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SEMANTICS OF SEQUENT CALCULI WITH BASIC
STRUCTURAL RULES: FUZZINESS VERSUS

NON-MULTIPLICATIVITY

ALEXEJ P. PYNKO

Abstract. The main general result of the paper is that basic structural rules
— Enlargement, Permutation and Contraction — (as well as Sharings) [and

Cuts] are derivable in a {multiplicative} propositional two-side sequent cal-
culus iff there is a class of {crisp} (reflexive) [transitive distributive] fuzzy

two-side matrices such that any rule is derivable in the calculus iff it is true

in the class, the “{}”/“()[]”-optional case being due to [15]/[13]. Likewise,
fyzzyfying the notion of signed matrix [15], we extend the main result ob-
tained therein beyond multiplicative calculi. As a representative application,

we prove that the sequent calculus LK[S/C] resulted from Gentzen’s LK [3]
by adding the rules inverse to the logical ones and retaining as structural ones
merely basic ones [and Sharing/Cut] is equivalent (in the sense of [9]) to the

bounded version of Belnap’s four-valued logic (cf. [2]) [resp., the logic of para-
dox [6]/ Kleene’s three-valued logic [4]]. As a consequence of this equivalence,
appropriate generic results of [9] concerning extensions of equivalent calculi

and the advanced auxiliary results on extensions of the bounded versions of
Kleene’s three-valued logic and the logic of paradox proved here with using
the generic algebraic tools elaborated in [12], we then prove that extensions of

the Sharing/Cut-free version LKC/S of LK form a three/four-element chain/,
consistent ones having same derivable sequents that provides a new profound

insight into Cut Elimination in LK appearing to be just a consequence of the
well-known regularity of operations of Belnap’s four-valued logic. Likewise, by

the mentioned regularity, we prove that the logic of paradox is the only proper

consistent axiomatic extension of Belnap’s four-valued logic. As a consequence,
we conclude that LKS is the only proper consistent axiomatic extension of LK.

1. Introduction

Most universal, natural and immediate semantics of sequent calculi (of miscella-
neous kinds) arises from the fundamental study [9] treating such calculi as unversal
Horn theories, algebraic systems [5] becoming model structures of sequent calculi.
However, model structures of such a kind, being normally of infinite first-order sig-
nature, are too cumbersome. On the other hand, the main peculiarity of sequent
calculi consists in possessing structural rules (of miscellaneous kinds). It has been
properly taken into account in further studies [13], [14], [15] and [17], providing
a perfectly finitary semantics of sequent calculi with structural rules. The present
study advances this research paradigm in the following two principal respects. First,
admitting two-side matrices with independent left/right truth predicates for evalu-
ating formulas in the left/right sides of sequents, we extend [13] to sequent calculi
with basic structural rules — Enlargement, Permutation and Contraction — as well
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2 A. P. PYNKO

as, optionally, Cut and/or Sharing. Second, fuzzifying the conception of signed ma-
trix [15], we extend the main result of the mentioned study to non-multiplicative
signed sequent calculi.

Perhaps, the most representative and illustrative instance to be explored within
the present enhancement would be LK [3] without Cut and/or Sharing.

In this connection, recall that an equivalence (in the sense of [9]) between the
Cut-free fragmentary version of Gentzen’s LK [3] supplemented by the inverse
logical rules and void of the empty sequent has been discovered and explored in [18].
The exemplifying part of the present study enhances the mentioned elaboration by
adding truth and falsehood constants as primary connectives, proper incorporating
the empty sequent (that appears as the conclusion of a Cut instance and, for this
reason, should not be excluded, as it was made in [18]) and, what is main, involving
Sharing-free versions of LK.

2. General underlying issues

Concerning algebras, propositional languages and logics and logical matrices,
we entirely follow standard conventions adopted in [12] but using rather Fraktur
than Calligraphic letters for denoting algebras, Calligraphic letters (possibly, with
indices) being reserved for denoting logical matrices, their underlying algebras —
viz., algebra reducts — being denoted by corresponding Fraktur letters (with same
indices, if any). For other issues concerning Lattice Theory, Universal Algebra and
Model Theory, specified explicitly neither therein nor here, the reader is referred to
standard mathematical handbooks like [1], [5] and [20].

Below, we just specify certain particular set- and lattice-theoretical notations
used here other than the standard ones like dom, img and πi as well as some basic
issues concerning axiomatic extensions of logics.

2.1. Set-theoretical background. We follow the standard set-theoretical con-
vention, according to which natural numbers (including 0) are treated as finite
ordinals (viz., sets of lesser natural numbers), the ordinal of all them being denoted
by ω.

Likewise, as usual, functions are viewed as binary relations.
Given a set S [and any K ⊆ ω], the set of all subsets of S[ of cardinality ∈ K]

is denoted by ℘[K](S). Next, S-tuples (viz., functions with domain S) are often
written in either vector ~t or sequence t̄ forms, its s-th component (viz., the value
under argument s), where s ∈ S, being written as ts in that case. Given a one
more set A, an S-tuple B of sets and any f̄ ∈ (

∏
s∈S B

A
s ), put (

∏
f̄) : A →

(
∏
B), a 7→ 〈fs(a)〉s∈S . (In case I = 2, f0 × f1 stands for (

∏
f̄).) Further, set

∆S , {〈a, a〉|a ∈ S}, relations of such a kind being referred to as diagonal, and
S∗/+ ,

⋃
i∈(ω/(ω\1)) S

i. Then, any binary operation � on S determines the equally-
denoted mapping � : S+ → S as follows: by induction on the length l = dom~a of
any ~a ∈ S+, put:

�~a ,

{
a0 if l = 1,
(�(~a�(l − 1))) � al−1 otherwise.

Finally, given any T ⊆ S, we have the characteristic function χT
S , ((T × {1}) ∪

((S \ T )× {0})) of T in S.

2.2. Lattice-theoretic background. [Bounded] lattices [1] are supposed to be of
the signature Σ+[,01] , ({∧,∨}[∪{⊥,>}]), where ∧ (conjunction) and ∨ (disjunc-
tion) are binary [while both ⊥ and > (falsehood/zero and truth/unit constants,
respectively) are nullary].
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Given any n ∈ (ω \ 2), by Dn[,01] we denote the [bounded] distributive lattice
given by the chain poset n ordered by ordinal inclusion.

Given any Σ ⊇ Σ+[,01] and any Σ-algebra A such that A�Σ+[,01] is a [bounded]
lattice, the partial ordering of the latter is denoted by 6A, the lattice meet/join of
any X ∈ ℘(ω\1)[∪1](A) being denoted by (

∧
/

∨
)AX, respectively.

2.3. Axiomatic extensions of propositional logics. Given any A ⊆ FmΣ, set
SIΣ(A) , {σ(ϕ) | ϕ ∈ A, σ ∈ hom(FmΣ,FmΣ)} and Mod(A) the class of all Σ-
matrices satisfying every element of A.

An extension L′ of a Σ-logic L is said to be axiomatic, whenever it is relatively
axiomatized by a set A of Σ-axioms, in which case:

(2.1) ((Γ ` ϕ) ∈ L′) ⇔ (((SIΣ(A) ∪ Γ) ` ϕ) ∈ L),

for all (Γ ∪ {ϕ}) ⊆ FmΣ.
A Σ-matrix A = 〈A, DA〉 is said to be consistent/truth-non-empty, provided

DA 6= (A/∅). The class of all [consistent] submatrices of members of a class of
Σ-matrices M is denoted by S[∗](M).

Proposition 2.1. Let M be a class of Σ-matrices and A ⊆ FmΣ. Then, the
axiomatic extension of the logic of M relatively axiomatized by A is the logic of
S , (S∗(M) ∩Mod(A)).

Proof. We use (2.1) tacitly. Consider any (Γ ∪ {ϕ}) ⊆ FmΣ.
First, assume (Γ ∪ SIΣ(A)) ` ϕ is satisfied in each member of M. Consider

any A ∈ S and any h ∈ hom(FmΣ,A) such that Γ ⊆ h−1[DA], in which case
there is some B ∈ M such that A is a submatrix of B, and so h ∈ hom(Fmω

Σ,B)
and Γ ⊆ h−1[DB]. Moreover, for every Σ-substitution σ, (h ◦ σ) ∈ hom(FmΣ,A),
in which case SIΣ(A) ⊆ h−1[DA] ⊆ h−1[DB], and so ϕ ∈ h−1[(img h) ∩ DB] ⊆
h−1[A ∩DB] = h−1[DA].

Conversely, assume (Γ ∪ SIΣ(A)) ` ϕ is not satisfied in some B ∈ M, in which
case there is some h ∈ hom(FmΣ,B) such that (Γ ∪ SIΣ(A)) ⊆ h−1[DB] 63 ϕ,
and so A , (B�(img h)) is a submatrix of B, h ∈ hom(FmΣ,A) is surjective and
(Γ∪SIΣ(A)) ⊆ h−1[DB] = h−1[A∩DB] = h−1[DA] 63 ϕ. Finally, consider any ψ ∈ A

and any g ∈ hom(FmΣ,A). Then, as (img h) = A, there is some Σ-substitution σ
such that g = (h ◦ σ), in which case g(ψ) = h(σ(ψ)) ∈ h[SIΣ(A)] ⊆ DA, and so ψ
is satisfied in A. Thus, A, being consistent, for h(ϕ) ∈ (A \DA), belongs to S, as
required. �

3. Sequent calculi and their semantics

3.1. Two-side sequent calculi. Here, we entirely follow the universal formalism
of [9] but language/signature notation and with using rather � than ` as the
side separator symbol to avoid confusion with notations adopted in [12]. This, in
particular, concerns the notions of (propositional two-side) Σ-sequent rule/calculus
(/referred to as a deductive base therein), rule derivable/admissible in a calculus
(/said to be permissible therein) as well as the consequence (viz., derivability) clo-
sure operator CnC of (the logical system defined by) a calculus C.

3.1.1. Multiplicative calculi with structural rules versus two-side matrices. First,
(basic) structural rules are Σ-sequent rules of the form:

Left Right
Enlargement Γ � ∆

Γ, φ � ∆
Γ � ∆

Γ � ∆, φ
Permutation Γ, φ, ψ,Θ � ∆

Γ, ψ, φ,Θ � ∆
Γ � ∆, φ, ψ,Θ
Γ � ∆, ψ, φ,Θ

Contraction Γ, φ, φ � ∆
Γ, φ � ∆

Γ � ∆, φ, φ
Γ � ∆, φ
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where φ, ψ ∈ FmΣ and Γ,∆,Θ ∈ Fm∗
Σ. Next, Sharings are axioms of the form

ϕ � ϕ, where ϕ ∈ FmΣ. Likewise, [weak /ortho-]Cuts are rules of the form:
Γ � Ξ, ϕ;ϕ,Θ � ∆

Γ,Θ � Ξ,∆
where ϕ ∈ FmΣ and Γ,∆,Ξ,Θ ∈ Fm∗

Σ [whereas each of them/either Ξ or Θ is
empty]. By S(S)[{W/O}C] we denote the two-side propositional Σ-sequent calculus
constituted by basic structural rules (and Sharings) [as well as {weak /ortho-}Cuts].

Further, a propositional Σ-sequent calculus C is said to be multiplicative, pro-
vided, for any Y

Γ � ∆ ∈ C and all Λ,Ω ∈ Fm∗
Σ, the rule

{Θ,Λ � Ξ,Ω | (Θ � Ξ) ∈ Y }
Γ,Λ � ∆,Ω

is derivable in C.
By a two-side Σ-matrix we mean any triple of the form A , 〈A, LA,

RA〉 denoted by a Calligraphic letter (possibly, with indices), where A is a Σ-
algebra, called the underlying one of A and denoted by the corresponding Fraktur
letter (with same indices, if any), and LA, RA ⊆ A, to be treated as a model struc-
ture of the first-order signature Σ ∪ {L,R} with unary left-/right-truth predicate
L/R, any propositional Σ-sequent Γ � ∆, where Γ,∆ ∈ Fm∗

Σ, being identified
with the first-order clause

∨
(¬[L[img Γ]]∪R[img ∆]), sequent rules being identified

with respective implications of clauses.1 Then, A is said to be reflexive/transitive,
provided LA ⊆ / ⊇ RA, respectively, that is, Sharings/[weak] Cuts are true in A.
When A is both reflexive and transitive, we come to the standard matrix approach
to sequents adopted in [10] and [16].

A class M of two-side Σ-matrices is said to be (strongly) characteristic for a
propositional Σ-sequent calculus C iff any Σ-sequent rule is derivable in C iff it is
true in M.2 As a particular case of what was actually proved in Theorem 4.6 of
[15], we then have:

Lemma 3.1. A propositional two-side Σ-sequent calculus C has a characteristic
class of (reflexive) [transitive] two-side Σ-matrices {with underlying algebra FmΣ}
iff it is multiplicative and basic structural rules (and Sharings) [as well as Cuts] are
derivable in C.

The “()[]”-optional particular case of Lemma 3.1 has been due to [13].
In view of Enlargement and Permutation, S(S)[C] is multiplicative. Therefore, as

an immediate consequence of Lemma 3.1, we have:

Corollary 3.2. The class of all (reflexive) [transitive] two-side Σ-matrices {with
underlying algebra FmΣ} is characteristic for S(S)[C].

It is this corollary that enables us to find semantics of non-multiplicative sequent
calculi with structural rules below following [13].

3.1.2. Fuzzy two-side matrices: beyond multiplicativity. A [distributive] fuzzy two-
side Σ-matrix is any tetrad of the form A = 〈A,LA, λA, µA〉 denoted by a Cal-
ligraphic letter (possibly, with indices), where A is a Σ-algebra, called the un-
derlying one of A and denoted by the corresponding Fraktur letter (with same
indices, if any), LA is a bounded [distributive] lattice, called the truth one of A,

1In this way, here, we actually follow a semantic approach to sequents being left-dual to that

of [15] in the sense of involving the complementary left-truth predicate instead of the falsehood

one to make both the standard matrix approach adopted in [10] and [16] a particular case of that
developed here and further ”fuzzyfication” along the line of [13] more natural and immediate.

2This terminology is equally adopted mutatis mutandis within the context of fuzzy two-side

matrices as well as that of both (fuzzy) signed matrices and signed sequent calculi.
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and (λ/µ)A : A → LA, called the left/right membership function of A. This is
said to be crisp (viz., bi-valent), whenever LA = D2,01, in which case it is iden-
tified with the ordinary two-side Σ-matrix with the same underlying algebra and
the left/right truth predicate ((λ/µ)A)−1[{1}]. Likewise, it is said to be reflex-
ive/transitive, provided λA(a)(6 / >)LAµA(a), for all a ∈ A. (Both reflexive and
transitive [distributive] fuzzy two-side Σ-matrices are actually fuzzy Σ-matrices in
the sense of [14] [resp., [13]].) Then, a Σ-sequent Γ � ∆, where Γ,∆ ∈ Fm∗

Σ, is said
to be true in A under h ∈ hom(FmΣ,A) (A |= (Γ � ∆)[h], in symbols), provided
(
∧LA

λA[h[img Γ]]) 6LA (
∨LA

µA[h[img ∆]]). (This fits well the crisp case as well
as the both reflexive and transitive one. In particular, secondary model-theoretic
notions are supposed to be clear without explicit specifying these.)

Fuzzy two-side Σ-matrices are nothing but heterogeneous algebras over a two-sort
scheme (cf., e.g., [20]). In particular, given a set I and an I-tuple A of [distributive]
fuzzy two-side Σ-matrices, we have its fuzzy direct product

⊗
A =

⊗
i∈I Ai, being

the [distributive] fuzzy two-side Σ-matrix with underlying algebra
∏

i∈I Ai, truth
lattice

∏
i∈I LAi and membership functions defined point-wise: (λ/µ)

⊗
A : ā 7→

〈(λ/µ)Ai(ai)〉i∈I . (As usual, in case I = 2, A0 ⊗ A1 stands for the fuzzy direct
product involved.)

Theorem 3.3. A propositional two-side Σ-sequent calculus C has a characteristic
class of (reflexive) [transitive distributive] fuzzy two-side Σ-matrices {with under-
lying algebra FmΣ} iff basic structural rules (and Sharings) [as well as Cuts] are
derivable in C.

Proof. The “only if” part is immediate. Conversely, assume basic structural rules
(and Sharings) [as well as Cuts] are derivable in C. Then, (img CnC) ⊆ C ,
(img CnS(S)[C]). Moreover, by Corollary 3.2, there is a set — viz., not a proper
class — M of (reflexive) [transitive] two-side Σ-matrices with underlying algebra
FmΣ characteristic for S(S)[C]. Given a fuzzy two-side Σ-matrix A with underlying
algebra FmΣ, by SA we denote the set of all propositional two-side Σ-sequents
true in A under the diagonal Σ-substitution. Then, taking the fact that the set of
all rules derivable in a calculus is closed under substitutions into account, {SA |
A ∈ M} is a basis of C. Consider any X ∈ (img CnC) ⊆ C. Then, by the Choice
Axiom, there is some I ⊆ M such that X = (SeqΣ ∩

⋂
i∈I S

i). Let AX be the
(reflexive) [transitive] distributive fuzzy two-side Σ-matrix with underlying algebra
FmΣ, truth lattice DI

2,01 and left/right membership function
∏

i∈I χ
(L/R)i

FmΣ
. Clearly,

X = SAX . In this way, taking the fact that the set of all rules derivable in a
calculus is closed under substitutions into account, we eventually conclude that
{AX | X ∈ (img CnC)} is characteristic for C, as required. �

The “()[]”-optional particular case of Theorem 3.3 has been due to [13]. In
this connection, it is remarkable that the argumentation of [13] is essentially based
upon presence of Sharings and (at least, ortho-)Cuts, so it is not applicable to
proving Theorem 3.3 in general. In this way, since the “multiplicative-crisp” case
was derived therein from the fuzzy one and, what is more, with using Reflexivity,
Lemma 3.1 equally occurs to be essentially beyond the scopes of [13]. This highlights
the substantial advance of the present study with regard to [13].

3.2. Signed sequent calculi. Here, we entirely follow the formalism of [15] but
denote signatures/languages/variables like in [12] and, for covering non-multiplica-
tive calculi (equivalent to the many-place sequent ones in the sense of [19]), deal
with signed sequent substitutions with merely empty right components, becoming
thus essentially identical to their left components being ordinary Σ-substitutions.
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Under this alteration, (basic) structural rules are those of the form (cf. Definition
3.14 of [15])):

Γ
Γ ∪ {s : x}

where s ∈ S and Γ ∈ ℘ω(S : FmΣ). Likewise (cf. Definition 3.15 of [15]), given any
S ⊆ ℘(S), S-Sharings/-Cuts are axioms/rules of the form:

(Γ ∪ (S : {x})/{Γ ∪ {s : x} | s ∈ S}
Γ

where S ∈ S and Γ ∈ ℘ω(S : FmΣ). Finally, an S-signed Σ-sequent calculus C is
said to be multiplicative, provided, for every X

∆ ∈ C and all Γ ∈ ℘ω(S : FmΣ), the

rule {Ξ ∪ Γ | Ξ ∈ X}
∆ ∪ Γ is derivable in C.

Given any S ⊆ ℘(S), an S-signed Σ-matrix A is said to be S-reflexive/-transitive,
provided, for all S ∈ S, (A∩ ((

⋃
/

⋂
)∇[S])) = (A/∅), that is, S-Sharings/-Cuts are

true in A.
Under the above conventions, the factual content of Theorem 4.6 of [15] is for-

mulated as follows:

Lemma 3.4. Let S,T ⊆ ℘(S). Then, a propositional S-signed Σ-sequent calculus
C has a characteristic class of S-reflexive T-transitive S-signed Σ-matrices (with
underlying algebra FmΣ) iff it is multiplicative and basic structural rules, S-Sharings
and T-Cuts are derivable in C.

Given any S,T ⊆ ℘(S), by SS,T we denote the signed sequent calculus constituted
by all basic structural rules, S-Sharings and T-Cuts. Clearly, it is multiplicative.
Therefore, as an immediate consequence of Lemma 3.4, we have:

Corollary 3.5. Let S,T ⊆ ℘(S). Then, the class of all S-reflexive T-transitive
S-signed Σ-matrices (with underlying algebra FmΣ) is characteristic for SS,T.

3.2.1. Fuzzy signed matrices: beyond multiplicativity. A [distributive] fuzzy S-signed
Σ-matrix is any triple of the form A = 〈A,LA, µA〉 denoted by a Calligraphic letter
(possibly, with indices), where A is a Σ-algebra, called the underlying one of A and
denoted by the corresponding Fraktur letter (with same indices, if any), LA is a
[distributive] bounded lattice, called the truth one of A, and µA : (S × A) → LA,
called the (S-signed) membership function of A. This is said to be crisp (viz.,
bi-valent), whenever LA = D2,01, in which case it is identified with the ordinary S-
signed Σ-matrix 〈A, 〈{a ∈ A | µA(s, a) = 1}〉s∈S〉. Likewise, given any S ⊆ ℘(S),
A is said to be S-reflexive/-transitive, provided, for all a ∈ A, it holds that
((

∨
/

∧
)LA{µA(s, a) | s ∈ S}) = (>/⊥)LA . Then, an S-signed Σ-sequent Γ is

said to be true in A under h ∈ hom(FmΣ,A), provided (
∨LA

µA[{〈s, h(ϕ)〉 | (s :
ϕ) ∈ Γ}]) = >LA . (This fits well the crisp case of [15]. In particular, secondary
model-theoretic notions are supposed to be clear without explicit specifying these.)

Theorem 3.6. Let S[,T] ⊆ ℘(S). Then, a propositional S-signed Σ-sequent cal-
culus C has a characteristic class of S-reflexive [ T-transitive distributive] fuzzy
S-signed Σ-matrices {with underlying algebra FmΣ} iff basic structural rules, S-
Sharings [and T-Cuts] are derivable in C.

Proof. The “only if” part is immediate. Conversely, assume basic structural rules,
S-Sharings [and T-Cuts] are derivable in C. Then, we have (img CnC) ⊆ C ,
(img CnSS,∅[∪T]). Moreover, by Corollary 3.2, there is a set — viz., not a proper class
— M of S-reflexive [T-transitive] S-signed Σ-matrices with underlying algebra FmΣ

characteristic for SS,∅[cupT]. Given a fuzzy S-signed Σ-matrix A with underlying
algebra FmΣ, by SA we denote the set of all S-signed Σ-sequents true in A under
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the diagonal Σ-substitution. Then, taking the fact that the set of all rules derivable
in a calculus is closed under substitutions into account, {SA | A ∈ M} is a basis of
C. Consider any X ∈ (img CnC) ⊆ C. Then, by the Choice Axiom, there is some
I ⊆ M such that X = (SeqΣ ∩

⋂
i∈I S

i). Let AX be the S-reflexive [T-transitive]
distributive fuzzy S-signed Σ-matrix with underlying algebra FmΣ, truth lattice

DI
2,01 and membership function

∏
i∈I χ

⋃
s∈S({s}×∇

i(s))

S: FmΣ
. Clearly, X = SAX . In this

way, taking the fact that the set of all rules derivable in a calculus is closed under
substitutions into account, we eventually conclude that {AX | X ∈ (img CnC)} is
characteristic for C, as required. �

The methodological value of Theorems 3.3 and 3.6 is that their proofs make it
clear, in general, how fuzzification of crisp model structures providing semantics of
solely multiplicative calculi with structural rules (in particular, those constituted
by merely structural rules) yields semantics of non-multiplicative calculi with struc-
tural rules. This point going back to [17] is essentially beyond the scopes of [13] and
resembles the underlying idea of [12] extended to heterogeneous algebras, because,
like fuzzy two-side matrices, fuzzy signed ones are equally such algebras in their
substance.

4. Applications to substructural versions of LK

From now on, we deal with the signature Σ[01] , (Σ+[,01] ∪{¬}), where ¬ (nega-
tion) is unary, entirely following Subsection 3.1.

[Bounded] De Morgan/Kleene/ Boolean lattices (cf. [11] and [10])3 are supposed
to be of the signature Σ[01] [the variety of all them being denoted by DMA/KA/BA,
respectively]. Given any n ∈ (ω \ 2), by Kn[,01] we denote the [bounded] Kleene
lattice such that (Kn[,01]�Σ+[,01]) , Dn[,01] and ¬Kn[,01]i , (n− 1− i), for all i ∈ n,
in which case en : 2 → n, j 7→ ((n− 1) · j) is an embedding of B2 , K2,01 ∈ BA into
Kn,01.

By DM4[,01] we denote the [bounded] De Morgan lattice such that (DM4[,01]�
Σ+[,01]) , D2

2[,01] and ¬DM4[,01]〈i, j〉 , 〈1− j, 1− i〉, for all i, j ∈ 2, in which case,
for every k ∈ 2, e3,k : 3 → 22, l 7→ {〈1− k, l − [l/2]〉, 〈k, [l/2]〉} is an embedding of
K3[,01] into DM4[,01], and so, for any ~m ∈ 2∗, we have the subalgebra DM4[,01]−~m ,
(DM4[,01]�(22 ∩

⋂
k∈img ~m(img e3,k))) of DM4[,01], DM4[,01]−k being isomorphic to

K3[,01] under e3,k, DM4[,01]−01 being isomorphic to K2[,01] under e3,k ◦ e3, where
k ∈ 2. In this connection, we use the following standard abbreviations going back
to [2]:

t , 〈1, 1〉,
f , 〈0, 0〉,
b , 〈1, 0〉,
n , 〈0, 1〉.

Then, for any ~c ∈ {n, b}∗, we set DM4[,01]−~c , DM4[,01]−(π1◦~c), in which case
DM4[,01]−~c = (22 \ (img~c)).

By LK(S)[{W/O}C] we denote the two-side propositional Σ01-sequent calculus
constituted by basic structural rules (and Sharings) [as well as {weak /ortho-}Cuts]

3Bounded De Morgan/Kleene/Boolean lattices are traditionally called De Morgan/Kleene/Bo-
olean algebras (cf. [1]).
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and the following rules collectively with inverse to these:

Left Right

(∧) Γ, φ, ψ � ∆
Γ, φ ∧ ψ � ∆

Γ � ∆, φ; Γ � ∆, ψ
Γ � ∆, φ ∧ ψ

(∨) Γ, φ � ∆; Γ, ψ � ∆
Γ, φ ∨ ψ � ∆

Γ � ∆, φ, ψ
Γ � ∆, φ ∨ ψ

(¬) Γ � ∆, φ
Γ,¬φ � ∆

Γ, φ � ∆
Γ � ∆,¬φ

(⊥) Γ,⊥ � ∆ Γ � ∆,⊥
Γ � ∆

(>) Γ,> � ∆
Γ � ∆ Γ �,∆,>

where φ, ψ ∈ FmΣ01 and Γ,∆ ∈ Fm∗
Σ01

. Then, LKSC is the propositional fragment
of Gentzen’ calculus [3] supplemented with rules inverse to the above logical ones
that are derivable in the original calculus, so they have same derivable rules, though
such is the case for the neither Cut- nor Sharing-free versions.

Remark 4.1. A two-side Σ01-matrix A is a model of LK iff the following hold:

(¬Aa ∈ (R/L)A) ⇔ (a 6∈ (L/R)A),(4.1)

⊥A 6∈ X,(4.2)

>A ∈ X,(4.3)

((a ∧A b) ∈ X) ⇔ ({a, b} ⊆ X),(4.4)

((a ∨A b) ∈ X) ⇔ (({a, b} ∩X) 6= ∅),(4.5)

for all a, b ∈ A and all X ∈ {LA, RA}. �

Put DM4 , 〈DM4,01, {t, n}, {t, b}〉 and DM4−~b , (DM4�DM4−~b), where ~b ∈
(2∗ ∪ {n, b}∗).
Theorem 4.2 (Strong Completeness Theorem). A Σ01-sequent rule is derivable in
LK(S)[C] iff it is true in DM4−(n)[b].

Proof. We use Remark 4.1 tacitly. Then, DM4−(n)[b], being (reflexive) [transi-
tive], is clearly a model of LK(S)[C]. Conversely, LK(S)[C] is multiplicative, in
view of Enlargement and Permutation, and contains all basic structural rules (and
Sharings) [as well as Cuts], in which case, by Lemma 3.1, it has a characteristic
class M of (reflexive) [transitive] two-side Σ01-matrices. Consider any A ∈ M.
Then, by (4.2), (4.3), (4.4) and (4.5), we see that, for every X ∈ {LA, RA},
χX

A ∈ hom(A�Σ+,01,D2,01), in which case h , (χRA

A ×χLA

A ) ∈ hom(A�Σ+,01,D
2,01
2 ),

and so, by (4.1), we eventually conclude that h ∈ hom(A,DM4,01). And what is
more, LA = h−1[{t, n}] and RA = h−1[{t, b}]. Finally, once A is (reflexive) [tran-
sitive], we also have (n)[b] 6∈ (img h). Thus, h is a homomorphism from A to
DM4−(n)[b]. Hence, by Proposition 4.3 of [15], any Σ01-sequent rule, being true in
DM4−(n)[b], is true in A, as required. �

Since B2 is isomorphic to DM4,01−nb, in view of Proposition 4.4 of [15], the
double-optional case of Theorem 4.2 incorporates the well-known strong complete-
ness theorem for LK having same derivable rules as LKSC (cf., e.g., [16]).

Let

τ : SeqΣ01
→ FmΣ01 , (Γ � ∆) →

{
⊥ if Γ = ∆ = ∅,
∨((¬ ◦ Γ),∆) otherwise.

and ρ : FmΣ01 → SeqΣ01
, ϕ→ (∅ � ϕ) (these are actually translations in the sense

of [9]). Then, the following key auxiliary observation is immediate:
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Lemma 4.3. Let Γ,∆ ∈ Fm∗
Σ01

, ϕ ∈ FmΣ01 and h ∈ hom(FmΣ01 ,DM4,01). Then,
(h(ϕ) ∈ {t, b}) ⇔ (DM4 |= ρ(ϕ)[h]) and (DM4 |= (Γ � ∆)[h]) ⇔ (h(τ(Γ �
∆)) ∈ {t, b}).

As a first immediate consequence of Lemma 4.3, we have:

Corollary 4.4. Let I be a set, A an I-tuple of submatrices of DM4, Γ,∆ ∈ Fm∗
Σ01

,
ϕ ∈ FmΣ01 and h ∈ hom(FmΣ01 ,

∏
i∈I Ai). Then, (h(ϕ) ∈ {t, b}I) ⇔ ((

⊗
A) |=

ρ(ϕ)[h]) and ((
⊗
A) |= (Γ � ∆)[h]) ⇔ (h(τ(Γ � ∆)) ∈ {t, b}I).

Since K3[,01]|K2[,01] is isomorphic to DM4[,01]−(n/b)|nb, the logic of the logical
Σ[01]-matrix 〈DM4[,01]−(n){b}, {t, b}{\{b}}〉 is nothing but [the bounded version of]
Belnap’s four-valued logic B4[,01] (cf. [2] and [7]) (resp., the logic of paradox LP[01]

equally being the logic of 〈K3[,01], 3 \ 1〉; cf. [6] and [8]) {resp., Kleene’s three-valued
logic K3[,01] equally being the logic of 〈K3[,01], 3 \ 2〉; cf. [4]} ({resp., the classical
logic PC[01] equally being the logic of 〈K2[,01], 2 \ 1〉}). In this way, by Theorem 4.2
and Lemma 4.3, we immediately get:

Corollary 4.5. LK(S)[C] is equivalent in the sense of [9] with respect to τ and ρ
to B4,01 (LP01) [K3,01] ([PC01]), respectively.

The double-optional case of Corollary 4.5 yields a new insight into the equivalence
of LK and PC (cf. [9]). Likewise, when restricting our consideration by merely non-
empty sequents and Σ-formulas, the ”()”-optional case of Corollary 4.5 collectively
with Cut Elimination in LKSC (cf. Corollary 4.16) yield a new insight into the
main result of [18]. In general, Corollary 4.5 collectively with [9] reduce the task
of finding (axiomatic) extensions of LK to that of B4,01. This clarifies the meaning
of the next subsections and, in general, makes the problem of finding (axiomatic)
extensions of B4,01 especially acute.

4.1. Prevarieties of Kleene algebras versus extensions of the logic of para-
dox and Kleene’s three-valued logic. Here, we tacitly follow [12].4 By Kn,
where n ∈ (ω \ 2), we denote the prevariety generated by Kn,01. Clearly, Kn ⊆ KA
(although, in case n = 3, the converse inclusion is well known to hold as well, it is
no matter for our further argumentation and, for this reason, is disregarded).

4.1.1. Extensions of Kleene’s three-valued logic. Here, we deal with ∇ , {x ≈ >}.
As K∇3,01 = 〈K3,01, 3 \ 2〉, to study extensions of K3,01 is to study subprevarieties of
K3. We start from recalling the following well-known auxiliary observations:

Lemma 4.6. B2 is embeddable into any non-one-element De Morgan algebra A.

Proof. In that case, ⊥A 6= >A, and so {〈0,⊥A〉, 〈1,>A〉} is an embedding of B2

into A, as required. �

Lemma 4.7. BA = K2.

Proof. Consider any Boolean algebra A and any distinct a, b ∈ A. Then, c , (a∨A

b) 
A d , (a∧A b). Therefore, by the Prime Ideal Theorem for distributive lattices
(cf., e.g., [1]), there is some prime filter F of A�Σ+ such that d 6∈ F 3 c, in which
case (a ∈ F ) ⇔ (b 6∈ F ), while ⊥A 6∈ F 3 >A, and so (e ∈ F ) ⇔ (¬Ae 6∈ F ), for all
e ∈ A. Hence, h , χF

A ∈ hom(A,B2). And what is more, (h(a) = 1) ⇔ (h(b) = 0),
in which case h(a) 6= h(b), and so A ∈ K2, as required. �

4In this connection, we take the opportunity to notice that the term ”prevariety” used therein,

being a part of algebraic folklore within the former USSR, is due to [20]. Prevarieties are exactly
implicational/abstract hereditary multiplicative classes in the sense of [11]/[5].
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Theorem 4.8. PC01 is the only consistent proper extension of K3,01 and is rela-
tively axiomatized by the Excluded Middle Law axiom x ∨ ¬x. In particular, PC01

has no proper consistent extension.

Proof. First, K∇3,01�{0, 2}, being isomorphic to B∇
2 , defining PC01, under e3, is the

only submatrix of K∇3,01 satisfying the axiom x ∨ ¬x, for this is not satisfied in
K∇3,01 under [x/1]. Hence, by Proposition 2.1, we conclude that PC01 is the proper
axiomatic extension of K3,01 relatively axiomatized by the axiom x ∨ ¬x. Finally,
consider any non-trivial prevariety P ⊆ K3 and the following two complementary
cases:

(1) P ⊆ BA.
Then, by Lemma 4.6, B2 ∈ P. Hence, by Lemma 4.7, the logic of P∇ is
equal to PC01.

(2) P * BA.
Take any A ∈ (P \ BA) 6= ∅. Then, there is some a ∈ A such that ¬Aa 6A

a 6= >A. Consider the following complementary subcases:
(a) ¬Aa = a.

Then, the mapping e : 3 → A defined by:

e(0) , ⊥A,

e(1) , a,

e(2) , >A,

is an embedding of K3,01 into A. Therefore, P = K3. Hence, the logic
of P∇ is equal to K3,01.

(b) ¬Aa 6= a.
Then, the mapping e : 4 → A defined by:

e(0) , ⊥A,

e(1) , ¬Aa,

e(2) , a,

e(3) , >A,

is an embedding of K4,01 into A. Therefore, P 3 K4,01. Hence, the
logic of K∇4,01 is an extension of the logic of P∇, being, in its turn, an
extension of K3,01. On the other hand, h : 4 → 3, i 7→ [(i + 1)/2] is a
surjective strict homomorphism from K∇4,01 onto K∇3,01, in which case
their logics are equal, and so the logic of P∇ is equal to K3,01.

Thus, in any subcase, the logic of P∇ is equal to K3,01.

This completes the argument. �

Combining Corollary 4.5 and Theorem 4.8 with [9], we immediately get:

Corollary 4.9. LKSC is the only proper consistent extension of LKC. In partic-
ular, LKSC has no proper consistent extension.

4.1.2. Extensions of the logic of paradox. Here, we deal with ∇ , {x ≈ (x ∨ ¬x)}.
As K∇3,01 = 〈K3,01, 3 \ 1〉, to study extensions of LP01 is to study subprevarieties of
K3.

By NP01 we denote the extension of LP01 relatively axiomatized by the Ex
Contradictione Quodlibet rule:

(4.6) {x,¬x} ` y.
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A Kleene algebra is said to be non-paraconsistent, provided the quasi-identity
∇(4.6) is true in it. The prevariety of all non-paraconsistent members of K3 is
denoted by NPK3.

Lemma 4.10. Let A be a non-one-element non-paraconsistent Kleene algebra.
Then, hom(A,B2) 6= ∅.

Proof. In that case, F , {a∨A¬Aa | a ∈ A} 3 >A and I , {a∧A¬Aa | a ∈ A} 3 ⊥A

are disjoint filter and ideal, respectively, of the distributive lattice A�Σ+. Therefore,
by the Prime Ideal Theorem for distributive lattices (cf., e.g., [1]), there is a prime
filter G ⊇ F of A�Σ+ disjoint with I, in which case (a ∈ G) ⇔ (¬Aa 6∈ G), for all
a ∈ A, and so χG

A ∈ hom(A,B2), as required. �

Proposition 4.11. NPK3 is generated by K3,01 ×B2.

Proof. Clearly, (K3,01 ×B2) ∈ NPK3. Conversely, consider any A ∈ NPK3 and any
distinct a, b ∈ A, in which case A is not one-element, and so, by Lemma 4.10, there
is some g ∈ hom(A,B2). Then, there is also some h ∈ hom(A,K3,01) such that
h(a) 6= h(b), in which case f , (h× g) ∈ hom(A,K3,01 ×B2) and f(a) 6= f(b), and
so A belongs to the prevariety generated by K3,01 ×B2, as required. �

As a consequence of Proposition 4.11, we have:

Corollary 4.12. NP01 is defined by 〈K3,01, 3 \ 1〉 × 〈B2, 2 \ 1〉.

By MP01 we denote the extension of LP01 relatively axiomatized by the Modus
Ponens rule for the material implication ¬x ∨ y:
(4.7) {x,¬x ∨ y} ` y,
being an extension of NP01. A Kleene algebra is said to be classical, provided the
quasi-identity ∇(4.7) is true in it. The prevariety of all classical members of K3 is
denoted by CK3 ⊆ NPK3.

Lemma 4.13 (cf. Lemma 4.14 of [12] for the constant-free case with B = {f, t}).
Let B be a subalgebra of DM4[,01] and ϕ ∈ FmΣ[01] . Suppose B ∪ {b} forms a
subalgebra of DM4[,01]. Then, (〈B, B ∩ {t, b}〉 ∈ Mod(ϕ)) ⇔ (〈DM4[,01]�(B ∪
{b}), (B ∪ {b}) ∩ {t, b}〉 ∈ Mod(ϕ)).

Proof. The metaimplication from right to left is by the fact B is a subalgebra of
DM4[,01]�(B ∪ {b}). Conversely, assume 〈DM4[,01]�(B ∪ {b}), (B ∪ {b}) ∩ {t, b}〉 6∈
Mod(ϕ), in which case there exists some h ∈ hom(FmΣ[01]

,DM4[,01]�(B∪{b})) such
that h(ϕ) ∈ {f, n}. Take any b ∈ B 6= ∅. Define a mapping g from the set V of all
variables to B by setting:

g(x) ,

{
b if h(x) = b,

h(x) otherwise,

for all x ∈ V . Let e ∈ hom(FmΣ[01]
,B) extend g. Recall that operations of DM4[,01]

(and so those of DM4[,01]�(B ∪ {b})) are regular, i.e., monotonic with respect to

the partial ordering v on 22 defined by (~a v ~b) def⇐⇒ ((a0 6 b0)&(b1 6 a1)), for
all ~a,~b ∈ 22. Moreover, e(x) = g(x) v h(x), for all x ∈ V , in which case, we have
e(ϕ) v h(ϕ) v n, and so we eventually get e(ϕ) ∈ {f, n}, as required. �

Proposition 4.14. MP01 = PC01.

Proof. Clearly, (4.7) is true in 〈B2, 2 \ 1〉, so MP01 ⊆ PC01. Conversely, consider
any (Γ ` ϕ) ∈ PC01. Then, by the Compactness Theorem (cf., e.g., [5]) with
propositional variables treated as nullary predicates, there is some ∆ ∈ ℘ω(Γ) such
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that (∆ ` ϕ) ∈ PC01. By induction on the cardinality of any Ξ ∈ ℘ω(FmΣ01),
let us prove that, for all φ ∈ FmΣ01 such that (Ξ ` φ) ∈ PC01, it holds that
(Ξ ` φ) ∈MP01. The case, when Ξ = ∅, is by Lemma 4.13 with B = {f, t} and the
inclusion LP01 ⊆MP01. Otherwise, take any ψ ∈ Ξ, in which case Θ , (Ξ\{ψ}) ∈
℘ω(FmΣ01), while |Θ| < |Ξ|, whereas, by the Deduction Theorem for PC01 with
respect to the material implication, we have (Θ ` (¬ψ ∨ φ)) ∈ PC01, and so, by
the induction hypothesis, we get (Θ ` (¬ψ ∨ φ)) ∈ MP01. Then, by (4.7), we
eventually get (Ξ ` φ) ∈ MP01. Thus, in particular, (∆ ` ϕ) ∈ MP01, in which
case (Γ ` ϕ) ∈MP01, as required. �

Theorem 4.15. Proper consistent extensions of LP01 form the two-element chain
NP01 ( MP01 = PC01, both having same axioms as LP01 does, and so being
non-axiomatic.

Proof. First, by Corollary 4.12, Proposition 4.14 and the fact that (4.6) is not true
in K∇3,01 under [x/1, y/0], while (4.7) is not true in 〈K3,01, 3 \ 1〉 × 〈B2, 2 \ 1〉 under
[x/〈1, 1〉, y/〈0, 1〉], we conclude that LP01 ( NP01 ( MP01 = PC01. Next, consider
any non-trivial prevariety P ⊆ K3 and the following three exhaustive cases:

(1) P ⊆ CK3.
Then, by Lemma 4.6, B2 ∈ P. Hence, by Proposition 4.14, the logic of P∇

is equal to PC01.
(2) P * CK3 but P ⊆ NPK3.

Take any A ∈ (P \ CK3) 6= ∅, in which case there are some a, b ∈ A such
that ¬Aa 6A a, ¬Ab 
A b and c , (b ∨A ¬Aa) >A ¬Ac. Put:

d , (a ∧A c),

e , (a ∧A b),

f , (e ∨A ¬Ab).

Using the fact that A ∈ KA, it is routine checking that:

d = (¬Ad ∨A e),(4.8)

f = (d ∨A ¬Ae).(4.9)

Moreover, since ¬Ad 6A d 6A f , while e 6A b �A ¬Ab, whereas A is both
non-paraconsistent and non-one-element, we also have e �A d 
A ¬Ad.
Hence, by (4.8) and (4.9), we conclude that the mapping g : (3 × 2) → A,
given by:

g(〈0, 0〉) , ¬Af,

g(〈1, 0〉) , ¬Ad,

g(〈2, 0〉) , ¬Ae,

g(〈0, 1〉) , e,

g(〈1, 1〉) , d,

g(〈2, 1〉) , f,

is an embedding of (K3×K2) into A�Σ. Consider the following complemen-
tary subcases:
(a) f = >A,

in which case ¬Af = ⊥A, and so g is an embedding of K3,01×B2 into
A. Hence, by Proposition 4.11, P = NPK3. Therefore, the logic of P∇

is equal to NP01.
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(b) f 6= >A,5

in which case ¬Af 6= ⊥A. Since {1} forms a subalgebra of K3, the
set B , (((3 × 2) × {1}) ∪ {〈0, 0, 0〉, 〈2, 1, 2〉}) forms a subalgebra of
(K3,01 ×B2)× K3,01. Then, the mapping h : B → A, given by:

h(〈0, 0, 0〉) , ⊥A,

h(〈2, 1, 2〉) , >A,

h(〈i, j, 1〉) , g(〈i, j〉),
where i ∈ 3 and j ∈ 2, is an embedding of B , (((K3,01 × B2) ×
K3,01)�B) into A. On the other hand, π0�B is a strict surjective ho-
momorphism from B∇ onto (K3,01 ×B2)∇. Hence, by Corollary 4.12,
the logic of P∇ is equal to NP01.

Thus, in any subcase, the logic of P∇ is equal to NP01.
(3) P * NPK3.

Take any A ∈ (P \ NPK3) 6= ∅. Then, A is not one-element and there is
some a ∈ A such that ¬Aa = a. In that case, the mapping e : 3 → A, given
by:

e(0) , ⊥A,

e(1) , a,

e(2) , >A,

is an embedding of K3,01 into A. Hence, P = K3. Therefore, the logic of P∇

is equal to LP01.
Finally, Lemma 4.13 with B = {f, t} completes the argument. �

Since the instance ∅ � y, x;x � ∅
∅ � y of ortho-Cut is not true in DM4−b ⊗

DM4−nb under [x/〈b, f〉, y/〈f, t〉], combining Corollaries 4.4, 4.5, 4.12, Lemma 3.1
and Theorem 4.15 with [9], we immediately get:

Corollary 4.16. LKS[W]C are the only proper consistent extensions of LKS, both
having same derivable axioms as LKS does, and so being non-axiomatic. Moreover,
DM4−b ⊗DM4−nb is characteristic for LKSWC, in which case some (ortho-)Cuts
are not derivable in it, so it is not multiplicative, and so has no characteristic class
of crisp two-side Σ01-matrices, while LKS[O]C have same derivable rules.

It is Corollary 4.16 that justifies the fuzzy semantic approach to sequent calculi
with basic structural rules developed here.

Since the admissibility of rules of LKS in the Cut-free version of LK is quite
immediate, Corollary 4.16 provides a new deep insight into Cut Elimination in
LK. More precisely, taking the proof of Lemma 4.13 into account, Cut Elimination
in LK appears to be just a consequence of the well-known regularity of operations
of Belnap’s four-valued (more specifically, Kleene’ three-valued) logic.

4.2. Axiomatic extensions of Belnap’s logic.

Theorem 4.17. LP[01] is the only proper consistent axiomatic extension of B4[,01]

and is relatively axiomatized by the Excluded Middle Law axiom x ∨ ¬x.
Proof. Consider any A ⊆ FmΣ[01] such that the axiomatic extension E of B4[,01]

relatively axiomatized by A is both proper and consistent, in which case A 6= ∅,
while, by Proposition 2.1, the set S , (Mod(A) ∩ S∗(〈DM4[,01], {t, b}〉)) defin-
ing E is not empty and does not contain 〈DM4[,01], {t, b}〉. Take any B ∈ S,

5It is this subcase that is the pecularity of the bounded case making the latter essentially
beyond the scopes of [12], and so the present study — beyond [18].
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in which case it is both consistent and, as A 6= ∅, truth-non-empty. Hence,
{f, t} ⊆ B. Therefore, if n was in B, then B ∪ {b} would be equal to 22, in
which case, by Lemma 4.13 with B = {f, n, t}, 〈DM4[,01], {t, b}〉 would belong
to S. Thus, B ∈ {{f, t}, {f, b, t}}. Then, by Lemma 4.13, we conclude that
〈DM4[,01]−n, {t, b}〉 ∈ S ⊆ S∗(〈DM4[,01]−n, {t, b}〉), and so E = LP[01]. Finally,
(Mod(x ∨ ¬x) ∩ S∗(〈DM4[,01], {t, b}〉)) = S∗(〈DM4[,01]−n, {t, b}〉). Then, Proposi-
tion 2.1 completes the argument. �

This strengthens Corollary 5.3 of [7]. In this way, combining Corollary 4.5 and
Theorem 4.17 with [9], we eventually get:

Corollary 4.18. LKS is the only proper consistent axiomatic extension of LK.

5. Conclusions

The principal methodological contribution of this work consists in proper ex-
tending the paradigm ”fuzziness versus non-multiplicativity” going back to [13] to
two-side sequent calculi with merely basic structural rules as well as signed sequent
calculi of [15].

And what is more, the present study comprehensively discloses the hidden many-
valued substance of substructural varsions of LK, partially discovered in [18] for
the Cut-free version. In this connection, it yields a new deep insight into the Cut
Elimination in LK appearing to be just a consequence of the well-known regular-
ity of operations of Belnap’s four-valued (more specfifically, Kleene’s three-valued)
logic.
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