demonstrated in Subsub-
section 8.3.2.

8.3. Extensions of classically-valued disjunctive conjunctive non-classical
logics. Here, it is supposed that A is both classically-valued (and so classically-
hereditary, in which case C is ∼-subclassical; cf. Theorem 6.3) and �-conjunctive|-
disjunctive (viz., C is so| cf. Lemma 4.7), where � is a (possibly, secondary) binary
connective of Σ, in which case (a �A a) = χA(a), for all a ∈ A, and so A is ¬-
negative, where (¬x0) , ∼(x0 � x0), as well as hereditarily-simple (i.e., C is not ∼-
classical; cf. Corollary 4.13), in which case, by Theorem 3.4(i)⇒(iii), A has a unary
equality determinant ε. Then, by Remark 2.8(i)a), A is both Z-conjunctive and
Y-disjunctive, where Z , (�|�¬) and Y , (�¬|�), in which case we have secondary
nullary connectives (⊥/>) , (x0(Z/Y)¬x0) of Σ such that (⊥/>)A(a) = (0/1), for
all a ∈ A, while, by Remark 2.8(i)c), A is A-implicative, where A,A¬

Y , and so
{φ A ψ | (φ ` ψ) ∈ ε} is an axiomatic equality determinant for it.

8.3.1. Paraconsistent logics. Here, it is also supposed that A (viz., C) is ∼-para-
consistent (cf. Remark 2.8(i)d)), in which case it is false-singular, while ∼A 1

2 = 1.
Let n ∈ (ω \ 1), Cn the finitary (for C, being three-valued, is so) extension of

C relatively axiomatized by the finitary rule Rn , (({∼xi | i ∈ n} ∪ {Yx̄n}) ` xn)
and C ′

ω the finitary (for both C, being three-valued, is so) extension of C relatively
axiomatized by the finitary Σ-calculus {Rm | m ∈ (ω \ 1)}.

Lemma 8.44. For any n ∈ (ω \ (1(+1))), there is a consistent subdirect n-power
An ∈ Mod(C) of A such that (DAn = {n×{1}} and) Rn is [not] true in An+1[−1],
in which case An+1 ∈ (Mod(Cn) \Mod(Cn+1)), and so Cn+1 * Cn.

Proof. Since A is classically-valued, the set An , (2n∪{{〈i, 1
2 〉}∪ ((n\{i})×{0}) |

i ∈ n}) 3 (n × {0}) forms a subalgebra of An, so we have the consistent {for
n 6= 0} subdirect n-power An , (An�An) ∈ Mod(C) {cf. (2.16)} of A (with
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DAn = {n × {1}}, as n 6= 1). Then, as A is Y-disjunctive, Rn is not true in An

under [xi/({〈i, 1
2 〉} ∪ ((n \ {i}) × {0}));xn/(n × {0})]i∈n but is true in An+1, for

∼A1 = 0, while, for every b̄ ∈ ({ 1
2 , 0}

n+1 ∩ An+1)+, (YAn+1
b̄) ∈ { 1

2 , 1}
n+1 only

if, for each i ∈ (n + 1), there is some j ∈ (dom b̄) such that πi(bj) = 1
2 (that is,

bj = ({〈i, 1
2 〉} ∪ (((n+ 1) \ {i})× {0}))) iff (An+1 \ 2n+1) ⊆ (img b̄), and so, for no

b̄ ∈ ({ 1
2 , 0}

n+1 ∩An+1)n, (YAn+1
b̄) ∈ { 1

2 , 1}
n+1, because, otherwise, we would have

(n+ 1) = |A′n+1 \ 2n+1| 6 | img b̄| 6 n. �

Theorem 8.45. 〈Cn〉i∈n is a strictly increasing countable chain of finitary axio-
matically-equivalent (and so consistent) non-∼-paraconsistent (and so proper) ex-
tensions of C, and so is Cω that is not [relatively] finitely-axiomatizable.

Proof. We use Theorem 2.14 with K , Mod(C) Then, as C is weakly Y-disjunctive,
and so is any B ∈ K, whenever Rn is not true in B under any v : Vn+1 → B,
for every m ∈ (ω \ n), Rm is not true in B under v ∪ [xj/v(x0);xm/v(xn)]j∈(m\n).
Hence, 〈Cn〉i∈n is an increasing denumerable chain of finitary non-∼-paraconsistent
extensions of C, for R1 = (2.10). Moreover, by Claim 8.44, the increasing chain
〈Cn〉n∈(ω\1) is injective, and so countable, in which case Cω is a proper extension
of Cn, for any n ∈ (ω \ 1), and so, by the Compactness Theorem for classes of al-
gebraic systems closed under ultra-products (cf. [9]) — in particular, finitary logic
model classes, being finitary equality-free universal Horn model classes axioma-
tized by finitary calculi axiomatizing finitary logics, Cω is not [relatively] finitely
axiomatizable. Finally, by Lemma 8.44, for each n ∈ (ω \ 1), An+1 ∈ Mod(Cn),
while (π0�An+1) ∈ homS(An+1,A), in which case, by (2.17), Cn ≡1 C, and so
C(∅) ∈ (imgCn). Hence, C(∅) ∈ (℘(Fmω

Σ) ∩
⋂

n∈(ω\1)(imgCn)) = (imgCω), for
Cω is the join of {Cn | n ∈ (ω \ 1)}. Thus, Cω ≡1 C, as required. �

As it has been demonstrated in Subsubsection 8.1.1, the condition of A’s being
classically-valued cannot be omitted in the formulation of Theorem 8.45. It is
remarkable that Cω, being a consistent extension of C, is a sublogic of CPC, in
view of Theorem 7.7(i)⇒(v) and Corollary 7.9, and so, by Theorem 8.45, the infinite
chain involved appears intermediate between CNP and CPC, in contrast to Theorem
8.21, unless L5 forms a subalgebra of A2. And what is more, in contrast to Corollary
8.13, we have:

Lemma 8.46. B , A2 ∈ Mod(CMP) ⊆ Mod(CNP) (cf. Lemma 8.44) is a consis-
tent subdirect square of A such that hom(B,A�2) = ∅.

Proof. Then, B , A2 ∈ Mod(C) is a consistent subdirect square of A. Moreover,
as 2 6∈ 2, DB = {〈1, 1〉}, while, for every b ∈ B, it holds that (∼B〈1, 1〉 YB b) =
(〈0, 0〉 YB b) ∈ DB implies b ∈ DB, in view of the Y-disjunctivity of A and the fact
that 0 6∈ DA. Hence, (2.8) is true in B. Finally, let us prove, by contradiction, that
hom(B,A�2) = ∅. For suppose hom(B,A�2) 6= ∅. Take any h ∈ hom(B,A�2),
in which case h(〈1, 1〉) = 1, for 〈1, 1〉 ∈ DB, while DA�2 = {1}. Therefore, if,
for any a ∈ {〈 1

2 , 0〉, 〈0,
1
2 〉} ⊆ B, it did hold that h(a) = 1, we would have 0 =

∼A1 = h(∼Ba) = h(〈1, 1〉) = 1. Hence, h(〈 1
2 , 0〉) = 0 = h(〈0, 1

2 〉). Then, we get
0 = (0 YA 0) = h(〈 1

2 , 0〉Y
B 〈0, 1

2 〉) = h(〈1, 1〉) = 1. This contradiction completes the
argument. �

As a consequence, in contrast to Theorem 8.14/8.15, we get:

Corollary 8.47. CNP/MP is not defined by D , ((A× (A�2))/(A�2)).

Proof. By contradiction. For suppose CNP/MP is defined by D. Then, by Lemma
8.46, B , A2 ∈ Mod(CNP/MP) is a consistent subdirect square of A such that
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line formula triple
0 x0 〈0, 1, 1

2 〉
1 ∼∼x0 〈0, 1, 0〉
2 ¬x0 〈1, 0, 0〉
3 ∼x0 〈1, 0, 1〉
4 ¬¬x0 〈0, 1, 1〉
5 ¬¬x0 Z∼x0 〈0, 0, 1〉
6 ∼∼x0 Y ¬x0 〈1, 1, 0〉
7 > 〈1, 1, 1〉
8 ⊥ 〈0, 0, 0〉

Table 1. An isomorphism from F1
A onto B.

hom(B,A�2) = ∅, in which case it is finite, for A is so, and so is a finitely-generated
consistent model of CNP/MP. Therefore, by Lemmas 2.10, 3.2, 3.3, 3.5 and Remark
2.7, there are some set I, some C ∈ S(D)I , some subdirect product E of it and
some injective g ∈ homS

S(E ,B), in which case E is consistent, for B is so, and so
I 6= ∅. Then, ((π1/∆2) ◦ πi ◦ g−1) ∈ hom(B,A�2) = ∅, where i ∈ I 6= ∅. This
contradiction completes the argument. �

Finally, P 1 collectively with Theorem 8.45 show that, despite of Theorem 8.21,
three-valued (even both conjunctive, implicative [and so disjunctive] and subclas-
sical) paraconsistent logics with subclassical negation need not have finitely many
(even merely finitary) extensions.
8.3.1.1. The structural completion of P 1. Let Σ , {⊃,∼} with binary ⊃ and A
both false-singular, ⊃-implicative and classically-hereditary, in which case it is both
]⊃-disjunctive and ∼-paraconsistent, while C = P 1.

Theorem 8.48. Let θ , θ1A and D , 〈Fm1
Σ, C(∅) ∩ Fm1

Σ〉. Then, the struc-
tural completion of P 1 is defined by F1

A , (D/θ) isomorphic to B , (A3�(23 ∪
{〈0, 1, 1

2 〉})), an isomorphism from the former onto the latter being given by table 1
(under identification of any ϕ ∈ Fm1

Σ with [ϕ]θ).

Proof. Then, A is generated by the singleton { 1
2}. Hence, by Theorem 3.8, the

structural completion of C = P 1 is defined by F1
A , (D/θ). Given any a ∈ A,

let ha ∈ hom(Fm1
Σ,A) extend [x0/a] and F9 the set of all Σ-formulas appearing

in the second column of Table 1. Then, as F9 ⊆ Fm1
Σ includes {x0} generating

Fm1
Σ, the latter is equally generated by F9. Moreover, h , ((h0 × h1) × h 1

2
) ∈

hom(Fm1
Σ,A

3), while h�F9 is given by Table 1 (in particular, h[F9] = B), in which
case h ∈ hom(Fm1

Σ,B) is surjective, for B forms a subalgebra of A3, because A is
classically-valued, whereas

hom(Fm1
Σ,A) = {ha | a ∈ A}, (8.25)

in which case θ = (
⋂

a∈A(kerha)) = (kerh), and so, by the Homomorphism Theo-
rem, e , (h ◦ ν−1

θ ) is an isomorphism from F1
A = F1

A onto B. And what is more,
as C is consistent, x0 6∈ C(∅), in which case, for every ϕ ∈ DD, h(ϕ) = 〈1, 1, 1〉,
because A is classically-valued, and so h ∈ homS

S(D,B), for DB = {〈1, 1, 1〉}, while
1 ∈ DA (in particular, h−1[DB] ⊆ C(∅), in view of (8.25)). Thus, e is an iso-
morphism from F1

A onto B, in which case h = (e ◦ νθ), and so F 1
A = (F9/θ), for

h[F9] = B, while F 1
A = e−1[B], as required. �
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8.3.2. Paracomplete logics. Here, it is also supposed that A (viz., C) is (Y,∼)-para-
complete (cf. Remark 2.8(i)d)), in which case it is truth-singular, while ∼A 1

2 = 0,
and so { 1

2} does not form a subalgebra of A.
Let n ∈ (ω \ 1), C ′

n the finitary (for C, being three-valued, is so) extension of C
relatively axiomatized by the finitary rule R′

n , (({∼∼xi | i ∈ n} ∪ {Y(¬ ◦ x̄n)}) `
xn) and C ′

ω the finitary (for both C, being three-valued, is so) extension of C
relatively axiomatized by the finitary Σ-calculus {R′

m | m ∈ (ω \ 1)}.
Lemma 8.49. For any n ∈ (ω \ (1(+1))), there is a consistent subdirect n-power
A′

n ∈ Mod(C) of A such that R′
n is [not] true in A′

n+1[−1], in which case A′
n+1 ∈

(Mod(C ′
n) \Mod(C ′

n+1)), and so C ′
n+1 * C ′

n.

Proof. Since A is classically-valued, the set A′n , (2n∪{{〈i, 1
2 〉}∪ ((n\{i})×{1}) |

i ∈ n}) 3 (n×{0}) forms a subalgebra of An, so we have the consistent {for n 6= 0}
subdirect n-power A′

n , (An�A′n) ∈ Mod(C) {cf. (2.16)} of A. Then, as A is
Y-disjunctive, R′

n is not true in A′
n under [xi/({〈i, 1

2 〉} ∪ ((n \ {i})×{1}));xn/(n×
{0})]i∈n but is true inA′

n+1, for∼A∼A0 = 0, while ¬A1 = 0, as 2 forms a subalgebra
of A, in which case, for every b̄ ∈ ({ 1

2 , 1}
n+1 ∩ A′n+1)+, (YAn+1

(¬An+1 ◦ b̄)) =
((n + 1) × {1}) only if, for each i ∈ (n + 1), there is some j ∈ (dom b̄) such that
πi(bj) = 1

2 (that is, bj = ({〈i, 1
2 〉}∪(((n+1)\{i})×{1}))) iff (A′n+1\2n+1) ⊆ (img b̄),

and so, for no b̄ ∈ ({ 1
2 , 1}

n+1∩A′n+1)n, (YAn+1
(¬An+1◦b̄)) = ((n+1)×{1}), because,

otherwise, we would have (n+ 1) = |A′n+1 \ 2n+1| 6 | img b̄| 6 n. �

Theorem 8.50. 〈C ′
n〉i∈n is a strictly increasing countable chain of finitary axio-

matically-equivalent (and so (Y,∼)-paracomplete {in particular, consistent}) proper
(and so A-implicatively non-∼-paracomplete) extensions of C, and so is C ′

ω that is
not [relatively] finitely-axiomatizable.

Proof. We use Theorem 2.14 with K , Mod(C) tacitly. Then, as C is weakly Y-
disjunctive, and so is any B ∈ K, for any n ∈ (ω \ 1), whenever R′

n is not true
in B under any v : Vn+1 → B, for every m ∈ (ω \ n), Rm is not true in B under
v∪[xj/v(x0);xm/v(xn)]j∈(m\n). Hence, 〈C ′

n〉i∈n is an increasing denumerable chain
of finitary proper extensions of C, for R′

1 is not true in A under [xi/
1
2 ]i∈2. Moreover,

by Lemma 8.49, the increasing chain 〈C ′
n〉n∈(ω\1) is injective, and so countable, in

which case C ′
ω is a proper extension of C ′

n, for any n ∈ (ω \ 1), and so, by the
Compactness Theorem for classes of algebraic systems (in particular, Σ-matrices)
closed under ultra-products (cf. [9]) — in particular, finitary logic model classes,
being finitary equality-free universal Horn model classes axiomatized by finitary
calculi axiomatizing finitary logics, C ′

ω is not [relatively] finitely axiomatizable.
And what is more, by Lemma 8.49, for each n ∈ (ω \ 1), A′

n+1 ∈ Mod(C ′
n), while

(π0�A′n+1) ∈ homS(A′
n+1,A), in which case, by (2.17), C ′

n ≡1 C, and so C(∅) ∈
(imgC ′

n). Hence, C(∅) ∈ (℘(Fmω
Σ) ∩

⋂
n∈(ω\1)(imgC ′

n)) = (imgC ′
ω), for C ′

ω is the
join of {C ′

n | n ∈ (ω \ 1)}. Thus, C ′
ω ≡1 C. Finally, Theorem 8.31 completes the

argument. �

As it has been demonstrated in Subsubsection 8.2.1.1, the condition of A’s being
classically-valued cannot be omitted in the formulation of Theorem 8.50. It is re-
markable that Cω, being a consistent extension of C, is a sublogic of CPC, in view of
Theorem 7.7(i)⇒(v) and Corollary 7.9, and so, by Theorem 8.50, the infinite chain
involved appears intermediate between CINPC and CPC, in contrast to Theorem
8.41, unless K5 forms a subalgebra of A2. And what is more, in contrast to Lemma
8.32, we have:

Lemma 8.51. B , A′
2 ∈ Mod(C ′

1) ⊆ Mod(CINPC) (cf. Lemma 8.49 and Theorem
8.50) is a consistent subdirect square of A such that hom(B,A�2) = ∅.
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line formula triple
0 x0 〈0, 1, 1

2 〉
1 ∼∼x0 〈0, 1, 1〉
2 ¬x0 〈1, 0, 1〉
3 ∼x0 〈1, 0, 0〉
4 ¬¬x0 〈0, 1, 0〉
5 ∼∼x0 Z ¬x0 〈0, 0, 1〉
6 ¬¬x0 Y∼x0 〈1, 1, 0〉
7 > 〈1, 1, 1〉
8 ⊥ 〈0, 0, 0〉

Table 2. An isomorphism from F1
A onto B′.

Proof. By contradiction. For suppose hom(B,A�2) 6= ∅. Take any h ∈ hom(B,
A�2), in which case h(〈1, 1〉) = 1, for 〈1, 1〉 ∈ DB, while DA�2 = {1}, and so
0 = ∼A1 = h(∼B〈1, 1〉) = h(〈0, 0〉). Therefore, if, for any a ∈ {〈 1

2 , 1〉, 〈1,
1
2 〉} ⊆ B,

it did hold that h(a) = 0, we would have 1 = ∼A0 = h(∼Ba) = h(〈0, 0〉) = 0.
Hence, h(〈 1

2 , 1〉) = 1 = h(〈1, 1
2 〉). Then, we get 1 = (1 ZA 1) = h(〈 1

2 , 1〉 Z
B 〈1, 1

2 〉) =
h(〈0, 0〉) = 0. This contradiction completes the argument. �

As a consequence, in contrast to Theorem 8.33, we get:

Corollary 8.52. CINPC is not defined by D , (A× (A�2)).

Proof. By contradiction. For suppose CINPC is defined by D. Then, by Lemma
8.51, B , A2 ∈ Mod(CINPC) is a consistent subdirect square of A such that
hom(B,A�2) = ∅, in which case it is finite, for A is so, and so is a finitely-generated
consistent model of CINPC. Therefore, by Lemmas 2.10, 3.2, 3.3, 3.5 and Remark
2.7, there are some set I, some C ∈ S(D)I , some subdirect product E of it and
some injective g ∈ homS

S(E ,B), in which case E is consistent, for B is so, and so
I 6= ∅. Then, ((π1/∆2) ◦ πi ◦ g−1) ∈ hom(B,A�2) = ∅, where i ∈ I 6= ∅. This
contradiction completes the argument. �

Finally, the instance, dual to P 1 and discussed in the next paragraph, collectively
with Theorem 8.50 show that, despite of Theorem 8.41, three-valued implicative
(even both conjunctive and subclassical) paracomplete logics with subclassical nega-
tion need not have finitely many (even merely finitary) extensions.
8.3.2.1. The structural completion of the paracomplete counterpart of P 1. Let Σ ,
{⊃,∼} with binary ⊃ and A both truth-singular, ⊃-implicative and classically-
hereditary, in which case it is both ]⊃-disjunctive and (]⊃,∼)-paracomplete.

Theorem 8.53. Let θ , θ1A and D′ , 〈Fm1
Σ, C(∅) ∩ Fm1

Σ〉. Then, the struc-
tural completion of C is defined by F1

A , (D′/θ) isomorphic to B′ , (A3�(23 ∪
{〈0, 1, 1

2 〉})), an isomorphism from the former onto the latter being given by table 2
(under identification of any ϕ ∈ Fm1

Σ with [ϕ]θ).

Proof. Then, A is generated by the singleton { 1
2}. Hence, by Theorem 3.8, the

structural completion of C is defined by F1
A , (D′/θ). Given any a ∈ A, let

ha ∈ hom(Fm1
Σ,A) extend [x0/a] and F ′

9 the set of all Σ-formulas appearing in
the second column of Table 2. Then, as F ′

9 ⊆ Fm1
Σ includes {x0} generating

Fm1
Σ, the latter is equally generated by F ′

9. Moreover, h , ((h0 × h1) × h 1
2
) ∈

hom(Fm1
Σ,A

3), while h�F ′
9 is given by Table 2 (in particular, h[F ′

9] = B′), in which
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case h ∈ hom(Fm1
Σ,B

′) is surjective, for B′ forms a subalgebra of A3, because A is
classically-valued, whereas

hom(Fm1
Σ,A) = {ha | a ∈ A}, (8.26)

in which case θ = (
⋂

a∈A(kerha)) = (kerh), and so, by the Homomorphism Theo-
rem, e , (h ◦ ν−1

θ ) is an isomorphism from F1
A = F1

A onto B′. And what is more,
for every ϕ ∈ DD′

, h(ϕ) = 〈1, 1, 1〉, because A is truth-singular, in which case
h ∈ homS

S(D,B′), for DB′ = {〈1, 1, 1〉} (in particular, h−1[DB′ ] ⊆ C(∅), in view of
(8.25)). Thus, e is an isomorphism from F1

A onto B′, in which case h = (e ◦ νθ),
and so F 1

A = (F ′
9/θ), for h[F ′

9] = B′, while F 1
A = e−1[B′], as required. �

9. Conclusions

Aside from quite useful general results and their equally illustrative generic ap-
plications to infinite classes of particular logics, the paper demonstrates the value
of the conception of equality determinant going back to [18].

Among other things, profound connections between the structural completeness
of paraconsistent/”disjunctive paracomplete” three-valued logics with subclassical
negation and their [pre]maximal paraconsistency/paracompleteness discovered here
deserve a particular emphasis within the context of Many-Valued Logic. Like-
wise, the deep characterizations (in particular, yielding effective algebraic crite-
ria) of implicativity of Y-disjunctive “∼-paraconsistent and conjunctive”/(Y,∼)-
paracomplete three-valued ∼-subclassical Σ-logics given by Lemma 8.2/8.23, re-
spectively, are equally valuable within the context involved.

Perhaps, most acute problems remained still open within the framework of those
∼-paraconsistent/ “implicative (Y,∼)-paracomplete” three-valued ∼-subclassical
Σ-logics with lattice conjunction and disjunction Y, the direct square of the un-
derlying algebra of whose characteristic matrices have the subalgebras with carrier
(L/K)5, are the following quite non-trivial universal problems:

(1) What is a relative axiomatization of the logic of (L/K)5?
(2) What is the lattice of those extensions of CDMP/(INPC+DN), which have the

model (L/K)5?
(3) What is a class of matrices defining CDMP/(INPC+DN)?

We conjecture that CDMP/(INPC+DN) is defined by (L/K)5. On the other hand,
though being technically quite non-trivial, these problems are not especially acute
logically, because they deal with rather extraordinary algebraic stipulations not
typical of any already known instances.
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