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Abstract. Malware epidemiology, especially the modelling and simu-
lation of malware propagation, has been theorised to improve malware
outbreak preparedness and drive decision making during real time epi-
demics. However, practical methods to make use of malware epidemiol-
ogy are significantly lacking at every level, whether within organisations
or at country and global levels. To fill this gap, we present a novel and
automatic method to protect networks with a community structure us-
ing the malware epidemic final size, one of the most important metrics
of a malware outbreak. We treat the final size probabilities abstracted
from the simulations as a “signal”. We process the “signal” so that the
final sizes can be correlated with the communities identified within a
network to gain practically usable insights. Finally, we define thresholds
and rules built on such insights to deploy automatic protection on the
network of concern. To our knowledge, this is the first attempt to make
use of malware propagation simulation results as a signal. We show that
not only theoretically, but practically malware epidemiology can be used
in an automatic manner to protect networks. This study should act as
the foundation and inspiration for industrial deployments of malware
epidemiology.

Keywords: malware epidemiology · malware propagation · model · sim-
ulation · epidemic final size · outbreak severity · signal processing · signal
smoothing · rule · threshold · network · community · cluster · stochastic
model · agent-based model.

1 Introduction

Computer systems are being embedded into the day-to-day activities of modern
society at an unprecedented speed. As such, securing computing systems and
infrastructure has become more critical than ever. The huge losses and damages
from cybercrimes, e.g., WannaCry [2], NotPetya, and Equifax Data Loss, just
highlight the importance of robust and agile cyber security. In 2011, Detica/the
UK Cabinet Office estimated cybercrime was costing the UK £27Bn annually,
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about 1.8% of GDP, (£3Bn from individuals, £3Bn from the government and a
massive £21Bn from companies [1]. The 2017 Norton report on cyber security
presented a shocking figure of £130Bn cybercrime loss globally [5].

All areas of cyber security, from research to field operations, are undergoing
rapid transformation driven by technological advances such as automation, big
data analytics and artificial intelligence. Many products and tools are being
developed to address different areas of security, e.g. end-point, network, cloud,
mobile, threat intelligence, and anti-fraud and identity management.

Protecting the networks and computing systems has been predominately
achieved through malware or intrusion detection mechanisms which are reactive
in nature. This means adversarial events such as malware infection or propaga-
tion have already taken place or are taking place if the detection mechanisms
are at real time. Therefore it is imperative to introduce predictive measures
to the anti-malware arena. Malware epidemiology, especially the modelling and
simulation of malware propagation, has long been believed to provide predictive
insights and drive decision making, with the first malware epidemiology study
published in 1991 [3]. However, agent-based malware propagation models includ-
ing network-based models are significantly lacking [6] and practical methods to
make real world use of malware epidemiology have not been seen.

In the following sections, the authors present a novel method to quantify
and analyse the simulation results from stochastic network-based malware prop-
agation models. The method processes the simulation results as a signal and
summarises the results in a way to directly aid automatic network protections.
To our knowledge, this is the first practical and quantitative method to make use
of malware propagation simulation results in network protection. As the method
developed is complex in nature, we do not use the traditional scientific publish-
ing format of methods and results to present it; rather, we discuss the method
and an experiment to demonstrate its use in a combined way.

2 Identify the network communities

2.1 The network structure

We first explain several graph terms and how we define nodes, edges and network
structures in this paper:

1. Node/vertex
In graph theory, the terms of node and vertex are used equivalently. We will
primarily use the term node, unless stated otherwise.

(a) A node represents a computing device or system.
(b) The node changes infection status, e.g. susceptible to infected, infected

to removed.
(c) Each node can also carry attribute information, e.g. node ID, business

affiliation, IP subnet.

2. Edge
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(a) An edge connects two vertices, representing that these two vertices have
direct interactions between each other which can result in malware in-
fection.

(b) Each edge can also carry attribute information, e.g. edge ID, which edge
connects which nodes, frequency of interactions per edge.

We used a publicly available social network data set to demonstrate our idea,
however the application to a social network should not seen as exclusive. Our
method applies to any network in which malware can propagate and communities
can be identified. The data set we will be primarily working with is a network
of anonymised Facebook friends. This is a network consisting of 4039 nodes
with edges connecting those who are friends. The detailed description of this
data set can be found in Leskovec et al.[4]. To prepare for further analysis, we
need to group all the nodes and edges into different communities by features
of the graph. These communities in the real corporate world reflect the lines of
businesses, the collaborating teams and the IP subnets the devices are connected
into, depending on the information being collected.

2.2 Detect and group nodes into communities

After experimenting several community detection methods, we chose the asyn-
chronous fluid method due to its relatively fast computational speed. The grouped
communities of the Facebook data set are shown in Fig. 1, where the different
communities are clearly marked in different colours. It is noticeable that some
bridging nodes connect the different communities and these bridging nodes will
play a vital role in either delaying or stopping the spreading of malware, or
helping malware spread into other communities.

To investigate the relationship between different communities and different
epidemic final sizes, we need to simulate the epidemic final sizes starting from
different nodes within the communities.

3 Simulate epidemic final sizes using malware
propagation models

We performed 20 malware propagation simulations beginning at each node, i.e.
patient zero, within this network, with a moderate average node to node infec-
tion transmission rate of βt = 0.05 and an average removal rate of γt = 0.2 for
time unit t. In total this resulted in approximately 80, 000 simulation runs. We
used the simple compartmental Susceptible-Infected-Removed model for this ex-
periment, however the methods described can be applied to any spreading model
on a network with community structures, e.g. the compartmental status changes
can be any SIR variation. Our simulations were run until all the infected nodes
had become removed nodes and we recorded the epidemic final sizes for all of
the runs. The final sizes are plotted against the epidemic starting node in Fig. 2.

Visibly there is a distinctive pattern that certain starting nodes will result in
very different final sizes, e.g. epidemics starting from certain nodes between ID
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Fig. 1. A visualisation of the communities detected by the asynchronous fluid method
in the Facebook data set.
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500 and ID 1000 are quite likely to result in small epidemics around 250 infected
nodes. This is hardly seen in epidemics starting from other nodes. It is also
worth noting that a significant number of simulations are required to see this
pattern, otherwise randomness dominates. With the complexity of the network
being studied increasing, the number of simulations should increase accordingly.

Fig. 2. Positional dependency of malware epidemic final size to the epidemic starting
node from approximately 80,000 epidemic simulations. Y axis is the final sizes and X
axis is the starting node ID. Note: The node IDs also correlate with the communi-
ties they belong, i.e. the node IDs are sequential when the nodes belong to the same
community, which makes the patterns more visible when plotted in this way.

4 Smooth the final size probabilities as a signal

4.1 Calculate the probability of each final size

The aim is to group the final size into subsets of high density. For example, if
we were to do this visually using Fig. 2, we might decide to split the final sizes
into the following ranges: [1] , [2, 100], [100, 250], [250, 3300], [3300, 3600], [3600,
3750], [3750, 4039], each of which exhibits different behaviour.
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We first calculate the estimated probability of observing each final size in all
simulations. This is a frequency probability calculated by adding up the number
of times we observed this final size within the simulations, divided by the total
number of simulations. An example of which is shown as Fig. 3.

Fig. 3. The probability density dot plot of each final size in the Facebook example. Y
axis is the probability of getting a specific epidemic size. X axis is the epidemic size.
On the right hand side we include zoomed in high-density probability areas.

As stated in earlier sections, the idea is to find the high-density final size
ranges that can aid malware infection preparedness. Therefore we are interested
in the boundaries of the value ranges. Results shown in Fig. 3 clearly have some
kind of noise, particularly around the local minima and maxima. Should we
apply algorithms to find the local minima and maxima to the raw data, the
ranges found are likely to be affected by this noise. Hence we need to apply
smoothing functions to remove such noise.

4.2 Apply a smoothing function

There exist many different algorithms to smooth data, a large portion of which
come from the field of signal processing. Although our requirement is different,
we can note that we expect the probability of a final size of “X” to be related to
the probability of a final size of “X+1” . As such we can apply these methods
to smooth our data.

The aim is to pick out the key features of the final sizes, to be successful
in this we need to remove the noise to ensure we do not just pick out random
fluctuations. As such we choose to use one-dimensional Gaussian filter to smooth
the data. In the experiments, we used scipy.ndimage.filters.gaussian filter1d
within the scipy module in Python as it produces a good, smooth fit to the data.
Additionally, within the methods we have developed we allow for two additional
smoothing choices: triangle moving average and a kernel smoother. Together
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with the Gaussian filter these three functions have been selected as they ensure
the curve is smooth and thus we can use methods already developed to find the
key features. Throughout we choose to use the Gaussian filter; however, during
the process of experimenting different smoothing algorithms, we note that the
kernel smoother results in almost identical smoothed data.

The Gaussian smoothing function requires the parameter σ to be selected,
with larger σ indicating that we require more smoothing. We expect this to be
related to the number of simulations we have run. Additionally we expect that
we may always require some smoothing as the true underlying distribution will
not necessarily be smooth due to the network structure. Therefore to automate
this we choose to set σ as a function of the standard deviation of the data, with
a minimum value (σmin) placed so that we always perform some smoothing.
Therefore

σ = max

(
σmin,

√
var(data)

M

)
(1)

i.e. the smoothing parameter is the standard deviation of the simulated data
divided by the square root of the number of simulations. We take σmin = 5
for the experiments as this seems appropriate. This choice of σ makes intuitive
sense as with greater number of simulations the standard error decreases and
therefore we require less smoothing of the data. We plot the smoothed data with
the original data in Fig. 4. We can see that the high-density areas and the local
minima that separate these areas are still present.

Fig. 4. The smoothing probability curve overlaying the probability density dot of each
final size in the Facebook example. Y axis is the probability of getting a specific epi-
demic size. X axis is the epidemic size. On the right hand side we include zoomed in
the high-density probability areas and the smoothing cure of those areas.



8 XS Wang et al.

5 Group the final sizes into ranges

5.1 Find all the boundary values marked by local minima in the
smoothed probability

To find the subset of high-density and low-density areas, we need to identify
the boundaries that separate these ranges. Again, we treat the problem as a
signal processing problem but also as an optimisation problem. We use a signal
processing method to find all the local minima among the smoothed probability
“signal” curve by comparing the neighbouring values surrounding each value.
In the experiment, we reverse the curve along the Y axis and use a peak find-
ing method (signal.find.peaks within the scipy module in Python) to find the
maxima and the corresponding x axis values which are the boundaries we are
interested in. The boundaries identified are presented in Fig. 5.

Fig. 5. The high-density and low-density ranges of the smoothed probability “curve”
as separated by the boundaries. The boundary values are marked by the vertical lines.

5.2 Merge the original ranges using thresholds/rules

Using the above approach alone, the ranges identified can be very short, as seen
in Fig. 5. This is as, although we smoothed the curve, there is still noise. Short
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ranges are not suitable for further analysis and network protection because we
are not interested in a final size range with a low probability to reach, therefore
we must merge the ranges. In other words, we need to avoid having ranges in
which the probability of reaching such a final size range is very small. We achieve
this by automatically and sequentially going through the ranges following some
thresholds or rules, e.g. maximum 10 groups, range probability values.

In the experiment, we first add up the probability of reaching each value
within one range as shown in Fig. 5, e.g. if the range before merging is [250, 251, 252],
its range probability is P (final size 250) + P (final size 251) + P (final size 252).
Doing this for all ranges, it forms a series of range probability values. We then
go through the range probability values; and if the range probability is less than
merging parameter M , we then check to see if its neighbour’s probability is also
less than M , if so then join the two ranges. We choose to set M so that it satisfies
M = min(0.01,Mq) and M = max(0.001,M) where Mq is the qth percentile of
the range probabilities, usually we use M10. This ensures that if we have small
peaks these are still given the chance to be picked out.

Additionally we set a max number of ranges as rmax = 15. Then if we have
too many ranges we increase M by 0.1 and perform the collapsing from scratch
with the new M , this is repeated until we have at most rmax intervals. This is
to ensure the final output is readable and usable.

After merging the ranges using this method, the final ranges for the ex-
periment are shown in Fig. 6. We can see that there are eight ranges left after
merging. These ranges will be analysed together and the community information
detected from the network in the next step.

How many final ranges for network protection depends on practical needs and
what makes sense. We could simply use quantiles of the range probability values
to merge. For example, we could find out the 10-quantiles of the range probability
values and merge with the cut points defined by 10-quantiles although this simple
method may be improved with further rules to insure the ranges are not too small
when some of the cut points defined by quantiles are very small values.

6 Identify granular community
information/characteristics through relationship
analysis between final size range and community
contributions

We next aim to find a concise way but meaningful way to make real-world
use of the findings. Until now, both the communities introduced in Section 2
and the final sizes (Sections 3 to 5) have been grouped automatically. We can
therefore now carry out a number of different types of analysis which quantify
the relationships between communities and the epidemic final sizes, e.g. the
percentage contribution of each community of nodes to the different final size
ranges, the communities which resulted in the most infection cases. We use the
experiment to demonstrate how to analyse such data and draw useful knowledge
which can inform on thresholds and rules to be used for network protections.
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Fig. 6. The high-density and low-density areas of the smoothed probability “curve” as
separated by the boundaries. The boundary values are marked by the vertical lines.
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6.1 Epidemic starting community and final size

The number of nodes within each community from the Facebook data set is
presented in Table 6.1. There are eight communities detected within the network,
each containing hundreds of nodes.

Table 1. The number of nodes within each community.

Community Name A B C D E F G H

Number of nodes 553 209 348 545 267 525 840 752

For each distinct final size range and for each epidemic simulation starting
community, we calculate the frequency relative to approximate 80,000 malware
propagation simulation runs, i.e. the relative frequencies, which are shown as
percentages in Table 6.1. Such analytics provide a way to quantify the damage
of malware infection in terms of the total number of infected systems, should
there be no additional measures to stop the malware from infecting the machines
but only the routine removal rate. Certain quantitative community epidemic
knowledge can be drawn from the contribution probabilities to the epidemic
final sizes presented in the table below:

– All of the communities have at least a 50% chance of producing an outbreak
of greater than 3600 individuals.

– Communities A, G and H have the largest chance of producing a severe
(> 3600) outbreak. In other words, these communities are prone to large scale
spread within the community and therefore are considered more vulnerable
to malware attacks.

– Communities B and F contribute to different rare final size ranges which
means they are isolated communities which are more resilient to malware
attacks. Malware attacks are less likely to spread out from them if started
there or are less likely to spread into them if not started there.

To summarise, Table 6.1 informs us about the relationship between the final size
and community in which the outbreak begins.

7 Protect network communities automatically

7.1 Set up rules and thresholds

The ultimate goal is to protect the network communities automatically using
the insights gained from the algorithms presented in the preceding sections. As
described above, modelling and simulation results have to be summarised into
probabilistic findings which can be used to inform the appropriate protection of
the network communities. In particular, any values can be used to set up rules
or thresholds so that once rule conditions are met, protective measures including
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Table 2. The probability of observing a particular final size, given the outbreak begins
in each community represented in percentage.

A B C D E F G H

Final size range %

[0, 19] 3.4 17.4 23.2 14.6 16.6 14.3 6.1 4.8

[20, 75] 0.0 0.0 0.0 0.0 0.0 4.5 0.0 0.0

[76, 129] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

[130, 217] 0.0 29.0 0.0 0.0 0.0 0.0 0.0 0.0

[218, 3374] 0.5 0.0 0.3 0.2 0.2 0.3 0.3 0.3

[3375, 3599] 27.4 0.4 20.5 24.1 24.0 22.2 27.2 27.2

[3600, 3852] 68.8 53.2 56.0 61.0 59.1 58.7 66.4 67.8

[3853, 4039] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

prevention and intervention measures are deployed automatically, e.g. re-routing,
alerting choking nodes, increasing traffic scans on choking nodes. Such protective
measures can include but are not limited to: an anti-malware facility; a malware
filter; a malware detector; a block, preclusion or cessation of interaction; and a
reconfiguration of one or more computer systems.

Here is one example on how to use the experiment results above to set up
rules:

– If
(a final size >= a threshold value, e.g. >= 3600 infected cases; >= 60% of
total systems
AND
a probability of reaching such a final size given a starting community >= a
certain percentage, e.g. probability of reaching >= 3600 infected cases >=
60%)

– Prepare for malware attacks and deploy protective measures to those com-
munities should a malware be detected, e.g. raising alerts/increasing traffic
scans to the users or user communities to be most likely affected.

It is worth noting that we presented a fixed value for the threshold to be
set in the above example and a more systematic approach would be to look at
the cost function and balance out the cost of a large outbreak and the cost of
potential disruptions by any network protection measure, e.g. air-gapping will
protect systems but will also stop systems and network to function normally and
incur cost.

8 Discussion

In this paper, we describe a quantitative and automatic method of making use
of simulation results from stochastic network-based malware propagation mod-
els. We show that although the simulation results are complex and difficult to
quantify, significant progress can be made by analysing the simulation results
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as a signal. There are many steps in the method presented in this paper; each
step also includes a number of sub-algorithms. We summarise the major steps
as follows:

1. Identify the network communities
2. Simulate epidemic final sizes using malware propagation models
3. Smooth the final size probabilities as a signal
4. Group the final sizes into ranges
5. Identify community epidemic information/characteristics
6. Protect network communities automatically with rules and thresholds

There have been many theoretical and academic studies to address malware
epidemiology, however the majority focus only on demonstrating the possibility
of modelling. For studies which focused on stochastic models, the results pre-
sented were usually simulation examples which cannot be directly used in real
world protections [7]. Hardly any research looks into analysing all the simula-
tions in a collective way. In an ideal and simple world, the problems can be
modelled using mathematical methods with analytical solutions. However, usu-
ally this is not possible as malware propagation on a large network consisting
of many nodes and edges cannot be modelled analytically. We seek stochastic
models and simulation results to gain insights in the complex world.

We use epidemic final size as an example to demonstrate how to analyse
modelling and simulation results quantitatively and subsequently use such results
to serve protection purposes. The general method of treating the simulation
results as a probabilistic signal are generalisable to using simulation results on
other key measures of malware epidemics or even other spreading agents, e.g.
infectious disease spreading.

We acknowledge that the network information is not always easy to obtain,
but with data becoming increasingly accessible and advancements in data shar-
ing technologies [8], we expect to see more information on large and complex
networks become available for modelling and simulation. We also acknowledge
quantifying simulation results focusing on different measures of epidemics will
require different considerations, but we argue that treating simulation results
as a signal is a good way to identify patterns and to develop methods for the
automatic deployment of network protections.

To our knowledge, this is the first attempt to make use of malware propa-
gation simulation results as a signal to aid network protection. We show that
not only theoretically, but practically malware epidemiology can be used in an
automatic manner to protect networks. This study should act as the foundation
and inspiration for industrial deployments of malware epidemiology.
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