

Characteristics of Common Experimental Dialogue Tasks: a Systematic Review & Taxonomy

Ella Cullen, Patrick Healey, Paraskevi Argyriou and Suyog Pipliwal

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

July 24, 2023

## Characteristics of Common Experimental Dialogue Tasks: A Systematic Review & Taxonomy

Ella Cullen<sup>1</sup>, Patrick Healey<sup>1</sup>, Paraskevi Argyriou<sup>2</sup>, and Suyog Pipliwal<sup>1</sup>

<sup>1</sup> School of Electronic Engineering and Computer Science, Queen Mary University

<sup>2</sup> School of Biological and Behavioural Sciences, Queen Mary University

#### **Author Note**

Correspondence should be addressed to phd candidate researcher Ella Cullen, Queen Mary University, email: <u>e.l.a.cullen@qmul.ac.uk</u>.

#### Abstract

Natural dialogue has a flexible, open-ended and collaborative character that makes controlled experiments difficult. One strategy for dealing with this is to use a dialogue task that reduces this complexity by limiting the content, format or structure of a dialogue. This paper introduces a systematic review of these tasks which aims to: i) provide an overview of the variety of dialogue tasks in the literature, ii) introduce a taxonomy for capturing the basic features of dialogue tasks, iii) introduce simple quantitative comparisons of existing corpora, and iv) identify potential gaps in the kinds of dialogue covered by current experimental work.

Keywords: Dialogue, task-oriented dialogue, domain-independent dialogue, face-to-face,

taxonomy, natural language processing

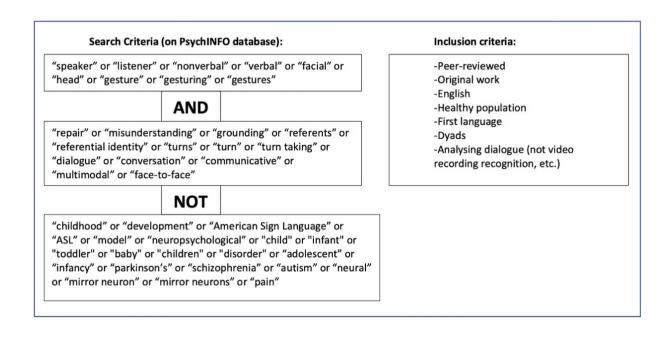
# Characteristics of Common Experimental Dialogue Tasks: A Systematic Review & Taxonomy

Dialogue tasks are a key practical tool for experimental investigations of human interaction; they bring useful experimental control to an inherently noisy and variable phenomenon (Sacks et al., 1974). However, these tasks also necessarily compromise some features of natural dialogue. To assess how well findings from these dialogue tasks generalise to other tasks and situations, it is important to understand how these task-oriented dialogues differ from each other and from natural dialogue. Section 1 of this paper introduces a survey of the literature and addresses the following questions:

- 1. What range of dialogue tasks have been used in the experimental literature?
- 2. What characteristics can we use to make meaningful, practical comparisons between dialogue tasks?
- 3. What aspects of natural dialogue are covered by the current literature? What gaps are there?

A further question that arises is; "should the variability and dynamism of natural dialogue be considered noise?". Section 2 explores this question. Comparison of quantitative dialogue measures across popular dialogue tasks will allow for this question to be answered, to see if the dynamism and variability of dialogue is significantly constrained by different task characteristics and how ecological validity is reduced.

#### Section 1


#### Methods

#### 1. Systematic Review

With the research aim of systematically classifying existing dialogue tasks according to their characteristics, a systematic search of the literature was carried out on the PsychINFO database (See Figure 1) to answer the research question: "How can the methodological and structural variance between different dialogue task studies in the literature be characteristically organised?". Data extraction from this search involved the stages of inclusion illustrated in Table 1.

#### Figure 1.

Search strategy



#### Table 1.

| Literature Review Stage      | Number of Papers |
|------------------------------|------------------|
| Search of PsychINFO          | 8,931            |
| Inclusion based on title     | 520              |
| Inclusion based on abstract  | 242              |
| Inclusion based on full text | 78               |
| Forward search (Google       | 113              |

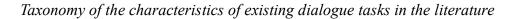
Summary of the stages of inclusion for systematic review.

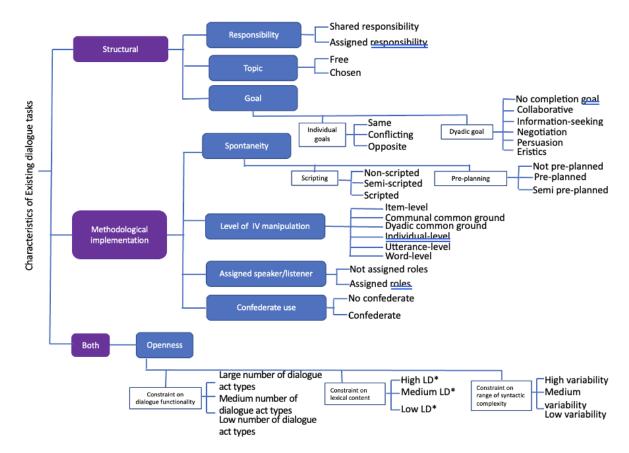
#### 2. Taxonomy development

Taxonomy development followed Nickerson et al.'s (2013) guidelines. The purpose of this taxonomy was to classify existing dialogue tasks according to their characteristics. From collecting and coding the 113 dialogue task studies, dialogue task characteristics were synthesised and organised using a combination of the empirical-to-conceptual and conceptual-to-empirical approach through multiple iterations (Nickerson et al., 2013).

3. Application of taxonomy to tasks in the literature.

This taxonomy was then applied to the dialogue task studies collected in the systematic review to map out the space and distribution of task types in the experimental literature.


#### Results


1. Systematic Review

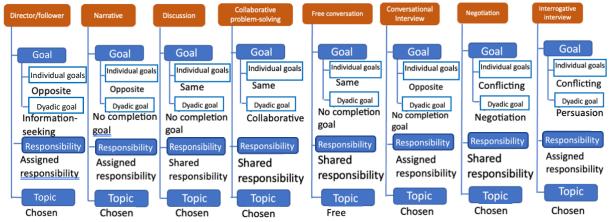
The systematic search of the literature yielded 113 experimental dialogue task studies.

#### 2. Proposed Taxonomy

#### Figure 2.






*Note.* The purple boxes are meta-dimensions, the blue boxes are dimensions, the white boxes are sub-dimensions and the non-boxed are characteristics of the sub-dimensions. A task can only have one characteristic of each sub-dimension.

\*Lexical diversity (LD)

3. Grouping of dialogue tasks according to shared structural characteristics

#### Figure 3.

Dialogue task groups according to shared structural characteristics.



*Note.* The orange boxes illustrate resulting dialogue task groups. The following dimensions (blue boxes), sub-dimensions (white boxes) and characteristics under each task group highlight how tasks within a group homogenously meet the structural characteristics of their group.

4. Example classification of an existing dialogue task study with the proposed taxonomy

## Table 2.

Example classification of a dialogue task

|               | <b>Category / Dimension</b>  | Howarth & Anderson's (2007) Map Task                                                                                                                      |
|---------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | Responsibility               | Assigned: Roles of 'instruction giver' and 'instruction follower'                                                                                         |
|               | Торіс                        | <b>Chosen:</b> Dialogue centres around instruction<br>follower drawing a complete route that fits the<br>instruction giver's description                  |
| Structural    | Individual goals             | <b>Opposite:</b> One is to give instructions, one is to follow                                                                                            |
|               | Dyadic goals                 | <b>Information-seeking:</b> asymmetric structure in<br>which one individual consistently is seeking<br>information from the other throughout the dialogue |
|               | Scripting                    | Non-scripted: No part of either subjects' speech was directly scripted                                                                                    |
|               | Confederate use              | <b>No confederate:</b> Both were naïve participants whose behaviour was not directly instructed                                                           |
| ethodological | Level of IV<br>manipulation  | Dyadic level: Face-to-face vs. video-mediated                                                                                                             |
|               | Assigned<br>speaker/listener | <b>Not assigned roles:</b> participants were instructed to freely speak about the task                                                                    |
|               | Pre-planned<br>speech        | <b>Not pre-planned:</b> describers and followers had to discuss the route given to them for that trial without previous examination of the route          |

#### Section 2

#### Methods

Comparative analysis of an assorted collection of transcripts of task-oriented and natural dialogues was carried out. Transcripts from the Spoken Demographic section of the British National Corpus (BNC) (Love et al., 2017) were used as a baseline measure for domain-independent, natural dialogue. Transcripts for dialogue tasks included the Map task (Anderson et al., 1991), Maze task (Garrod and Anderson, 1987), Tangram task (Clark & Wilkes-Gibbs, 1986), TRAINS corpus (Allen et al., 1995), DBOX corpus (Petukhova et al., 2014), SWBD (Godfrey et al., 1992).

Three measures were identified to enable direct, quantitative comparison of the effects of different dialogue tasks:

#### 1. Lexical diversity

Lexical diversity was captured through the vocd-D index. A standard length of 200 words from each transcript was analysed.

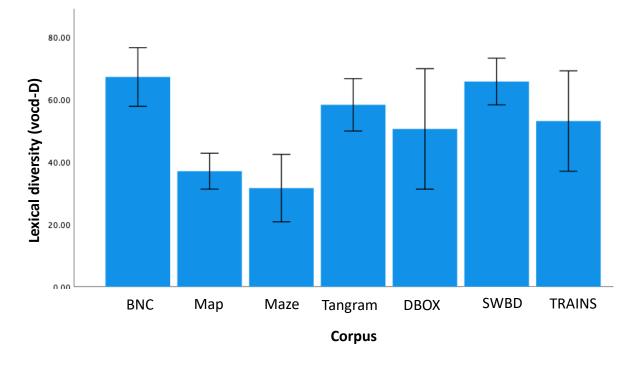
#### 2. Syntactic complexity

The Stanford parser (Klein & Manning, 2003) was used to parse each turn of the transcripts. Syntactic complexity was operationalised as the node count of the parse tree for each turn.

#### 3. Dialogue act type range

Pre-annotated, ISO standard corpora were collected from DialogBank (Bunt et al., 2019). Available corpora included the SWBD, TRAINS, DBOX and HCRC Map task corpus. The dialogue act tags for a standard length of 100 turns per transcript were counted.

#### Results


#### 1. Lexical diversity

A one-way ANOVA comparing overall lexical diversity of dialogues between task transcripts and the BNC shows a statistically significant difference in lexical diversity between at least two groups [F(6, 38) = 12.29, p = <.001] (See figure 4).

The findings from post-hoc Tukey's HSD Test for multiple comparisons (Table 3) shows that the mean lexical diversity of the BNC was found to be significantly higher than the map and maze tasks. There was no significant difference found between the BNC and tangram, DBOX, SWBD, nor TRAINS task.

#### Figure 4.

Graph to illustrate the mean lexical diversity of different task corpora published from DialogBank

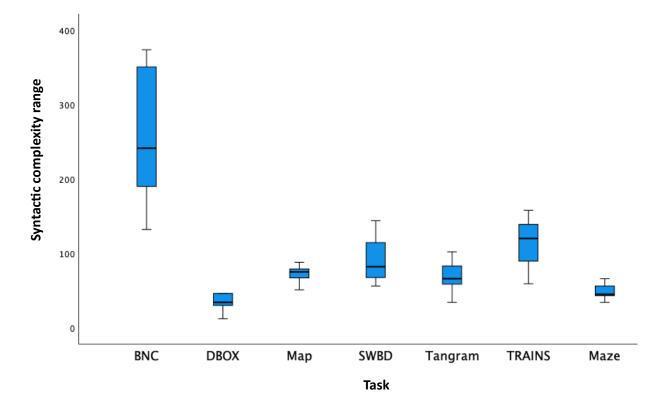


Note. Error bars show 95% confidence intervals.

## Table 3.

| (I) Task | (J) Task | Mean Difference (I-J) | Std. Error | Sig.  | 95% Confidence Interval |             |
|----------|----------|-----------------------|------------|-------|-------------------------|-------------|
|          |          |                       |            |       | Lower Bound             | Upper Bound |
| BNC      | Map      | 30.15167*             | 5.74174    | <.001 | 12.2862                 | 48.0171     |
|          | Maze     | 35.56167*             | 5.74174    | <.001 | 17.6962                 | 53.4271     |
|          | Tangram  | 8.90667               | 5.24147    | 0.621 | -7.4022                 | 25.2155     |
|          | DBOX     | 16.63667              | 6.41947    | 0.157 | -3.3375                 | 36.6108     |
|          | SWBD     | 1.46967               | 5.13557    | 1     | -14.5097                | 17.449      |
|          | TRAINS   | 14.09667              | 6.41947    | 0.321 | -5.8775                 | 34.0708     |
| Мар      | BNC      | -30.15167*            | 5.74174    | <.001 | -48.0171                | -12.2862    |
|          | Maze     | 5.41                  | 5.74174    | 0.963 | -12.4554                | 23.2754     |
|          | Tangram  | -21.24500*            | 5.24147    | 0.004 | -37.5538                | -4.9362     |
|          | DBOX     | -13.515               | 6.41947    | 0.37  | -33.4892                | 6.4592      |
|          | SWBD     | -28.68200*            | 5.13557    | <.001 | -44.6613                | -12.7027    |
|          | TRAINS   | -16.055               | 6.41947    | 0.188 | -36.0292                | 3.9192      |
| Maze     | BNC      | -35.56167*            | 5.74174    | <.001 | -53.4271                | -17.6962    |
|          | Map      | -5.41                 | 5.74174    | 0.963 | -23.2754                | 12.4554     |
|          | Tangram  | -26.65500*            | 5.24147    | <.001 | -42.9638                | -10.3462    |
|          | DBOX     | -18.925               | 6.41947    | 0.073 | -38.8992                | 1.0492      |
|          | SWBD     | -34.09200*            | 5.13557    | <.001 | -50.0713                | -18.1127    |
|          | TRAINS   | -21.46500*            | 6.41947    | 0.028 | -41.4392                | -1.4908     |
| Tangram  | BNC      | -8.90667              | 5.24147    | 0.621 | -25.2155                | 7.4022      |
|          | Map      | 21.24500*             | 5.24147    | 0.004 | 4.9362                  | 37.5538     |
|          | Maze     | 26.65500*             | 5.24147    | <.001 | 10.3462                 | 42.9638     |
|          | DBOX     | 7.73                  | 5.9762     | 0.851 | -10.8649                | 26.3249     |
|          | SWBD     | -7.437                | 4.56941    | 0.666 | -21.6547                | 6.7807      |
|          | TRAINS   | 5.19                  | 5.9762     | 0.975 | -13.4049                | 23.7849     |
| DBOX     | BNC      | -16.63667             | 6.41947    | 0.157 | -36.6108                | 3.3375      |
|          | Map      | 13.515                | 6.41947    | 0.37  | -6.4592                 | 33.4892     |
|          | Maze     | 18.925                | 6.41947    | 0.073 | -1.0492                 | 38.8992     |
|          | Tangram  | -7.73                 | 5.9762     | 0.851 | -26.3249                | 10.8649     |
|          | SWBD     | -15.167               | 5.88354    | 0.162 | -33.4736                | 3.1396      |
|          | TRAINS   | -2.54                 | 7.03217    | 1     | -24.4206                | 19.3406     |
| SWBD     | BNC      | -1.46967              | 5.13557    | 1     | -17.449                 | 14.5097     |
|          | Map      | 28.68200*             | 5.13557    | <.001 | 12.7027                 | 44.6613     |
|          | Maze     | 34.09200*             | 5.13557    | <.001 | 18.1127                 | 50.0713     |
|          | Tangram  | 7.437                 | 4.56941    | 0.666 | -6.7807                 | 21.6547     |
|          | DBOX     | 15.167                | 5.88354    | 0.162 | -3.1396                 | 33.4736     |
|          | TRAINS   | 12.627                | 5.88354    | 0.348 | -5.6796                 | 30.9336     |
| TRAINS   | BNC      | -14.09667             | 6.41947    | 0.321 | -34.0708                | 5.8775      |

## Table of Tukey's HSD pairwise comparisons


| (I) Task (J) Task |         | Mean Difference (I-J) | Std. Error | Sig.  | 95% Confidence Interval |             |
|-------------------|---------|-----------------------|------------|-------|-------------------------|-------------|
|                   |         |                       |            |       | Lower Bound             | Upper Bound |
|                   | Map     | 16.055                | 6.41947    | 0.188 | -3.9192                 | 36.0292     |
|                   | Maze    | 21.46500*             | 6.41947    | 0.028 | 1.4908                  | 41.4392     |
|                   | Tangram | -5.19                 | 5.9762     | 0.975 | -23.7849                | 13.4049     |
|                   | DBOX    | 2.54                  | 7.03217    | 1     | -19.3406                | 24.4206     |
|                   | SWBD    | -12.627               | 5.88354    | 0.348 | -30.9336                | 5.6796      |

*Note.* \* The mean difference is significant at the 0.05 level.

## 2. Median range of syntactic complexity

A Kruskal-Wallis test shows a reliable difference in the median range of syntactic complexity across tasks,  $\chi 2(6) = 27.96$ , p = <.001. See Figure 5. The median range of syntactic complexity was largest in the BNC (Md = 241.50), then TRAINS (Md = 120.00), then SWBD (Md = 82.00), then Map task (Md = 75.00), then Tangram task (Md = 66.00), then Maze task (Md = 45), then the smallest range was the DBOX corpus (Md = 34).

## Figure 5.



Boxplot to illustrate the median range of syntactic complexity across tasks.

## 3. Range of ISO-standard dialogue act types

The mean percentage contribution of each ISO dialogue act in the transcripts of each corpus is illustrated in Table 6.

## Table 6.

Relative distribution of dialogue act types across tasks (%)

| ISO dialogue act | SWBD   | TRAINS | DBOX  | Map   |
|------------------|--------|--------|-------|-------|
| inform           | 30.79% | 16.19% | 5.37% | 6.43% |
| agreement        | 3.16%  | 0.54%  | 0.31% | 1.47% |
| disagreement     | -      | -      | -     | -     |
| correction       | -      | -      | 0.13% | 0.43% |
| answer           | 3.13%  | 6.79%  | 0.56% | 4.25% |
| confirm          | 0.69%  | 2.67%  | 0.96% | 1.94% |

| ISO dialogue act       | SWBD   | TRAINS | DBOX   | Map    |
|------------------------|--------|--------|--------|--------|
| disconfirm             | -      | -      | 0.49%  | 0.19%  |
| question               | -      | -      | -      | -      |
| set-question           | 1.81%  | 6.55%  | 7.07%  | 1.34%  |
| propositional question | 0.25%  | 1.14%  | 5.43%  | 3.27%  |
| choice-question        | -      | 0.34%  | 0.25%  | 0.52%  |
| check-question         | 0.69%  | 2.49%  | 0.13%  | 4.13%  |
| offer                  | -      | 1.41%  | 0.13%  | -      |
| address offer          | -      | _      | -      | -      |
| accept offer           | -      | 1.41%  | 0.13%  | -      |
| decline offer          | -      | _      | -      | -      |
| promise                | -      | _      | 0.19%  | -      |
| request                | -      | 0.27%  | 2.03%  | 0.27%  |
| address request        | -      | -      | 0.63%  | -      |
| accept request         | -      | 0.27%  | 0.89%  | 9.13%  |
| decline request        | -      | _      | -      | -      |
| suggest                | -      | 0.54%  | 1.45%  | 0.40%  |
| address suggest        | -      | _      | -      | -      |
| accept suggest         | -      | -      | -      | -      |
| decline suggest        | -      | _      | -      | 0.13%  |
| nstruct                | -      | 0.34%  | 0.37%  | 20.31% |
| setAnswer              | -      | _      | 5.47%  | -      |
| Propositional Answer   | -      | _      | 4.50%  | -      |
| Guess                  | -      | _      | 1.70%  | -      |
| autopositive           | 7.93%  | 17.21% | 11.65% | 22.20% |
| autonegative           | -      | _      | 0.25%  | 0.49%  |
| allopositive           | 0.25%  | -      | 2.79%  | 4.00%  |
| allonegative           | -      | _      | 0.13%  | 0.16%  |
| feedbackelicitation    | -      | _      | -      | 1.64%  |
| stalling               | 30.05% | 12.82% | 16.73% | 3.41%  |
| pausing                | -      | 3.27%  | 1.47%  | 0.35%  |
| turn take              | 4.99%  | 4.68%  | 7.21%  | 4.14%  |
| turn grab              | 0.74%  | 0.27%  | -      | 1.06%  |
| turn accept            | -      | 6.03%  | 2.65%  | 0.13%  |
| turn keep              | 8.42%  | 3.89%  | 11.62% | 1.72%  |
| turn give              | -      | -      | -      | 0.39%  |
| urn release            | -      | 1.08%  | -      | 0.13%  |
| self-correction        | 4.61%  | 2.71%  | 2.25%  | 2.94%  |
| self-error             | -      | 0.54%  | -      | -      |
| retraction             | 1.56%  | _      | -      | -      |
| completion             | 0.25%  | 0.34%  | -      | 0.31%  |
| correct misspeaking    | -      | 0.27%  | _      | -      |

| ISO dialogue act       | SWBD  | TRAINS | DBOX   | Map    |
|------------------------|-------|--------|--------|--------|
| init-greeting          | -     | 0.34%  | -      | -      |
| return greeting        | -     | -      | -      | -      |
| init-self-introduction | -     | -      | -      | -      |
| return-self-           |       |        |        |        |
| introduction           | -     | -      | -      | -      |
| apology                | -     | -      | 0.50%  | 0.52%  |
| accept apology         | -     | -      | 0.31%  | -      |
| thanking               | -     | -      | 0.30%  | -      |
| accept thanking        | -     | -      | -      | -      |
| init-goodbye           | -     | -      | -      | -      |
| return goodbye         | -     | -      | -      | -      |
| opening                | 0.69% | 1.41%  | -      | 0.64%  |
| turn assign            | -     | 1.43%  | -      | 0.51%  |
| Congratulation         | -     | -      | 1.14%  | -      |
| Closing                | -     | -      | 1.78%  | -      |
| Contact indication     | -     | -      | -      | 0.70%  |
| Interaction            |       | 2.72%  | 1.01%  | 0.31%  |
| structuring            | -     | 2.1270 | 1.0170 | 0.3170 |

#### Discussion

The preceding analysis highlights some common themes in the dialogue tasks currently used in the literature. The most common task type is dyadic information-seeking dialogues. Eristic (debate/argument), persuasive and negotiative tasks have received much less attention. Experimental manipulations tend to be coarse-grained with utterance and word level manipulations relatively rare.

An important limitation of the quantitative results reported here is that relatively few dialogue tasks have published corpora in the public domain. DialogBank is currently the most comprehensive repository (Bunt et al., 2019). As a result direct comparisons were only possible for a small subset of tasks. However, this analysis highlights that organisation of dialogue task characteristics is important, as the quantitative comparisons indicate dialogue is clearly shaped by the task at hand, with even small samples of different tasks (with different characteristics) showing statistically significant differences in quantitative dialogue measures. This highlights the potential impact of task choice when using dialogue task findings and the caution required when making generalisations to domain-independent natural conversation.

#### References

- Allen, J.F., Schubert, L.K., Ferguson, G., Heeman, P.A., Hwang, C.H., Kato, T., Light, M., Martin, N.G., Miller, B.W., Poesio, M., & Traum, D.R. (1994). The TRAINS project: a case study in building a conversational planning agent. *J. Exp. Theor. Artif. Intell.*, 7, 7-48.
- Anderson, A. H., Bader, M., Bard, E. G., Boyle, E., Doherty, G., Garrod, S., Isard, S.,
  Kowtko, J., McAllister, J., Miller, J., Sotillo, C., Thompson, H. S., & Weinert, R.
  (1991). The HCRC map task corpus. *Language and Speech*, *34*(4), 351366. https://doi.org/10.1177/002383099103400404
- Bunt, H., Petukhova, V. V., Chengyu Fang, A., Malchanau, A., & Wijnhoven, K. (2019). The DialogBank: Dialogues with Interoperable Annotations. *Language Resources and Evaluation*, 53, 213-249. <u>https://doi.org/10.1007/s10579-018-9436-9</u>
- Clark, H. H., & Wilkes-Gibbs, D. (1986). Referring as a collaborative process. *Cognition*, 22(1), 1–39. https://doi.org/10.1016/0010-0277(86)90010-7
- Garrod, S., & Anderson, A. (1987). Saying what you mean in dialogue: a study in conceptual and semantic co-ordination. *Cognition*, 27(2), 181–218. https://doi.org/10.1016/0010-0277(87)90018-7
- Godfrey, J.J., Holliman, E., & McDaniel, J. (1992). SWITCHBOARD: telephone speech corpus for research and development. [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing, 1, 517-520 vol.1.

- Howarth, B., & Anderson, A. H. (2007). Introducing objects in spoken dialogue: The influence of conversational setting and cognitive load on the articulation and use of referring expressions. *Language and Cognitive Processes*, 22(2), 272-296.
- Klein, D., & Manning, C.D. (2003). Accurate Unlexicalized Parsing. *Annual Meeting of the Association for Computational Linguistics*. <u>https://doi.org/10.3115/1075096.1075150</u>
- Love, R., Dembry, C., Hardie, A., Brezina, V. and McEnery, T. (2017). The Spoken
   BNC2014: designing and building a spoken corpus of everyday conversations.
   In *International Journal of Corpus Linguistics*, 22(3), pp. 319-344
- Nickerson, R.C., Varshney, U., & Muntermann, J. (2013). A method for taxonomy development and its application in information systems. *European Journal of Information Systems*, 22, 336-359. <u>https://doi.org/10.1057/ejis.2012.26</u>
- Petukhova, V., Gropp, M., Klakow, D., Eigner, G., Topf, M., Srb, S., Motlícek, P., Potard,
  B., Dines, J., Deroo, O., Egeler, R., Meinz, U., Liersch, S., & Schmidt, A. (2014). The
  DBOX Corpus Collection of Spoken Human-Human and Human-Machine
  Dialogues. *International Conference on Language Resources and Evaluation*.
- Sacks, H., Schegloff, E. A., & Jefferson, G. (1974). A Simplest Systematics for the Organization of Turn-Taking for Conversation. *Language*, 50(4), 696–735. https://doi.org/10.2307/412243