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ABSTRACT 

One of the interesting applications is in creating computers at the AGI ( 

Artificial General Intelligence ) level equal to human intelligence. Designing 

AGI is basically creating the human brain on a computer. General 

intelligence has tons of components and required testing on many functions 

from image recognition, to the ability to write an essay, to solving Inverse 

Kinematic problems, etc. In this paper, we present a AGI – a large scale 

neural network model to achieve General Intelligence involving different 

components. The AGI model contains three subsystems : (1) EEG based 

system where Xiang Zhang et all, proposed a novel deep neural network 

based learning framework that affords perceptive insights into the 

relationship between the EEG data and brain activities and designed a joint 

convolutional recurrent neural network that simultaneously learns robust 

high-level feature presentations through low-dimensional dense 

embeddings from raw EEG signals. The proposed approach has been to 

use results of this study as it is and use simulated conditions as true input 

for our  study; (2) Image system that contains an encoder to convert the 

input into abstract representations, and a deep image reconstruction which 

optimizes the output of the decoded images so that it more closely 

resembles the actual or true images, in combination with a multi-layered 

convolutional neural network ( CNN ) to simulate the same processes that 

occur when a human brain perceives images; (3) a LSTM that combines 

inputs in the forms of both EEG and Image, and predict text symbols 

associated with images and next images accordingly. In this work, the 



proposed AGI model illustrates the ability to incrementally learn different 

functions and form a machine programming loop that enables interactions 

between EEG signals and Image system, and possibly possess human-like 

general intelligence. 

INTRODUCTION 

One of the most  interesting applications is in creating computers at the 
AGI( Artificial General Intelligence; equal to humans )  level of intelligence. 

Right now, we have ANI (artificial narrow intelligence); AI that is good at 
specific tasks. Example A self-driving car won’t be good at predicting stock, 
but it’s intelligent at driving. In the future, we’re striving for AGI which can 
drive cars and predict stocks plus do everything in between. 

Designing AGI is basically creating the human brain, on a computer. In 
order to reach AGI,  It would be ideal if AGI designs itself.  

It is possible to achieve AI designing AI, and perhaps Genetic Algorithms 
could offer solution to this. 

Presently, what we’re lacking is architecture for our powerful computers to 
run intelligently. So in theory, we can use our super powerful computers,  
and have them use the genetic algorithm to find the best structure for their 
code and they would evolve their code by running the codes on various 
tasks to test intelligence.  

The above function will be very lengthy and complex. General intelligence 
has tons of components, and it is necessary to test the code on many 
functions from image recognition, to the ability to write an essay, to solving 
Inverse kinematic problems, etc. This will take many years to develop. 

METHODOLOGY 

In an attempt to model human-level General Intelligence patterns in 
machines,  We  created a large-scale artificial neural network inspired by 
the human vision, audition, dynamics,  memory and attention processes 
that take place as people are performing a given task  including the 
maintenance and manipulation of information. 

https://techxplore.com/tags/artificial+neural+network/


We proposed a AGI model  with an aim to form a human-like general 
intelligence  programming  process in a machine. 

The Artificial General Intelligence model  has three key components: an 
EEG system, an image system and an artificial neural network 
implemented by LSTM. An EEG system consists of a unified deep learning 
framework that leverages recurrent convolutional neural network to capture 
spatial dependencies of raw EEG signals based on features extracted by 
convolutional operations and temporal correlations through RNN 
architecture. Also, an Autoencoder layer is fused to cope with the possible 
incomplete and corrupted EEG signals to enhance the robustness of EEG 
classification. The results of  their study, Xiang Zhang et all, has been  
used as it is and used simulated conditions as true input for our  study. 

The second sub-system, an image system  that contains an encoder to 
convert the input into abstract representations, and a multi-layered CNN to 
classify image scenarios from real level representations. The final 
component of the AGI Model mimics the human brain by a LSTM, 
combining inputs of both image and EEG representations to  predict text 
symbols associated with images and next images accordingly.  

We  evaluated the AGI Model in a sequence of experiments and found that 
it successfully acquired general intelligence tasks in a cumulative way. The 
technique also formed the 'machine programming loop," showing an 
interaction between  EEG signals and images. In the future, the AGI model  
could aid the development of more advanced AGI, which is capable of 
human-level  general intelligence  strategies on a machine.  
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Figure 1 : AGI Model 

IMAGE SUBSYSTEM 

We have already heard of image or facial recognition or self—driving cars. 
These are real-life implementations of Convolutional Neural Networks 
(CNNs).  We implement these deep, feed-forward artificial neural networks 
by overcoming overfitting with the regularization technique called “dropout”.  

We have used the MNIST dataset for traing and testing the image 
processing.The MNIST database (Modified National Institute of Standards 
and Technology database) is a large database of handwritten digits that is 
commonly used for training various image processing systems. The MNIST 
database contains 60,000 training images and 10,000 testing images. To 
load the data, we first need to download the data from the  link and then 
structure the data in a particular folder format  to be able to work with it. 
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https://en.wikipedia.org/wiki/Database
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From the above, we can see that the training data has a shape of 60000 x 
784: there are 60,000 training samples each of 784-dimensional vector. 
Similarly, the test data has a shape of 10000 x 784, since there are 10,000 
testing samples. 

The 784 dimensional vector is nothing but a 28 x 28 dimensional matrix. 
That's why we will be reshaping each training and testing sample from a 
784 dimensional vector to a 28 x 28 x 1 dimensional matrix in order to feed 
the samples in to the CNN model. 

As a first step, we convert each 28 x 28 image of the train and test set into 
a matrix of size 28 x 28 x 1 which is then fed into the network. 

The Deep Artificial Neural Network 

We used  three convolutional layers: 

 The first layer will have 32-3 x 3 filters,  

 The second layer will have 64-3 x 3 filters and  

 The third layer will have 128-3 x 3 filters.  

In addition, there are three max-pooling layers each of size 2 x 2. 

We used a RELU as our activation function which simply takes the output 
of max_pool and applies RELU. 

Flattening layer: 

The Output of a convolutional layer is a multi-dimensional Tensor. We want 
to convert this into a one-dimensional tensor. This is done in the Flattening 
layer. We simply used the reshape operation to create a single dimensional 
tensor. 

Fully connected layer: 

 

Now, let’s define and create a fully connected layer. Just like any other 
layer, we declare weights and biases as random normal distributions. In 
fully connected layer, we take all the inputs, do the standard z=wx+b 
operation on it. The Fully Connected Layer has 128 Neurons. 

 



We added Dropout into the network to overcome the problem of overfitting 
to some extent and also to improve the training and validation accuracy. 
This way, turning off some neurons will not allow the network to memorize 
the training data since not all the neurons will be active at the same time 
and the inactive neurons will not be able to learn anything. 

The Test results show good accuracy between training and validation data 

CONVERTING EEG SIGNALS TO TEXT       

An electroencephalography (EEG) based Brain Computer Interface (BCI) 
enables people to communicate with the outside world by interpreting the 
EEG signals of their brains to interact with the world.  In a research paper, 
Xiang Zhang et all (https://arxiv.org/pdf/1709.08820.pdf )  proposed a novel 
deep neural network  based learning framework that affords perceptive 
insights into the relationship between the MI-EEG( Motor Imagery EEG ) 
data and brain activities. They designed a joint convolutional recurrent 
neural network that simultaneously learns robust high-level feature 
presentations through low-dimensional dense embeddings from raw MI-
EEG signals. They also employ an Autoencoder layer to eliminate various 
artifacts such as background activities. The proposed approach has been 
evaluated extensively on a large scale public MI-EEG dataset and a limited 
but easy-to-deploy dataset collected in their lab. The results show that the 
adopted approach outperforms a series of baselines and the competitive 
state-of-the art methods, yielding a classification accuracy of 95.53%. The 
applicability of their proposed approach is further demonstrated with a 
practical BCI system for typing. 

The main offerings of this paper are highlighted as follows: 

 •  Designed a unified deep learning framework that leverages recurrent 
convolutional neural network to capture spatial dependencies of raw EEG 
signals based on features extracted by convolutional operations and 
temporal correlations through RNN architecture, respectively. Moreover, an 
Autoencoder layer is fused to cope with the possible incomplete and 
corrupted EEG signals to enhance the robustness of EEG classification. 

 •  Evaluated extensively  the model using a public dataset and also a 
limited but easy-to-deploy dataset that was collected using an off-the-shelf 
EEG device. The experiment results illustrate that the proposed model 
achieves high level of accuracy over both the public dataset (95.53%) and 



the local dataset (94.27%). This demonstrates the consistent applicability of 
the proposed model.  

 •  Also presented an operational prototype of a brain typing system based 
on the proposed model, which demonstrates the efficacy and practicality of 
adopted approach.  

The proposed model consists of a design - an RNN model consisting of 
three components: one input layer, 5 hidden layers, and one output layer. 
There are two layers of Long Short-Term Memory (LSTM)  cells among the 
hidden layers. While RNN is good in exploring the temporal (inter-sample) 
relevance, it is unable to appropriately decode spatial feature (intra-sample) 
representations. To exploit the spatial connections between different 
features in each specific EEG signal,   a CNN structure is designed. The 
CNN structure is comprised of three categories of components: the 
convolutional layer, the pooling layer, and the fully connected layer. The 
convolutional layer contains a set of filters to convolve with the EEG data 
and then through the feature pooling and non-linear transformation to 
extract the geographical features. CNN is well-suited to extract the spatial 
relevance of the 2-D input data efficiently. 

Next, a feature adaptation method is designed to map the stacked features 
to a correlative new feature space which can fuse the temporal and spatial 
features together and highlight the useful information. To do so, an 
Autoencoder layer is introduced to further interpret EEG signals, which is 
an unsupervised approach to learning effective features. The Autoencoder 
is trained to learn a compressed and distributed representations for the 
stacked EEG feature   . The input of Autoencoder is the stacked temporal 
and spatial feature   . Assume h,   

 
' denote the hidden layer and output 

layer data, respectively. 

The data transformation procedure is described as the following: 

                                                h = Wen X' + ben  

                                                 
 
' = Wde h + bde 

where Wen, Wde, ben, bde denote the weights and biases in the encoder 
and decoder. 

LSTM SUBSYSTEM 



The LSTM subsystem contains a LSTM and a fully connected layer. It 

receives inputs from both EEG and image subsystems in a concatenated 

form of c(t) = [T(t),I(t)] at time t, and gives a prediction output a'(t) = 

[T''(t),I'(t)]  , which is expected to be identical to a(t + 1) = [T(t + 1),I(t + 1)] 

at time t+1. This has been achieved with a next image prediction (NIP) . So 

given an input image, the LSTM  can predict the corresponding image 

description.  The strategy of learning by predicting its own next element is 

essentially an unsupervised learning. 

The Training is based on the next image prediction (NIP). The LSTM-FC is 

trained by the NIP principle, where the goal of the LSTM-FC is to output the 

representation vectors (including both text and image) of the next image / 

element.  At time T, the LSTM of AGI Model  generated  the guided digit 

instance, which required the understanding of the previous text description 

and observed images. 

The  LSTM subsystem was trained separately after vision and EEG 
components had completed their functionalities. We have trained the 
network to accumulatively learn different images, and the related text 
results. Finally, it is demonstrated how the network forms a thinking loop 
with text descriptions and observed images.  

The LSTM  layer serves as working memory, that takes the concatenated 
input [T,I] from both EEG and image subsystems, and output the predicted 
next image representation that could be fed back into both subsystems to 
form a guided loop.  

RESULTS 

The objective of this study is to classify images along with image 
descriptions given by participants in text form on the test dataset. The 
technique involved training neural networks to associate patterns of brain 
activity with human thought about images in text form. Both the image and 
its description are concatenated to predict the outcome of the Model. 

In this paper, we have not implemented converting EED signals to Text but 

taken the results of the study by Xiang Zhang et all ( 

https://arxiv.org/pdf/1709.08820.pdf 



) as the basis. However, the results of the study are simulated into different 

image descriptions in Text form to test our architecture of AGI Model. 

After  200 steps training, AGI Model could not only reconstruct the input 
image  but also predict the element / image  with associated text symbols 
and  correct image description just after the image classification. AGI has 
the capacity to correctly predict the next image and the associated 
description with correct text symbols at the proper time point. After training 
of 200 steps, AGI Model could classify  various images with correct text 
description (accuracy = 16%). Note that, the classification process is not 
performed  by large dataset, but by small number of training steps or 
iterations which is  resulting in less accuracy. 

CONCLUSION 

In this paper, we have described AGI – a large scale neural network model 

to achieve human-like General Intelligence involving different functions. We 

presented a hybrid deep learning model to decode the raw EEG signals for 

the aim of converting the user”s thoughts to texts. The model employs the 

RNN and CNN to learn the temporal and spatial dependency features from 

the input EEG raw data and then stack them together. Our proposed 

approach adopts a method called “ deep image reconstruction “ which 

optimizes the output of the decoded images so that it more closely 

resembles the actual or true images, in combination with a multi-layered 

CNN. We evaluate our approach on simulated dataset for EEG and MNIST 

dataset for Image subsystem. The results are encouraging and form the 

basis for creating human-level General Intelligence on a machine. 
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